JPH06166571A - Production of sintered silicon nitride - Google Patents

Production of sintered silicon nitride

Info

Publication number
JPH06166571A
JPH06166571A JP3245868A JP24586891A JPH06166571A JP H06166571 A JPH06166571 A JP H06166571A JP 3245868 A JP3245868 A JP 3245868A JP 24586891 A JP24586891 A JP 24586891A JP H06166571 A JPH06166571 A JP H06166571A
Authority
JP
Japan
Prior art keywords
silicon nitride
raw material
less
powder
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3245868A
Other languages
Japanese (ja)
Other versions
JPH0753615B2 (en
Inventor
Mamoru Mitomo
友 護 三
Naoto Hirosaki
崎 尚 登 広
Motohide Ando
藤 元 英 安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
National Institute for Research in Inorganic Material
Original Assignee
Nissan Motor Co Ltd
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, National Institute for Research in Inorganic Material filed Critical Nissan Motor Co Ltd
Priority to JP3245868A priority Critical patent/JPH0753615B2/en
Publication of JPH06166571A publication Critical patent/JPH06166571A/en
Publication of JPH0753615B2 publication Critical patent/JPH0753615B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a sintered silicon nitride having excellent strength and toughness comparable to those of silicon nitride produced from high-purity powder as a raw material even in the case of using an inexpensive refractory grade beta-silicon nitride powder as a raw material. CONSTITUTION:Silicon nitride has alpha-form and beta-form. Silicon nitride raw material powder containing >=80wt.% of the beta-form silicon nitride and having an average particle diameter of >=2.0mum is crushed and classified to obtain a product having particle size distribution containing 70-95wt.% of fraction having particle diameter of <=0.8mum and 5-30wt.% of fraction having particle diameter of 1.5-5.0mum. The obtained silicon nitride raw material powder is incorporated with a sintering assistant, formed and baked in nitrogen atmosphere preferably at 1600-2000 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、自動車,機械装置,
化学装置,宇宙航空機器などの広い分野において使用さ
れる各種構造部品の素材として利用でき、安価なβ型窒
化ケイ素粉末を原料として用い、とくに高い破壊靭性値
と優れた強度を有するファインセラミックス材料を得る
のに好適な窒化ケイ素質焼結体の製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to automobiles, mechanical devices,
A fine ceramic material that can be used as a raw material for various structural parts used in a wide range of fields such as chemical equipment and aerospace equipment, and that uses inexpensive β-type silicon nitride powder as a raw material and that has a particularly high fracture toughness value and excellent strength The present invention relates to a method for producing a silicon nitride-based sintered body suitable for obtaining.

【0002】[0002]

【従来の技術】窒化ケイ素を主成分とする焼結体は、常
温および高温で化学的に安定であり、高い機械的強度を
有するため、軸受などの摺動部材、ターボチャージャロ
ータなどのエンジン部材として好適な材料である。
2. Description of the Related Art Sintered bodies containing silicon nitride as a main component are chemically stable at room temperature and high temperature and have high mechanical strength. Therefore, sliding members such as bearings and engine members such as turbocharger rotors are used. Is a suitable material.

【0003】従来より、高強度の窒化ケイ素質焼結体を
得るには、α型を主成分とする原料粉末が必要とされて
おり、一般にα型の含有率が90重量%以上の粉末が市
販されている。ここで、α型を主成分とする原料粉末を
用いるのは、 1.α型は微粉末であり、焼結性が高いこと、 2.焼結中にα型からβ型への相転移が起こり、柱状結
晶が発達した組織となることにより強度および靭性が向
上すること、 等の理由からであった。
Conventionally, in order to obtain a high-strength silicon nitride sintered body, a raw material powder containing α-type as a main component has been required. Generally, a powder having an α-type content of 90% by weight or more is required. It is commercially available. Here, the raw material powder mainly composed of α type is used as follows. 1. The α type is a fine powder and has high sinterability, This is because the phase transition from α-type to β-type occurs during sintering and the columnar crystals develop into a structure, which improves strength and toughness.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
たα型を出発原料とする窒化ケイ素粉末は、α型の含有
量を制御する必要があるため、原料粉末の合成過程が複
雑となり、原料が高価なものになるという問題点があっ
た。
However, in the above-mentioned silicon nitride powder starting from α-type as a starting material, it is necessary to control the content of α-type, so that the synthesis process of the raw material powder is complicated and the raw material is expensive. There was a problem that it would be something like.

【0005】一方、β型を主成分とする窒化ケイ素粉末
としては、耐火物の原料として使用する粉末が知られて
いる。このβ型を主成分とする窒化ケイ素を原料とする
焼結体としては、J.Am.Ceram.Soc.57
巻25ページ(1974年),特開昭58−15137
1号等が知られている。
On the other hand, as a silicon nitride powder containing β-type as a main component, a powder used as a raw material of a refractory is known. As a sintered body made of silicon nitride containing β type as a main component as a raw material, J. Am. Ceram. Soc. 57
Volume 25 (1974), JP-A-58-15137
No. 1 is known.

【0006】しかし、β型を主成分とする粉末は粒子が
粗く、α相の含有率が低いため柱状組織が得られず、高
強度の焼結体は得られないので、高強度の焼結体を製造
するための原料粉末としては使用されていなかった。
However, the powder containing β-type as the main component has coarse particles, and since the content of α-phase is low, a columnar structure cannot be obtained and a high-strength sintered body cannot be obtained. It was not used as a raw material powder for manufacturing the body.

