JPH06165919A - Method for removing nitrous oxide - Google Patents

Method for removing nitrous oxide

Info

Publication number
JPH06165919A
JPH06165919A JP4320807A JP32080792A JPH06165919A JP H06165919 A JPH06165919 A JP H06165919A JP 4320807 A JP4320807 A JP 4320807A JP 32080792 A JP32080792 A JP 32080792A JP H06165919 A JPH06165919 A JP H06165919A
Authority
JP
Japan
Prior art keywords
zsm
iron
catalyst
gas
mordenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4320807A
Other languages
Japanese (ja)
Inventor
Shiro Yajima
史朗 矢嶋
Akinori Yukimura
明憲 幸村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP4320807A priority Critical patent/JPH06165919A/en
Publication of JPH06165919A publication Critical patent/JPH06165919A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Abstract

PURPOSE:To remove N2O at a low temperature at a high removal rate of remov al by carrying iron on ZSM-5 having a mole ratio of Si/Al not less than a specified value and bringing ammonia mixed N2O-contg. gas to be treated into contact with it. CONSTITUTION:Iron is carried on ZSM-5 having >=10 mole ratio of Si/Al and ammonia mixed N2O-contg. gas to be treated is brought in contact with it to remove N2O in the gas. As ZSM-5 showing higher activity than mordenite, for example, that having the chemical formula, M2/nAl2Si94O192.16H2O is given. In the figure, A, B and C shows cases where a ZSM-5 (50) iron catalyst, a ZSM-5 (30) iron catalyst and a mordenite iron catalyst are used respectively. As known from the figure, the ZSM-5 (50) iron catalyst and the ZSM-5 (30) iron catalyst decompose N2O with high efficiency of about >=80% at a lower temperature (about <=400 deg.C) than the mordenite catalyst. In particularly, the ZSM-5 (50) iron catalyst decomposes N2O by about >=90% about 300 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガス中に含まれる亜酸
化窒素を除去する亜酸化窒素の除去方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing nitrous oxide which removes nitrous oxide contained in gas.

【0002】[0002]

【従来の技術】近年、人工的に排出される二酸化炭素
(CO2 )などの温室効果による気候の温暖化や、フロ
ンなどの安定化合物によるオゾン層の破壊等、地球レベ
ルでの環境破壊が問題となっている。特にオゾン層の破
壊は、地表面に到達する紫外線を増加させ、皮膚ガンな
どを多発させ人類の健康に重大な影響を与えると言われ
ている。
2. Description of the Related Art In recent years, global warming of the climate due to greenhouse effects such as artificially emitted carbon dioxide (CO 2 ) and destruction of the ozone layer due to stable compounds such as CFCs pose a problem of environmental destruction at the global level. Has become. In particular, it is said that the destruction of the ozone layer increases the amount of ultraviolet rays that reach the surface of the earth, causes frequent skin cancers, and has a serious impact on human health.

【0003】オゾン層の破壊を引き起こす物質として、
従来は人工的に合成された各種フロンが主体であると考
えられており、ボイラなどの各種燃焼装置から排出され
るガスなどに含まれる亜酸化窒素(N2 O)はそれ程注
目されていなかった。だが、N2 Oの増加量が近年にな
って上昇傾向にあり、しかも、最近の調査では、N2
は成層圏へ拡散してオゾン層を破壊すると共に、温室効
果の寄与も大きいことが明らかになり、地球環境問題の
一つとしてクローズアップされつつある。
As substances that cause the destruction of the ozone layer,
Conventionally, it has been considered that various types of CFC artificially synthesized are the main components, and nitrous oxide (N 2 O) contained in gases discharged from various combustion devices such as boilers has not received much attention. . However, located in the N 2 O increase the amount of an upward trend in recent years of, moreover, in a recent survey, N 2 O
Is diffused into the stratosphere and destroys the ozone layer, and it is revealed that the greenhouse effect also contributes greatly, and it is being highlighted as one of the global environmental problems.