【0007】本発明者の一人は、先に、高窒素下で高温
での焼結が可能となるガス圧焼結法を開発した(特許
1,247,183号)。また、ガス圧焼結法による
と、従来、焼結性が低いと考えられていたβ型窒化ケイ
素粉末を用いても、高密度まで焼結できることを示した
(ジャーナル オブ マテリアルズ サイエンス 第1
1巻 1103頁から1107頁(1976年)および
特公昭58−151371号)。さらに、平成元年3月
29日付けの特許出願で、高純度のβ型窒化ケイ素粉末
の粒度分布を調整することにより高強度の焼結体が得ら
れることを示した。
One of the inventors of the present invention previously developed a gas pressure sintering method which enables sintering at high temperature under high nitrogen (Japanese Patent No. 1,247,183). In addition, according to the gas pressure sintering method, it was shown that β-type silicon nitride powder, which was conventionally considered to have low sinterability, can be sintered to a high density (Journal of Materials Science No. 1).
1 1103 to 1107 (1976) and Japanese Examined Patent Publication No. 58-151371). Further, in a patent application dated March 29, 1989, it was shown that a high-strength sintered body can be obtained by adjusting the particle size distribution of high-purity β-type silicon nitride powder.

【0008】しかしながら、出発原料として高純度のβ
型粉末を用いることが必要であり、高価なものになると
いう問題点があった。
However, high-purity β as a starting material
There is a problem that it is necessary to use a mold powder, which is expensive.

【0009】それゆえ、原料粉末の合成過程が複雑でな
く、かつまた高純度のβ型粉末を用いる必要がなく、安
価な耐火物グレードのβ型窒化ケイ素粉末を原料として
強度および靭性に優れた窒化ケイ素質焼結体を得ること
ができるようにすることが課題となっていた。
Therefore, the process of synthesizing the raw material powder is not complicated, and it is not necessary to use the high-purity β-type powder, and the inexpensive refractory-grade β-type silicon nitride powder is used as the raw material and is excellent in strength and toughness. It has been a problem to be able to obtain a silicon nitride sintered body.

【0010】[0010]

【発明の目的】この発明は、上記した従来の課題にかん
がみてなされたもので、安価な耐火物グレードのβ型窒
化ケイ素粉末を原料とし、粉砕分級処理を施すことによ
り、粒度分布を制御した原料粉末を使用することによっ
て、強度および靭性に優れた窒化ケイ素質焼結体を提供
することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and uses an inexpensive refractory grade β-type silicon nitride powder as a raw material, and controls the particle size distribution by pulverizing and classifying. It is an object of the present invention to provide a silicon nitride sintered body excellent in strength and toughness by using the raw material powder.

【0011】[0011]

【課題を解決するための手段】この発明に係わる窒化ケ
イ素質焼結体の製造方法では、安価な耐火物グレードの
β型窒化ケイ素粉末を原料とし、適切な粉砕分級処理を
施すことにより粒度分布を制御した原料粉末を使用する
ことによって、高純度粉末を出発原料とした窒化ケイ素
質焼結体に劣らない優れた強度および靭性を備えた窒化
ケイ素質焼結体が得られることを新規に見い出してこの
発明を完成した。
In the method for manufacturing a silicon nitride sintered body according to the present invention, an inexpensive refractory grade β-type silicon nitride powder is used as a raw material and subjected to an appropriate pulverizing and classifying treatment to obtain a particle size distribution. It has been newly found that the use of a raw material powder having a controlled temperature makes it possible to obtain a silicon nitride sintered body having excellent strength and toughness comparable to a silicon nitride sintered body using a high-purity powder as a starting material. The invention was completed.

【0012】すなわち、この発明に係わる窒化ケイ素質
焼結体の製造方法は、α型とβ型とを有する窒化ケイ素
原料粉末においてβ型を80重量%以上含みかつ平均粒
径が2.0μm以上の窒化ケイ素原料粉末に粉砕分級処
理を施して、0.8μm以下の割合が70重量%以上9
5重量%以下でかつ1.5μm以上5.0μm以下の割
合が5重量%以上30重量%以下の粒度分布に制御し、
この窒化ケイ素原料粉末に焼結助剤を添加して成形した
後、窒素雰囲気下で焼成する構成としたことを特徴とし
ており、このような窒化ケイ素質焼結体の製造方法に係
わる発明の構成をもって前述した従来の課題を解決する
ための手段としている。
That is, in the method for producing a silicon nitride sintered body according to the present invention, the silicon nitride raw material powder having α type and β type contains β type in an amount of 80% by weight or more and has an average particle size of 2.0 μm or more. The raw material powder of silicon nitride is pulverized and classified so that the proportion of 0.8 μm or less is 70% by weight or more and 9% or less.
5% by weight or less and a ratio of 1.5 μm or more and 5.0 μm or less is controlled to a particle size distribution of 5% by weight or more and 30% by weight or less,
The silicon nitride raw material powder is molded by adding a sintering aid, and is then fired in a nitrogen atmosphere. The constitution of the invention relating to the method for producing such a silicon nitride sintered body is characterized. Is a means for solving the above-mentioned conventional problems.

【0013】この発明に係わる窒化ケイ素質焼結体の製
造方法において、焼結助剤としては、酸化物および窒化
物より選択されたものを使用することができる。また、
窒素雰囲気下での焼成に際しては、1600〜2000
℃の温度を採用することができる。
In the method for manufacturing a silicon nitride sintered body according to the present invention, a sintering aid selected from oxides and nitrides can be used. Also,
When firing in a nitrogen atmosphere, 1600 to 2000
Temperatures of ° C can be employed.

【0014】この発明に係わる窒化ケイ素質焼結体の製
造方法において、出発原料粉末としては、α型とβ型と
を有する窒化ケイ素原料粉末においてβ型を80重量%
以上含みかつ平均粒径が2.0μm以上の窒化ケイ素原
料粉末を用いる。この場合、この発明では、β型の窒化
ケイ素の焼結性に合わせた粒度分布および焼成条件を設
定するので、α型の含有量が多くなると異常粒成長が起
こり、強度が低下する。そして、前記窒化ケイ素原料粉
末に粉砕分級処理を施すことによって、0.8μm以下
と1.5μm以上5.0μm以下の粒子を得る必要があ
るため、窒化ケイ素原料粉末の平均粒径は2.0μm以
上とすることが必要である。
In the method for producing a silicon nitride sintered body according to the present invention, the starting raw material powder is a silicon nitride raw material powder having α type and β type, and β type is 80% by weight.
A silicon nitride raw material powder containing the above and having an average particle diameter of 2.0 μm or more is used. In this case, in the present invention, since the particle size distribution and firing conditions are set in accordance with the sinterability of β-type silicon nitride, if the α-type content increases, abnormal grain growth occurs and the strength decreases. Then, it is necessary to obtain particles of 0.8 μm or less and 1.5 μm or more and 5.0 μm or less by subjecting the silicon nitride raw material powder to pulverizing and classifying treatment, so that the average particle diameter of the silicon nitride raw material powder is 2.0 μm. It is necessary to do the above.

【0015】次に、前記窒化ケイ素原料粉末に粉砕分級
処理を施すことによって、0.8μm以下の割合が70
重量%以上95重量%以下でかつ1.5μm以上5.0
μm以下の割合が5重量%以上30重量%以下である粒
度分布に制御する。この場合、0.8μm以下の粉末
と、1.5μm以上5.0μm以下の粉末のみよりなる
場合に限定されないものであり、前記割合を満たす範囲
内でその他0.8μm超過1.5μm未満の粉末や5.
0μm超過の粉末を若干含んでいる場合も包含される。
そして、0.8μm以下の粉末(以下、「細粒」と呼
ぶ。)は、焼結体の緻密化を促進する働きをするため、
細粒の最大粒子径が0.8μm超過となると焼結性が低
下する。また、細粒の割合が70重量%未満となると焼
結性が低下する。反対に、細粒の割合が95重量%超過
となると、組織制御の粒成長の核となる1.5μm以上
5.0μm以下の範囲の粒子(以下、「粗粒」と呼
ぶ。)の割合が少なくなるため、緻密化はするものの柱
状の組織が発達せず、強度および靭性値が低下する。
Next, the silicon nitride raw material powder is subjected to a pulverizing and classifying treatment to reduce the ratio of 0.8 μm or less to 70%.
% To 95% by Weight and 1.5 μm to 5.0
The particle size distribution is controlled such that the proportion of μm or less is 5% by weight or more and 30% by weight or less. In this case, it is not limited to the case where it is composed only of powder of 0.8 μm or less and the powder of 1.5 μm or more and 5.0 μm or less, and the powder of other than 0.8 μm and less than 1.5 μm within the range satisfying the above ratio. And 5.
It also includes the case where a small amount of powder exceeding 0 μm is contained.
And, the powder of 0.8 μm or less (hereinafter referred to as “fine particles”) has a function of promoting the densification of the sintered body,
If the maximum particle size of the fine particles exceeds 0.8 μm, the sinterability decreases. Further, if the proportion of fine particles is less than 70% by weight, the sinterability is deteriorated. On the other hand, when the proportion of fine grains exceeds 95% by weight, the proportion of particles in the range of 1.5 μm or more and 5.0 μm or less (hereinafter referred to as “coarse grains”), which are cores of grain growth for structure control, is produced. Since the amount becomes small, the columnar structure does not develop although it is densified, and the strength and toughness values decrease.

【0016】粗粒の粒子径は、1.5μm以上5.0μ
m以下がよい。すなわち、1.5μm未満では柱状の粒
成長の核となる働きが少なく、柱状の組織が得られな
い。反対に、5.0μm超過では粒子径の大きい柱状組
織は得られるものの、成長速度が小さいために、強化機
構が小さく強度および靭性が向上しない。また、粗粒の
割合は5重量%以上30重量%以下が良い。すなわち、
5重量%未満では核が少ないため柱状結晶が発達しな
い。反対に、30重量%超過では細粒の割合が少なくな
るために焼結性が低下する。さらに、より一層の高強度
化を狙う場合には10.0μm以上の巨大粒子は沈殿法
あるいはふるいなどにより取り除くことが望ましい。
The particle size of the coarse particles is from 1.5 μm to 5.0 μm.
m or less is preferable. That is, when the thickness is less than 1.5 μm, there is little function as a nucleus of columnar grain growth, and a columnar structure cannot be obtained. On the other hand, if it exceeds 5.0 μm, a columnar structure having a large particle size can be obtained, but since the growth rate is low, the strengthening mechanism is small and the strength and toughness are not improved. The proportion of coarse particles is preferably 5% by weight or more and 30% by weight or less. That is,
When it is less than 5% by weight, columnar crystals do not develop due to the small number of nuclei. On the other hand, if it exceeds 30% by weight, the proportion of fine particles decreases and the sinterability decreases. Further, when aiming at further higher strength, it is desirable to remove the giant particles of 10.0 μm or more by a precipitation method or a sieve.