【0004】特に、加圧流動層ボイラや低温燃焼により
排出されるガスには、他のボイラに比べN2 Oが多く含
まれる。ボイラなどから排出されるN2 Oの除去技術と
しては、燃焼方式の改良によるN2 O発生の低減、
プラズマ照射によるN2 Oの分解、触媒によるN2
の除去などが考えられる。しかし、及びは高温材
料、熱効率、コストなどの面で実用化に問題がある。
は触媒によるN2 Oの除去が可能になれば、比較的実用
性が高いと考えられるが、現在多くの発電プラントに適
用されている触媒ではN2 Oは除去できないことが確認
されている。
Particularly, the gas discharged from the pressurized fluidized bed boiler and the low temperature combustion contains a large amount of N 2 O as compared with other boilers. As a technology for removing N 2 O discharged from boilers, etc., reduction of N 2 O generation by improving the combustion method,
Decomposition of N 2 O by plasma irradiation, the catalyst according to N 2 O
Can be considered. However, there is a problem in practical application in terms of high temperature material, thermal efficiency, cost and the like.
It is considered to be relatively practical if N 2 O can be removed by a catalyst, but it has been confirmed that the catalyst currently applied to many power plants cannot remove N 2 O.

【0005】このため、新触媒の開発が必要になり、例
えば、Si/Alのモル比が10以上のモルデナイト、
又は鉄置換型モルデナイトを触媒として使用しN2 Oを
還元除去することが提案されている(特開平 2-68120号
公報等)。
Therefore, it is necessary to develop a new catalyst. For example, mordenite having a Si / Al molar ratio of 10 or more,
Alternatively, it has been proposed to reduce and remove N 2 O by using iron-substituted mordenite as a catalyst (JP-A-2-68120, etc.).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述の
モルデナイトを触媒としてN2 Oを除去する場合には、
例えばN2 Oの除去率を80%以上にしようとすると、反
応温度を 400℃以上にしなければならず低温度でN2
を効率よく除去することができない。このように低温度
でN2 Oを高い除去率で除去できないと、例えば、加圧
流動層ボイラからの燃焼排ガスでガスタービンを駆動さ
せる場合、タービンからの排ガスの温度が低温であるの
で、ガスタービンの上流側にN2 Oを分解するN2 O装
置を設けなければならない。その結果、負荷効率の問題
やN2 O装置からの物質がタービンに流入してその翼な
どに悪影響を及ぼすことがあり得る。このため、少なく
とも約 400℃以下の温度でN2 Oを80%以上の高い除去
率で除去したい。
However, when N 2 O is removed using the above-mentioned mordenite as a catalyst,
For example, if the removal rate of N 2 O is to be 80% or more, the reaction temperature must be 400 ° C. or more and N 2 O can be used at a low temperature.
Cannot be removed efficiently. If N 2 O cannot be removed at a high removal rate at such a low temperature, for example, when the gas turbine is driven by the combustion exhaust gas from the pressurized fluidized bed boiler, the temperature of the exhaust gas from the turbine is low, It must be provided to decompose N 2 O device N 2 O upstream of the turbine. As a result, load efficiency problems and materials from the N 2 O device can flow into the turbine and adversely affect its blades and the like. Therefore, it is desirable to remove N 2 O at a high removal rate of 80% or more at a temperature of at least about 400 ° C or less.

【0007】そこで、本発明は、このような事情を考慮
してなされたものであり、その目的は、N2 Oを低温度
で高い除去率で除去することができる亜酸化窒素の除去
方法を提供することにある。
Therefore, the present invention has been made in view of such circumstances, and an object thereof is to provide a method for removing nitrous oxide which can remove N 2 O at a low temperature and a high removal rate. To provide.

【0008】[0008]

【課題を解決するための手段】本発明者らは、亜酸化窒
素(N2 O)を効率よく除去するために種々の研究開発
を行った結果、ZSM−5系の触媒に着目し、本発明を
完成するに至ったのであり、本発明の亜酸化窒素の除去
方法は、Si/Alのモル比が10以上のZSM−5に
鉄を担持させ、これにアンモニアが混合された亜酸化窒
素を含む被処理ガスを接触させてガス中の亜酸化窒素を
除去するものである。
Means for Solving the Problems As a result of various researches and developments for efficiently removing nitrous oxide (N 2 O), the present inventors have focused on ZSM-5 type catalysts and The present invention has been completed, and the method for removing nitrous oxide of the present invention is a method for supporting nitrous oxide in which ZSM-5 having a Si / Al molar ratio of 10 or more is loaded with iron and mixed with ammonia. The nitrous oxide in the gas is removed by bringing the gas to be treated containing the gas into contact therewith.

【0009】すなわち、先ず種々の触媒(現在多くの発
電プラントに適用されているアンモニア還元触媒(SC
R),チタニア担持貴金属系触媒,ゼオライト系触媒
等)を用いてN2 Oを分解する実験を行った結果、モル
デナイト系触媒が有用であることが確かめられた。そし
て、数種のモルデナイトにコバルト,銅,鉄等の遷移元
素をイオン交換等によって調整し、これらの触媒のN2
Oの直接分解活性について調べた結果、触媒の活性温度
が低くなることが分った。さらに低温度でN2 Oを高除
去率で除去させるために研究開発を行った結果、Si/
Alのモル比が10以上のモルデナイトに鉄を担持させ
たモルデナイト鉄系触媒だけが、N2 Oを含む被処理ガ
スにアンモニアを混合させることにより活性が高くなる
ことを知見したのである。尚、モルデナイトコバルト系
触媒は、アンモニアを加えるとN2 Oの除去率が悪くな
った。モルデナイト銅系触媒はほぼ同じであった。
That is, first, various catalysts (ammonia reduction catalysts (SCs currently used in many power plants)
R), a titania-supported noble metal-based catalyst, a zeolite-based catalyst, etc.) was used to perform an experiment for decomposing N 2 O, and it was confirmed that the mordenite-based catalyst was useful. Then, transition elements such as cobalt, copper, and iron are adjusted to several kinds of mordenite by ion exchange or the like, and N 2 of these catalysts is adjusted.
As a result of examining the direct decomposition activity of O, it was found that the activation temperature of the catalyst was lowered. As a result of research and development for removing N 2 O at a high removal rate at a lower temperature, Si /
It has been found that only a mordenite iron-based catalyst in which iron is supported on mordenite having a molar ratio of Al of 10 or more has high activity when ammonia is mixed with a gas to be treated containing N 2 O. The mordenite cobalt-based catalyst had a poor N 2 O removal rate when ammonia was added. The mordenite copper-based catalyst was almost the same.

【0010】本発明においてモルデナイトよりも高活性
を示すZSM−5としては、化学式M2/n Al2 Si94
192 ・16H2 Oのものなどがあり、そのSi/Al
のモル比は10以上にする必要があり、そのモル比が小
さいと耐熱性に劣る。
In the present invention, ZSM-5 having higher activity than mordenite has the chemical formula M 2 / n Al 2 Si 94.
O 192・ 16H 2 O, etc., such as Si / Al
It is necessary to make the molar ratio of 10 or more, and if the molar ratio is small, the heat resistance becomes poor.

【0011】アンモニア(NH3 )の混合量は、N2
を分解する反応における必要なモル数以上であり、少な
くともN2 Oに対して2/3以上の量が必要になる。
The amount of ammonia (NH 3 ) mixed is N 2 O
Is more than the necessary number of moles in the reaction for decomposing OH, and at least ⅔ or more with respect to N 2 O is required.

【0012】N2 Oの分解反応は下記式になると考えら
れる。
It is considered that the decomposition reaction of N 2 O has the following formula.