【0017】粉砕分級処理の方法は、上記の粒度分布が
得られる方法ならばどれでも良いが、一例を以下に説明
する。
Any method can be used for the pulverizing / classifying treatment as long as the above-mentioned particle size distribution can be obtained. An example will be described below.

【0018】まず、原料粉末を水に分散させ、次いでア
トリッションミルを用いて粉砕を行い、処理済みのスラ
リーを水槽に入れ、続いて沈殿法によって粒子を分級し
て必要な量の細粒と粗粒を水槽から取り出す。分級によ
って余った粗粒は再度原料と共にアトリッションミルに
投入し、粉砕処理を繰り返す。このようにして、同一粉
末を粉砕分級処理することによって、所定の粒度分布を
持つ原料粉末を得るのが効率の点でよい。
First, the raw material powder is dispersed in water, then pulverized by using an attrition mill, the treated slurry is put in a water tank, and then the particles are classified by a precipitation method to obtain a necessary amount of fine particles. And remove the coarse particles from the water tank. The coarse particles left over from the classification are charged again into the attrition mill together with the raw materials, and the crushing process is repeated. In this way, it is good in terms of efficiency to obtain a raw material powder having a predetermined particle size distribution by pulverizing and classifying the same powder.

【0019】このようにして粒度調整をした窒化ケイ素
原料粉末に、酸化物や窒化物などの焼結助剤を添加す
る。ここで用いる焼結助剤は、通常、α型またはβ型の
窒化ケイ素の焼結に用いる焼結助剤から選ばれる。酸化
物の焼結助剤としては、例えば、MgO,Al
またはランタニド金属酸化物から選ばれる1種
あるいは2種以上の混合物を用いる。また、窒化物の焼
結助剤としては、例えば、AlNが使われる。この焼結
助剤の添加量は、通常、5〜15重量%が添加される。
A sintering aid such as an oxide or a nitride is added to the silicon nitride raw material powder whose particle size has been adjusted in this manner. The sintering aid used here is usually selected from the sintering aids used for sintering α-type or β-type silicon nitride. Examples of the oxide sintering aid include MgO, Al 2 O 3 , and
One or a mixture of two or more selected from Y 2 O 3 and lanthanide metal oxides is used. In addition, for example, AlN is used as the sintering aid for the nitride. The addition amount of this sintering aid is usually 5 to 15% by weight.

【0020】さらに、上記粉末の成形に際しては、金型
プレス成形,静水圧プレス成形,射出成形,鋳込み成形
など、通常の成形法を用いて成形することができる。こ
の後、成形に要した有機バインダーを除去して焼成を行
う。
Further, when molding the above-mentioned powder, it is possible to carry out molding by a usual molding method such as die press molding, isostatic press molding, injection molding, casting molding and the like. After that, the organic binder required for molding is removed and firing is performed.

【0021】焼成は、窒素雰囲気下で1600〜200
0℃の温度で行うのが良い。この場合、窒素は窒化ケイ
素の熱分解を防ぐために必要であり、高温で焼成するほ
ど高圧の窒素雰囲気を使用する。この焼成において必要
な最低圧は、1600〜1750℃の焼成温度で1気
圧、1800℃の焼成温度で2気圧,1900℃の焼成
温度で5気圧、2000℃の焼成温度で10気圧であ
る。そして、所定圧力よりも低いと窒化ケイ素は熱分解
を起こし、窒素を放出してケイ素となるので好ましくな
い。好ましい焼成温度は、焼結手法と使用する助剤の種
類および量等により異なるが、1600〜2000℃の
温度が使用される。焼結手法は、製品形状,使用する焼
結助剤の種類および量等を考えて、ホットプレス,常圧
焼結法,ガス圧焼結法等が採用される。
Firing is performed in a nitrogen atmosphere at 1600 to 200.
It is better to carry out at a temperature of 0 ° C. In this case, nitrogen is necessary to prevent thermal decomposition of silicon nitride, and the higher the temperature, the higher the pressure of the nitrogen atmosphere used. The minimum pressure required for this firing is 1 atm at a firing temperature of 1600 to 1750 ° C, 2 atm at a firing temperature of 1800 ° C, 5 atm at a firing temperature of 1900 ° C, and 10 atm at a firing temperature of 2000 ° C. If the pressure is lower than the predetermined pressure, silicon nitride undergoes thermal decomposition and releases nitrogen to become silicon, which is not preferable. The preferable firing temperature varies depending on the sintering method and the type and amount of the auxiliary agent used, but a temperature of 1600 to 2000 ° C. is used. As the sintering method, hot pressing, atmospheric pressure sintering method, gas pressure sintering method and the like are adopted in consideration of the product shape, the type and amount of the sintering aid to be used, and the like.