【0013】N2 O+NH3 +3/4・O2 →3/2・
2 +3/2・H2
N 2 O + NH 3 +3/4 ・ O 2 → 3/2 ・
N 2 +3/2 · H 2 O

【0014】[0014]

【実施例】以下、本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0015】Si/Alのモル比が30のZSM−5、
Si/Alのモル比が50のZSM−5に鉄をイオン交
換させて、ZSM−5(30)鉄触媒,ZSM−5(5
0)鉄触媒を調整した。この調整は、金属酸化物10%水
溶液を 100g作成し、これにZSM−5を30g 加え、80
℃で保温しながら2日間撹拌する。撹拌後、水洗、ろ過
し、これを 110℃で 1hr乾燥した後、 350℃で 1hrの焼
成を行い、2つのZSM−5触媒を調整した。
ZSM-5 with a Si / Al molar ratio of 30,
ZSM-5 having a Si / Al molar ratio of 50 is ion-exchanged with iron to produce ZSM-5 (30) iron catalyst, ZSM-5 (5
0) An iron catalyst was prepared. For this adjustment, make 100 g of a 10% aqueous solution of metal oxide and add 30 g of ZSM-5 to
Stir for 2 days while keeping the temperature at ℃. After stirring, it was washed with water, filtered, dried at 110 ° C. for 1 hr, and calcined at 350 ° C. for 1 hr to prepare two ZSM-5 catalysts.

【0016】このように調整した触媒を用いてN2 Oの
分解(除去)率を調べ、その結果を図1に示す。なお、
比較のために上述とほぼ同様にモルデナイトに鉄をイオ
ン交換させたモルデナイト鉄触媒についてもN2 Oの分
解率を調べた。
The decomposition (removal) rate of N 2 O was investigated using the catalyst thus prepared, and the results are shown in FIG. In addition,
For comparison, the decomposition rate of N 2 O was also examined for a mordenite iron catalyst in which iron was ion-exchanged with mordenite in the same manner as described above.

【0017】N2 Oの分解率は次のようにして調べた。The decomposition rate of N 2 O was examined as follows.

【0018】電気炉により温度調節可能な内径 4mmの石
英ガラス製反応管に、秤量した触媒を充填して触媒層を
形成した。そして、N2 Oを含む被処理ガスにアンモニ
ア(NH3 )を混合させて、このN2 O 1%,NH3
0.8%−Heバランスのガスをオートサンプラーより反
応管にキャリアーガスと共に30ml/minで流し、その反応
温度を 200〜800 ℃に維持した。このときの反応管にガ
スを導入させるバイパスラインのN2 Oピーク面積、す
なわち触媒層入口N2 O濃度と、触媒層接触後のガスを
ガスクロマトグラフィーで分析してこのN2 Oピーク面
積の比とによりN2 Oの分解率を求めた。図中、AはZ
SM−5(50)鉄触媒を用いた場合,BはZSM−5
(30)鉄触媒の場合、Cはモルデナイト鉄触媒の場合
をそれぞれ示す。
A quartz glass reaction tube having an inner diameter of 4 mm whose temperature can be adjusted by an electric furnace was filled with the weighed catalyst to form a catalyst layer. Then, ammonia (NH 3 ) is mixed with the gas to be treated containing N 2 O, and this N 2 O 1%, NH 3
A 0.8% -He balance gas was flown from the autosampler into the reaction tube along with the carrier gas at 30 ml / min to maintain the reaction temperature at 200 to 800 ° C. At this time, the N 2 O peak area of the bypass line for introducing gas into the reaction tube, that is, the catalyst layer inlet N 2 O concentration, and the gas after contacting the catalyst layer were analyzed by gas chromatography to analyze the N 2 O peak area. The decomposition rate of N 2 O was obtained from the ratio. In the figure, A is Z
When SM-5 (50) iron catalyst is used, B is ZSM-5
In the case of (30) iron catalyst, C shows the case of mordenite iron catalyst.

【0019】図1に示される結果からも明らかな通り、
本発明のZSM−5(50)鉄触媒及びZSM−5(3
0)鉄触媒は、モルデナイト鉄触媒よりも低温度( 400
℃以下の温度)でN2 Oを80%以上の高効率で分解する
ことができる。特にZSM−5(50)鉄触媒は、 300
℃の温度で90%以上のN2 Oを分解することができる。
As is clear from the results shown in FIG.
The ZSM-5 (50) iron catalyst of the present invention and ZSM-5 (3
0) The iron catalyst has a lower temperature (400
N 2 O can be decomposed at a high efficiency of 80% or more at a temperature of ℃ or less). In particular, ZSM-5 (50) iron catalyst is
90% or more of N 2 O can be decomposed at a temperature of ° C.

【0020】従って、Si/Alのモル比が10以上の
ZSM−5に鉄を担持させ、これにアンモニアが混合さ
れた亜酸化窒素を含む被処理ガスを接触させることによ
り、ガス中の亜酸化窒素が約 400℃以下の低温度で80%
以上除去されることになる。
Therefore, iron is supported on ZSM-5 having a Si / Al molar ratio of 10 or more, and a gas to be treated containing nitrous oxide mixed with ammonia is brought into contact therewith, whereby suboxidation in the gas is carried out. 80% at low temperature of nitrogen below 400 ℃
The above will be removed.

【0021】[0021]

【発明の効果】以上要するに本発明によれば、Si/A
lのモル比が10以上のZSM−5に鉄を担持させ、こ
れにアンモニアが混合された亜酸化窒素を含む被処理ガ
スを接触させることにより、ガス中のN2 Oを約 400℃
以下の低温度で高い除去率で除去できるという優れた効
果を発揮する。
In summary, according to the present invention, Si / A
ZSM-5 having a molar ratio of 10 or more was loaded with iron, and the gas to be treated containing nitrous oxide mixed with ammonia was brought into contact with the ZSM-5 to bring N 2 O in the gas to about 400 ° C.
It has an excellent effect that it can be removed at a high removal rate at the following low temperatures.

【図面の簡単な説明】[Brief description of drawings]

【図1】ガス温度とN2 O分解率との関係を示す図であ
る。
FIG. 1 is a graph showing the relationship between gas temperature and N 2 O decomposition rate.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Si/Alのモル比が10以上のZSM
−5に鉄を担持させ、これにアンモニアが混合された亜
酸化窒素を含む被処理ガスを接触させることを特徴とす
る亜酸化窒素の除去方法。
1. A ZSM having a Si / Al molar ratio of 10 or more.
A method for removing nitrous oxide, characterized in that iron is supported on -5, and a target gas containing nitrous oxide mixed with ammonia is brought into contact with the iron.
JP4320807A 1992-11-30 1992-11-30 Method for removing nitrous oxide Pending JPH06165919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4320807A JPH06165919A (en) 1992-11-30 1992-11-30 Method for removing nitrous oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4320807A JPH06165919A (en) 1992-11-30 1992-11-30 Method for removing nitrous oxide

Publications (1)

Publication Number Publication Date
JPH06165919A true JPH06165919A (en) 1994-06-14

Family

ID=18125459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4320807A Pending JPH06165919A (en) 1992-11-30 1992-11-30 Method for removing nitrous oxide

Country Status (1)

Country Link
JP (1) JPH06165919A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100527963B1 (en) * 1999-12-31 2005-11-09 현대자동차주식회사 Manufacturing method of hydrothermally stable Fe/ZSM-5 zeolite catalyst
JP2008508090A (en) * 2004-07-27 2008-03-21 ロス アラモス ナショナル セキュリティ,エルエルシー Catalyst and nitrogen oxide reduction method
JP2008540094A (en) * 2005-05-11 2008-11-20 ウーデ・ゲーエムベーハー Method for reducing nitrogen oxide concentration in gas
US7485276B2 (en) * 2000-01-14 2009-02-03 Uhde Gmbh Method for the removal of Nox and N2O from the tail gas in nitric acid production
WO2009050323A1 (en) * 2007-10-19 2009-04-23 Ecocat Oy Removal of ammonia from fluids
US7906091B2 (en) * 2000-01-14 2011-03-15 Uhde Gmbh Removal of laughing gas in nitric acid production