【0022】[0022]

【発明の作用】この発明に係わる窒化ケイ素質焼結体の
製造方法においては、β型の窒化ケイ素の焼結特性に合
わせた粒度分布の窒化ケイ素原料粉末を用いるようにし
ており、α型とβ型とを有する窒化ケイ素原料粉末にお
いてβ型を80重量%以上含みかつ平均粒径が2.0μ
m以上の窒化ケイ素原料粉末に粉砕分級処理を施して、
0.8μm以下の割合が70重量%以上95重量%以下
でかつ1.5μm以上5.0μm以下の割合が5重量%
以上30重量%以下である粒度分布に制御し、この窒化
ケイ素原料粉末に焼結助剤を添加して成形した後、窒素
雰囲気下で焼成するようにしているので、安価な耐火物
グレードのβ型窒化ケイ素粉末を使用したときでも、高
純度粉末を出発原料とした窒化ケイ素質焼結体に劣らな
い優れた強度および破壊靱性値を有する特性の優れた窒
化ケイ素質焼結体が得られることとなる。
In the method for producing a silicon nitride sintered body according to the present invention, the silicon nitride raw material powder having a particle size distribution that matches the sintering characteristics of β-type silicon nitride is used. A silicon nitride raw material powder having β-type, containing 80% by weight or more of β-type and having an average particle size of 2.0μ
m or more silicon nitride raw material powder is pulverized and classified,
The proportion of 0.8 μm or less is 70% by weight or more and 95% by weight or less, and the proportion of 1.5 μm or more and 5.0 μm or less is 5% by weight.
Since the particle size distribution is controlled to be 30% by weight or less, a sintering aid is added to the silicon nitride raw material powder, and the mixture is molded and then fired in a nitrogen atmosphere, it is an inexpensive refractory grade β. Even when using the silicon nitride type powder, it is possible to obtain a silicon nitride type sintered body which has excellent strength and fracture toughness value and excellent properties comparable to those of the silicon nitride type sintered body made of high purity powder as a starting material. Becomes

【0023】[0023]

【実施例】【Example】

(実施例1)図1に、この発明の実施例1において採用
した粉砕分級処理の概要を示す。
(Embodiment 1) FIG. 1 shows an outline of the pulverizing / classifying treatment adopted in Embodiment 1 of the present invention.

【0024】この実施例1において、まず、平均粒径
2.5μm,最大粒径20μmでかつβ型含有量が99
重量%の窒化ケイ素粉末に水と窒化ケイ素焼結体のビー
ズを添加し、アトリッションミルを使用して連続粉砕を
行い、粉砕後のスラリーを水槽に入れ、水槽の下部から
粗粒を、上部から細粒を取り出すことにより、0.8μ
m以下の細粒の割合が90重量%、0.8μm超過1.
5μm未満の割合が1重量%、1.5μm以上5.0μ
m以下の粗粒の割合が8重量%,5.0μm超過10.
0μm未満の割合が1重量%となるように粒度調整を行
った。この際、水槽の最下部に沈降した巨大粒子(1
0.0μm以上)は取り除いて廃却し、余った1.5μ
m以上から10.0μm未満の粉末は回収して再度原料
粉末と共にアトリッションミルに投入した。
In Example 1, first, the average particle size was 2.5 μm, the maximum particle size was 20 μm, and the β-type content was 99.
Water and beads of the silicon nitride sintered body are added to the silicon nitride powder of weight%, continuous crushing is performed using an attrition mill, the crushed slurry is put in a water tank, and coarse particles are put from the lower part of the water tank. 0.8μ by removing fine particles from the top
90% by weight of fine particles of m or less, exceeding 0.8 μm 1.
The ratio of less than 5 μm is 1% by weight, 1.5 μm or more and 5.0 μm
8% by weight of coarse particles of m or less, exceeding 5.0 μm 10.
The particle size was adjusted so that the ratio of less than 0 μm was 1% by weight. At this time, the giant particles (1
0.0μm or more) is removed and discarded, and the remaining 1.5μ
The powder having a particle size of m or more and less than 10.0 μm was collected and again charged into the attrition mill together with the raw material powder.

【0025】次いで、粒度調整した窒化ケイ素原料粉末
に、酸化イットリウム6重量%と酸化アルミニウム2重
量%を添加し、ボールミルで2時間混合した。続いて、
空気中でスプレイドライヤを用いて乾燥した後、20M
Paの圧力で金型プレス成形を行い、さらに200MP
aの圧力でラバープレスを施すことによって、6mm×
6mm×50mmの成形体を得た。
Next, 6% by weight of yttrium oxide and 2% by weight of aluminum oxide were added to the raw material powder of silicon nitride whose particle size was adjusted, and they were mixed in a ball mill for 2 hours. continue,
20M after drying with a spray dryer in air
Mold press molding with pressure of Pa, 200MP
By applying a rubber press with a pressure of a, 6 mm ×
A 6 mm × 50 mm molded body was obtained.

【0026】次に、この成形体を表1に示す種々の焼成
条件で焼成することによって各種焼結体を得た後、水を
用いたアルキメデス法により各焼結体の気孔率を求めて
密度を算出した。さらに、800メッシュのダイヤモン
ドホイールで平面研削し、3mm×4mm×40mmの
形状に加工し、JIS R 1601に準じた室温3点
曲げにより曲げ強さを求めると共に、JIS R 16
07に準じたSEPB法(試験片の3×40mmの面に
ビッカース圧痕を加え、これから予亀裂を生成し、この
予亀裂から破壊する手法)により破壊靱性値を求めた。
これらの結果を同じく表1に示す。
Next, after firing the molded body under various firing conditions shown in Table 1, various sintered bodies are obtained, and then the porosity of each sintered body is determined by the Archimedes method using water to obtain the density. Was calculated. Further, it was surface ground with an 800 mesh diamond wheel, processed into a shape of 3 mm x 4 mm x 40 mm, and the bending strength was determined by room temperature three-point bending according to JIS R 1601, and JIS R 16
The fracture toughness value was determined by the SEPB method according to 07 (a method in which Vickers indentation is added to the surface of a test piece of 3 × 40 mm, a precrack is generated from this, and fracture is performed from this precrack).
The results are also shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】表1に示した結果より明らかなように、何
れの条件においても高強度かつ高靱性の窒化ケイ素質焼
結体が得られていることが認められた。
As is clear from the results shown in Table 1, it was confirmed that a high-strength and high-toughness silicon nitride sintered body was obtained under any of the conditions.

【0029】(実施例2)図2に、この発明の実施例2
において採用した粉砕分級処理の概要を示す。
(Embodiment 2) FIG. 2 shows an embodiment 2 of the present invention.
The outline of the pulverizing and classifying process adopted in is shown below.

【0030】この実施例2において、まず、平均粒径1
0μm,最大粒径200μmでかつβ型含有量が90重
量%の窒化ケイ素粉末に水と窒化ケイ素焼結体のボール
を添加し、ボールミルで200時間粉砕し、乾燥した
後、ジェット粉砕機と乾式の分級機を使用して粉砕分級
を行い、0.8μm以下の細粒と0.8μm超過1.5
μm未満のものと1.5μm以上5.0μm以下の粗粒
と5.0μm超過10.0μm未満のものを得た。そし
て、10.0μm以上のものは廃却した。次いで、前記
粉末を混合することにより、0.8μm以下の細粒の割
合が80重量%,0.8μm超過1.5μm未満の割合
が3重量%,1.5μm以上5.0μm以下の割合が1
5重量%,5.0μm超過10.0μm未満の割合が2
重量%となるように粒度調整を行った。
In this Example 2, first, the average particle size was 1
Water and balls of a silicon nitride sintered body were added to silicon nitride powder having a particle size of 0 μm, a maximum particle size of 200 μm, and a β-type content of 90% by weight, ground with a ball mill for 200 hours, dried, and then dried with a jet grinder. Pulverizing and classifying using a classifier of 0.8 μm and fine particles of 0.8 μm or less and 0.8 μm or more 1.5
Particles of less than μm, coarse particles of 1.5 μm or more and 5.0 μm or less, and particles of more than 5.0 μm and less than 10.0 μm were obtained. And the thing of 10.0 micrometers or more was abandoned. Then, by mixing the powders, the ratio of fine particles of 0.8 μm or less is 80% by weight, the ratio of 0.8 μm or more and less than 1.5 μm is 3% by weight, and the ratio of 1.5 μm or more and 5.0 μm or less is added. 1
5% by weight, ratio of more than 5.0 μm and less than 10.0 μm is 2
The particle size was adjusted so that the weight% was obtained.

【0031】次いで、粒度調整した窒化ケイ素原料粉末
に、表2に示す組成の焼結助剤を添加し、ボールミルで
2時間混合した。続いて、空気中でスプレイドライヤを
用いて乾燥した後、20MPaの圧力で金型成形を行
い、さらに200MPaの圧力でラバープレスを施すこ
とによって、6mm×6mm×50mmの成形体を得
た。
Next, the sintering aid having the composition shown in Table 2 was added to the silicon nitride raw material powder whose particle size was adjusted, and mixed for 2 hours in a ball mill. Then, after drying in air using a spray dryer, mold molding was performed at a pressure of 20 MPa, and a rubber press was further performed at a pressure of 200 MPa to obtain a molded body of 6 mm × 6 mm × 50 mm.

【0032】次に、この成形体を同じく表2に示す種々
の焼成条件で焼成することによって各焼結体を得た後、
水を用いたアルキメデス法により各焼結体の気孔率を求
めて密度を算出した。さらに、800メッシュのダイヤ
モンドホイールで平面研削し、3mm×4mm×40m
mの形状に加工し、JIS R 1601に準じた室温
3点曲げにより曲げ強さを求めると共に、JIS R
1607に準じたSEPB法(試験片の3×40mmの
面にビッカース圧痕を加え、これから予亀裂を生成し、
この予亀裂から破壊する手法)により破壊靱性値を求め
た。これらの結果を同じく表2に示す。
Next, after firing the molded body under various firing conditions similarly shown in Table 2 to obtain respective sintered bodies,
The density was calculated by obtaining the porosity of each sintered body by the Archimedes method using water. Furthermore, the surface is ground with an 800-mesh diamond wheel and 3 mm x 4 mm x 40 m.
It is processed into the shape of m and the bending strength is obtained by room temperature three-point bending according to JIS R 1601.
SEPB method according to 1607 (Vickers indentation was added to the surface of the test piece of 3 × 40 mm to generate a pre-crack,
The fracture toughness value was determined by the method of fracture from this precrack. The results are also shown in Table 2.