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100527963B1 (en) * 1999-12-31 2005-11-09 현대자동차주식회사 Manufacturing method of hydrothermally stable Fe/ZSM-5 zeolite catalyst
US7485276B2 (en) * 2000-01-14 2009-02-03 Uhde Gmbh Method for the removal of Nox and N2O from the tail gas in nitric acid production
US7906091B2 (en) * 2000-01-14 2011-03-15 Uhde Gmbh Removal of laughing gas in nitric acid production
JP2008508090A (en) * 2004-07-27 2008-03-21 ロス アラモス ナショナル セキュリティ,エルエルシー Catalyst and nitrogen oxide reduction method
JP2008540094A (en) * 2005-05-11 2008-11-20 ウーデ・ゲーエムベーハー Method for reducing nitrogen oxide concentration in gas
WO2009050323A1 (en) * 2007-10-19 2009-04-23 Ecocat Oy Removal of ammonia from fluids
CN101970083A (en) * 2007-10-19 2011-02-09 依柯卡特有限公司 Removal of ammonia from fluids
US8337793B2 (en) 2007-10-19 2012-12-25 Ecocat Oy Removal of ammonia from fluids

Similar Documents

Publication Publication Date Title
Long et al. Temperature-programmed desorption/surface reaction (TPD/TPSR) study of Fe-exchanged ZSM-5 for selective catalytic reduction of nitric oxide by ammonia
Chen et al. NO oxidation on zeolite supported Cu catalysts: Formation and reactivity of surface nitrates
US9138726B2 (en) Copper-based catalyst for converting ammonia into nitrogen
CN109821564B (en) Preparation method of coated catalyst and catalyst
EA005631B1 (en) Method for reducing the content of n2o and no2 in glass
CN105170158A (en) CoMn composite oxide catalyst for eliminating benzene-serial volatile organic compounds in air and preparation method for therefor
JP2021505376A (en) Pollutant treatment methods and equipment
KR101522277B1 (en) Removal Method of Nitrous Oxide Gas from Semiconductor Exhausted Gas with Catalytic Reactior
Judeikis et al. Particle-catalyzed oxidation of atmospheric pollutants
JP2006216412A (en) Microwave heating device and carbon dioxide decomposition method using it
JPH06165919A (en) Method for removing nitrous oxide
CN108786896A (en) A kind of preparation method of noble metal catalyst
CN100386134C (en) Purifying catalyst for gas containing cyanogen and its preparing method
KR100857245B1 (en) CATALYST COMPOSITION FOR REMOVING NOx, MANUFACTURING METHOD THEREOF AND REMOVING PROCESS OF NOx USING IT
Hizbullah et al. Potassium promoted iron oxide catalysts for simultaneous catalytic removal of nitrogen oxides and soot from diesel exhaust gas
JPH0531371A (en) Catalyst for decomposing nitrous oxide
JPH10249165A (en) Treatment of ammonia-containing gas
Inayat et al. Decomposition of N2O at low temperature over Co3O4 prepared by different methods
JPH07213864A (en) Removing method of nitrous oxide
JPH0531329A (en) Removal of nitrous oxide
JPH05293381A (en) Catalyst for decomposition of nitrous oxide
JPH06262079A (en) Catalyst for nitrogen oxide purification and nitrogen oxide purification
JP3906666B2 (en) Method and apparatus for treating nitrogen compound-containing water
JP5498169B2 (en) Method for removing NO and N2O from a gas mixture
AU644073B2 (en) Method and apparatus for processing nitrogen oxide gas