【0033】[0033]

【表2】 [Table 2]

【0034】表2に示した結果より明らかなように、何
れの条件においても高強度かつ高靱性の窒化ケイ素質焼
結体が得られていることが認められた。
As is clear from the results shown in Table 2, it was confirmed that a high-strength and high-toughness silicon nitride sintered body was obtained under any of the conditions.

【0035】(比較例1)実施例2と同様の工程により
原料粉末を粉砕分級処理し、0.8μm以下の細粒と
0.8μm超過1.5μm未満のものと1.5μm以上
5.0μm以下の粗粒と5.0μm超過のものを得た。
そして、10.0μm以上のものは廃却した。次いで、
前記粉末を混合することにより、0.8μm以下の細粒
と、0.8μm超過1.5μm未満のものと、1.5μ
m以上5.0μm以下の粗粒と、5.0μm超過のもの
との割合が表3に示すものとなるように粒度調整を行っ
た。
(Comparative Example 1) The raw material powder was pulverized and classified by the same steps as in Example 2, and fine particles of 0.8 µm or less, fine particles of 0.8 µm or more and less than 1.5 µm, and 1.5 µm or more and 5.0 µm or more were used. The following coarse particles and particles with a size exceeding 5.0 μm were obtained.
And the thing of 10.0 micrometers or more was abandoned. Then
By mixing the powders, fine particles of 0.8 μm or less, fine particles of more than 0.8 μm and less than 1.5 μm, and 1.5 μm
The particle size was adjusted so that the ratio of coarse particles of m or more and 5.0 μm or less and particles of more than 5.0 μm was as shown in Table 3.

【0036】次いで、粒度調整した窒化ケイ素粉末に、
同じく表3に示す組成の焼結助剤を添加し、ボールミル
で2時間混合した。ついで、実施例2と同様の成形を行
った後、この成形体を同じく表3に示す焼成条件で焼成
することによって各焼結体を得た後、実施例2と同様の
評価を行った。これらの結果を同じく表3に示す。
Next, the particle size-adjusted silicon nitride powder was added,
Similarly, a sintering aid having the composition shown in Table 3 was added and mixed by a ball mill for 2 hours. Then, after performing the same molding as in Example 2, each sintered body was obtained by firing the molded body under the firing conditions shown in Table 3 as well, and the same evaluation as in Example 2 was performed. The results are also shown in Table 3.

【0037】[0037]

【表3】 [Table 3]

【0038】表3に示した結果より明らかなように、
1.5μm以上5.0μm以下の粗粒を含まないNo.
9では、密度が大であるものの曲げ強さおよび破壊靱性
値が低く、また、0.8μm以下の細粒の割合が少なす
ぎるNo.10,11では、いずれも密度,曲げ強さお
よび破壊靱性値が低いものとなっていることが認められ
た。
As is clear from the results shown in Table 3,
No. 1 containing no coarse particles of 1.5 μm or more and 5.0 μm or less.
No. 9 has a high density but a low bending strength and fracture toughness value, and the ratio of fine particles of 0.8 μm or less is too small. In Nos. 10 and 11, it was confirmed that the density, bending strength and fracture toughness were low.

【0039】[0039]

【発明の効果】この発明に係わる窒化ケイ素質焼結体の
製造方法では、α型とβ型とを有する窒化ケイ素原料粉
末においてβ型を80重量%以上含みかつ平均粒径が
2.0μm以上の窒化ケイ素原料粉末に粉砕分級処理を
施して、0.8μm以下の割合が70重量%以上95重
量%以下でかつ1.5μm以上5.0μm以下の割合が
5重量%以上30重量%以下である粒度分布に制御し、
この窒化ケイ素原料粉末に焼結助剤を添加して成形した
後、窒素雰囲気下で焼成する構成としたから、安価な耐
火物グレードのβ型窒化ケイ素粉末を原料として用いた
ときでも、粉砕分級処理を施して特定の粒径のものを特
定量配合することによって、高純度粉末を出発原料とし
た窒化ケイ素質焼結体に劣らない優れた強度および靱性
を備えた窒化ケイ素質焼結体を得ることが可能であると
いう著しく優れた効果がもたらされる。
In the method for producing a silicon nitride sintered body according to the present invention, the silicon nitride raw material powder having α type and β type contains β type in an amount of 80% by weight or more and has an average particle size of 2.0 μm or more. The silicon nitride raw material powder is subjected to pulverization and classification treatment so that the proportion of 0.8 μm or less is 70 wt% or more and 95 wt% or less and the proportion of 1.5 μm or more and 5.0 μm or less is 5 wt% or more and 30 wt% or less. Control to a certain particle size distribution,
This silicon nitride raw material powder is molded by adding a sintering aid and then fired in a nitrogen atmosphere, so even when an inexpensive refractory grade β-type silicon nitride powder is used as a raw material, pulverization and classification are performed. By processing and blending a specific amount of a specific particle size, a silicon nitride sintered body with excellent strength and toughness comparable to a silicon nitride sintered body using high purity powder as a starting material is obtained. It is possible to obtain a remarkably excellent effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1において用いた粉砕分級処
理の概要を示す説明図である。
FIG. 1 is an explanatory diagram showing an outline of a pulverizing / classifying process used in Example 1 of the present invention.

【図2】この発明の実施例2において用いた粉砕分級処
理の概要を示す説明図である。
FIG. 2 is an explanatory diagram showing an outline of a pulverizing / classifying process used in Example 2 of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安 藤 元 英 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Motohide Ando 2 Takara-cho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Motor Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 α型とβ型とを有する窒化ケイ素原料粉
末においてβ型を80重量%以上含みかつ平均粒径が
2.0μm以上の窒化ケイ素原料粉末に粉砕分級処理を
施して、0.8μm以下の割合が70重量%以上95重
量%以下でかつ1.5μm以上5.0μm以下の割合が
5重量%以上30重量%以下である粒度分布に制御し、
この窒化ケイ素原料粉末に焼結助剤を添加して成形した
後、窒素雰囲気下で焼成することを特徴とする窒化ケイ
素質焼結体の製造方法。
1. A silicon nitride raw material powder having α-type and β-type powders, which contains 80% by weight or more of β-type and has an average particle size of 2.0 μm or more, is ground and classified, The particle size distribution is controlled such that the proportion of 8 μm or less is 70% by weight or more and 95% by weight or less, and the proportion of 1.5 μm or more and 5.0 μm or less is 5% by weight or more and 30% by weight or less,
A method for producing a silicon nitride sintered body, comprising adding a sintering aid to the silicon nitride raw material powder and shaping the powder, followed by firing in a nitrogen atmosphere.
【請求項2】 焼結助剤は、酸化物および窒化物より選
択される請求項1に記載の窒化ケイ素質焼結体の製造方
法。
2. The method for producing a silicon nitride sintered body according to claim 1, wherein the sintering aid is selected from oxides and nitrides.
【請求項3】 焼成温度を1600〜2000℃とする
請求項1または2に記載の窒化ケイ素質焼結体の製造方
法。
3. The method for producing a silicon nitride sintered body according to claim 1, wherein the firing temperature is 1600 to 2000 ° C.
JP3245868A 1991-09-25 1991-09-25 Method for manufacturing silicon nitride sintered body Expired - Fee Related JPH0753615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3245868A JPH0753615B2 (en) 1991-09-25 1991-09-25 Method for manufacturing silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3245868A JPH0753615B2 (en) 1991-09-25 1991-09-25 Method for manufacturing silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPH06166571A true JPH06166571A (en) 1994-06-14
JPH0753615B2 JPH0753615B2 (en) 1995-06-07

Family

ID=17140013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3245868A Expired - Fee Related JPH0753615B2 (en) 1991-09-25 1991-09-25 Method for manufacturing silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPH0753615B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190032966A (en) * 2017-09-20 2019-03-28 주식회사 엘지화학 Tape casting slurry composition for manufacturing silicon nitride sintered body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255573A (en) * 1989-03-29 1990-10-16 Natl Inst For Res In Inorg Mater Production of high-toughness silicon nitride sintered body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255573A (en) * 1989-03-29 1990-10-16 Natl Inst For Res In Inorg Mater Production of high-toughness silicon nitride sintered body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190032966A (en) * 2017-09-20 2019-03-28 주식회사 엘지화학 Tape casting slurry composition for manufacturing silicon nitride sintered body

Also Published As

Publication number Publication date
JPH0753615B2 (en) 1995-06-07

Similar Documents

Publication Publication Date Title
JPH06100370A (en) Silicon nitride sintered compact and its production
JPH0680470A (en) Production of silicon nitride sintered compact
SE438849B (en) PROCEDURES FOR THE PREPARATION OF SILICON NITRIDE BASED MATERIALS
JP2670221B2 (en) Silicon nitride sintered body and method for producing the same
JPH06166571A (en) Production of sintered silicon nitride
JPH0834670A (en) Silicon nitride sintered compact and its production
JP3317421B2 (en) Silicon carbide / silicon nitride composite material and method for producing the same
JP2003221280A (en) Electroconductive silicon nitride-based composite sintered body and method for producing the same
JP3137405B2 (en) Manufacturing method of silicon nitride based ceramics
JPH06239666A (en) Production of beta-type sintered silicon nitride
JP3486642B2 (en) High Purification Processing Method of Silicon Nitride Raw Material Powder
JP3242431B2 (en) β-type silicon nitride powder and method for producing β-type silicon nitride powder
JP3456585B2 (en) β-type silicon nitride sintered body and method for producing the same
JP2805969B2 (en) Aluminum oxide based ceramics with high toughness and high strength
JP3479656B2 (en) Highly reliable silicon nitride sintered body and method for producing the same
JPH09295869A (en) Sialon ceramic excellent in impact resistance and its production
JPH07101777A (en) Silicon nitride sintered compact and its production
JP3112286B2 (en) Manufacturing method of dense machinable ceramics
JPH0826837A (en) High-strength and highly tough ceramic composite material and ceramic complex powder and their production
JP2820846B2 (en) High toughness sialon sintered body and method of manufacturing the same
JP2668437B2 (en) Silicon nitride based sintered body comprising sialon nucleus-containing particles and method for producing the same
JP3498096B2 (en) Β-type silicon nitride sintered body for metal bonding and method for producing the same
JPH05221727A (en) High tensile silicon nitride ceramics
JPH0834672A (en) Production of silicon nitride sintered compact
JP2506519B2 (en) Low-temperature low-pressure sintered silicon nitride sintered body manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees