JPH06164017A - Manufacture of semiconductor thin-film magneto resistance element - Google Patents

Manufacture of semiconductor thin-film magneto resistance element

Info

Publication number
JPH06164017A
JPH06164017A JP4307182A JP30718292A JPH06164017A JP H06164017 A JPH06164017 A JP H06164017A JP 4307182 A JP4307182 A JP 4307182A JP 30718292 A JP30718292 A JP 30718292A JP H06164017 A JPH06164017 A JP H06164017A
Authority
JP
Japan
Prior art keywords
thin film
substrate
insulating layer
insb
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4307182A
Other languages
Japanese (ja)
Inventor
Akihiro Korechika
哲広 是近
Tetsuo Kawasaki
哲生 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4307182A priority Critical patent/JPH06164017A/en
Publication of JPH06164017A publication Critical patent/JPH06164017A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To provide a method for manufacturing a semiconductor thin-film magnetoresistance element with improved characteristics and reliability for applications at a high temperature. CONSTITUTION:InSb thin film 2 is formed on a substrate 1, a desired element pattern is formed on it, an insulation layer 4 consisting of SiN, SiON, SiO, polyimide, etc., is formed on the entire surface so that it covers the InSb thin film 2, a proper heat treatment is performed, then the insulation layer 4 at a part 5 for forming an electrode and the InSb thin film 2 are eliminated from the substrate 1, and a buried electrode 9 is formed on it, thus obtaining a semiconductor thin-film magnetoresistance element and hence improving crystallizability and sensitivity of the InSb thin film 2, eliminating an invalid current path without producing magnetoresistance effect by the buried electrode 9, and increasing the magnetoresistance effect. Further, since the insulation layer 4 is constantly present on the resistance element part of the InSb thin film 2, a highly reliable element can be achieved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、物体の回転、変位の検
出等に用いられる半導体薄膜磁気抵抗素子の製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor thin film magnetoresistive element used for detecting rotation and displacement of an object.

【0002】[0002]

【従来の技術】従来、一般に、回転を検出するセンサと
しては、光学式、磁気方式を初め、種々の方式がある。
この中で、特に汚れ、塵埃等、雰囲気の影響を受ける用
途においては、そうした影響を受けにくい磁気方式が最
も有利である。
2. Description of the Related Art Conventionally, as a sensor for detecting rotation, there are various systems such as an optical system and a magnetic system.
Among them, the magnetic method, which is less susceptible to such an influence, is most advantageous especially in applications where the atmosphere such as dirt and dust is affected.

【0003】一方、この磁気方式においても、電磁ピッ
クアップ,ホール素子,磁気抵抗素子等、種々の方式が
知られている。
On the other hand, also in this magnetic system, various systems such as an electromagnetic pickup, a Hall element, a magnetoresistive element, etc. are known.

【0004】近年、自動車の電子化に伴い、各種センサ
素子が装着されるようになってきているが、回転セン
サ、特にギヤセンサとして、ホール素子(ホールI
C),強磁性薄膜磁気抵抗素子,半導体磁気抵抗素子を
用いた回転センサが考えられるが、自動車用回転センサ
として用いる際、素子の動作温度範囲が−50〜+15
0℃を満足しなければならない。
In recent years, various sensor elements have been mounted along with the computerization of automobiles. Hall elements (Hall I) are used as rotation sensors, especially gear sensors.
C), a rotation sensor using a ferromagnetic thin film magnetoresistive element and a semiconductor magnetoresistive element are conceivable, but when used as a rotation sensor for automobiles, the operating temperature range of the element is -50 to +15.
Must meet 0 ° C.

【0005】ところが、ホール素子,ホールIC,強磁
性薄膜磁気抵抗素子は、いずれも、検出出力が小さく、
被検出体との間のギャップを小さくする必要があるため
に、ギヤセンサとしては、使いにくいという問題点があ
った。
However, the Hall element, Hall IC, and ferromagnetic thin film magnetoresistive element all have a small detection output,
Since it is necessary to reduce the gap between the object and the object to be detected, there is a problem that it is difficult to use as a gear sensor.

【0006】一方、半導体磁気抵抗素子は、元々検出出
力が大きく、被検出体とのギャップを広く取れるため、
最もギヤセンサとして適しているものと考えられるが、
現状で最も特性の優れた半導体磁気抵抗素子であるIn
Sb半導体磁気抵抗素子ではその動作温度範囲は、−2
0〜+80℃程度で、上記の自動車用の動作温度範囲を
満足するものではない。現在、多用されているInSb
磁気抵抗素子は、バルク型のものが多い。このInSb
バルク型では、その電子移動度は、低温域では不純物散
乱、高温域では、極性光学散乱により支配され、それら
各々の存在する領域の境界に電子移動度のピーク値をと
る。このピーク値から高温側では、ほぼ電子移動度は、
温度の−1.7乗に沿って変化し、また、通常極低温側
(70゜K付近)で急峻なピークを有する。
On the other hand, the semiconductor magnetoresistive element originally has a large detection output, and a wide gap with the object to be detected can be obtained.
It is thought that it is most suitable as a gear sensor,
In, which is the semiconductor magnetoresistive element with the best characteristics at present
The operating temperature range of the Sb semiconductor magnetoresistive element is -2.
The temperature range of 0 to + 80 ° C. does not satisfy the above operating temperature range for automobiles. InSb, which is currently widely used
Most of the magnetoresistive elements are of bulk type. This InSb
In the bulk type, the electron mobility is dominated by impurity scattering in the low temperature region and polar optical scattering in the high temperature region, and the electron mobility peaks at the boundaries of the regions in which they exist. From this peak value, on the high temperature side, the electron mobility is almost
It changes along the -1.7th power of the temperature, and usually has a steep peak on the cryogenic temperature side (around 70 ° K).

【0007】これに対して、InSb薄膜型の場合に
は、転位等の欠陥に起因する散乱因子や粒界散乱、表面
散乱等の別の散乱因子が付加されるため、電子移動度の
ピークは、高温側にシフトし、室温付近で比較的ブロー
ドなピークを有するため、−50〜+150℃という温
度範囲を考えた場合、温度依存性の点で、好ましい。こ
れに加え、薄膜型のInSb磁気抵抗素子は、高抵抗化
が容易で、素子の駆動電圧を高くでき(出力は、電子移
動度および駆動電圧に比例する)、低消費電力化,小型
化が可能であるという長所がある。
On the other hand, in the case of the InSb thin film type, since a scattering factor due to defects such as dislocations and other scattering factors such as grain boundary scattering and surface scattering are added, the peak of electron mobility is Since it shifts to the high temperature side and has a relatively broad peak near room temperature, it is preferable in terms of temperature dependence when considering the temperature range of -50 to + 150 ° C. In addition, the thin-film InSb magnetoresistive element can easily be made high in resistance, the driving voltage of the element can be increased (the output is proportional to the electron mobility and the driving voltage), and the power consumption and the size can be reduced. It has the advantage of being possible.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、このよ
うに、InSb薄膜型の利点があるにも関わらず、従
来、それ程普及しておらず、高温用途で用いられていな
い原因としては、以下の点が挙げられる。
However, in spite of the advantages of the InSb thin film type, the reason why it has not been so popular and has not been used in high temperature applications is as follows. Is mentioned.

【0009】InSb薄膜をエピタキシャル成長させる
ために、成長基板として例えば、CdTe,PbTe単
結晶基板を用いれば、電子移動度の十分大きな薄膜を得
ることが可能であるが、これらの基板は、極めて高価な
ものである。
If, for example, a CdTe or PbTe single crystal substrate is used as a growth substrate for epitaxially growing an InSb thin film, it is possible to obtain a thin film having sufficiently high electron mobility, but these substrates are extremely expensive. It is a thing.

【0010】また、ガラス基板のような安価な基板を用
いれば、コストダウンはできるが、この際、薄膜がラン
ダムに成長し、いわゆる多結晶タイプの膜となり、結果
的に電子移動度の大きな薄膜を得ることは難しい。
Further, if an inexpensive substrate such as a glass substrate is used, the cost can be reduced, but at this time, the thin film grows randomly and becomes a so-called polycrystalline type film, and as a result, a thin film having a high electron mobility. Hard to get.

【0011】これに対しては、「東洋通信機技報No.
40(1987)」で、福中等が述べている通り、へき
開マイカ基板を用いれば、単結晶並の電子移動度が得ら
れることが明らかになっている。反面、この方法では、
高温用途で使用可能なInSb薄膜を得ることは、困難
である。それは、InSb薄膜とマイカ基板の密着性が
悪いため、このInSb薄膜を別の支持基板上にエポキ
シ等の接着層を介して転写して用いなければならないた
めである。従って、できあがった素子においては、高温
時、あるいは、低温〜高温の温度サイクルを繰り返した
際、接着層とInSb薄膜間の熱膨張係数の差が大き
く、InSb薄膜に亀裂が生じる等、特に、前述した−
50〜+150℃の温度範囲において、実用に耐える信
頼性を有していなかった。
In response to this, “Toyo Communication Equipment Technical Report No.
40 (1987) ”, as described by Fukunaka et al., It has been clarified that an electron mobility comparable to that of a single crystal can be obtained by using a cleaved mica substrate. On the other hand, with this method,
It is difficult to obtain an InSb thin film that can be used in high temperature applications. This is because the adhesion between the InSb thin film and the mica substrate is poor, and this InSb thin film must be transferred onto another supporting substrate via an adhesive layer such as epoxy and used. Therefore, in the completed device, the difference in the thermal expansion coefficient between the adhesive layer and the InSb thin film is large at the time of high temperature or when the temperature cycle of low temperature to high temperature is repeated, and cracks occur in the InSb thin film. Did-
In the temperature range of 50 to + 150 ° C., it was not reliable enough for practical use.

【0012】本発明は、このような各種の従来のセンサ
の課題を考慮し、自動車用ギヤセンサ等の高温用途にお
いても、十分な信頼性を有する半導体薄膜磁気抵抗素子
の製造方法を提供することを目的とする。
In consideration of the above problems of various conventional sensors, the present invention provides a method of manufacturing a semiconductor thin film magnetoresistive element having sufficient reliability even in high temperature applications such as gear sensors for automobiles. To aim.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、絶縁性基板もしくは半導体基板上に、ア
ンチモン化インジウム薄膜を形成し所望の素子パターン
形成を施した後SiN,SiON,SiO,ポリイミドな
どでなる絶縁層を形成し、300℃以上525℃未満
か、あるいは525℃以上の温度で熱処理をし、次いで
絶縁層とアンチモン化インジウム薄膜の電極を形成する
部分を基板から除去し、電極を形成する工程を順次通過
させる半導体薄膜磁気抵抗素子の製造方法である。
In order to achieve the above object, the present invention provides a method of forming an indium antimonide thin film on an insulating substrate or a semiconductor substrate, forming a desired element pattern, and then forming SiN, SiON, An insulating layer made of SiO, polyimide, etc. is formed, and heat treatment is performed at a temperature of 300 ° C. or higher and lower than 525 ° C. or 525 ° C. or higher. , A method of manufacturing a semiconductor thin film magnetoresistive element in which the steps of forming electrodes are sequentially performed.

【0014】[0014]

【作用】本発明の半導体薄膜磁気抵抗素子の製造方法に
よれば、基板上にアンチモン化インジウム薄膜を形成す
るのみでは、必ずしも電子移動度が大きくないが、本発
明のように、適切な絶縁層を形成し、第一に300℃以
上525℃未満で熱処理した場合には、アンチモン化イ
ンジウム薄膜の固相成長により結晶粒径が大きくなると
共に300℃以上でアンチモン化インジウム薄膜からア
ンチモンが離脱するのを絶縁層により防ぐことができ、
高電子移動度化できる。この場合、熱処理温度が低い
程、熱処理時間を長くすることが必要である。
According to the method of manufacturing a semiconductor thin film magnetoresistive element of the present invention, the electron mobility is not necessarily high only by forming the indium antimonide thin film on the substrate, but as in the present invention, an appropriate insulating layer is formed. In the first case, when heat treatment is performed at 300 ° C. or higher and lower than 525 ° C., the crystal grain size increases due to solid phase growth of the indium antimonide thin film, and antimony is released from the indium antimonide thin film at 300 ° C. or higher. Can be prevented by the insulating layer,
High electron mobility can be achieved. In this case, the lower the heat treatment temperature, the longer the heat treatment time is required.

【0015】また、第二に525℃以上で熱処理した場
合には、アンチモン化インジウム薄膜の融点がこの温度
であるため、この場合には溶融状態で凝集し薄膜が玉の
ように固まるのを防ぐ目的で絶縁層を形成する。この方
法によって十分基板の横方向に結晶が成長したアンチモ
ン化インジウム薄膜を得ることができる。
Secondly, when the heat treatment is carried out at 525 ° C. or higher, the melting point of the indium antimonide thin film is this temperature. In this case, therefore, it is prevented that the thin film aggregates in the molten state and the thin film hardens like a ball. An insulating layer is formed for the purpose. By this method, it is possible to obtain an indium antimonide thin film in which crystals are sufficiently grown in the lateral direction of the substrate.

【0016】従って上記いずれの熱処理条件下でもアン
チモン化インジウム薄膜を高電子移動度化することがで
きる。
Therefore, the electron mobility of the indium antimonide thin film can be increased under any of the above heat treatment conditions.

【0017】次いで、絶縁層およびアンチモン化インジ
ウム薄膜の電極形成部分のみを基板から除去し、この
後、電極を形成することで、丁度、電極がアンチモン化
インジウム薄膜の間に埋め込まれた状態となり、磁気抵
抗効果が大きい素子構成とすることが可能となる。
Then, only the insulating layer and the electrode forming portion of the indium antimonide thin film are removed from the substrate, and thereafter the electrode is formed, so that the electrode is just embedded between the indium antimonide thin film, It is possible to obtain an element configuration having a large magnetoresistive effect.

【0018】従ってこれらの工程を経ることにより、高
感度で耐熱性に優れた半導体薄膜磁気抵抗素子を実現す
ることができ、−50〜+150℃といった自動車用等
の高温用途においても、十分な信頼性を保証することが
できる。
Therefore, through these steps, a semiconductor thin film magnetoresistive element having high sensitivity and excellent heat resistance can be realized, and sufficient reliability is obtained even in high temperature applications such as automobiles such as -50 to + 150 ° C. You can guarantee the sex.

【0019】[0019]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0020】図1は、本実施例の半導体薄膜磁気抵抗素
子の製造工程図を示す。本実施例では、絶縁性基板とし
て、ガラス基板1(CGW#7059(コーニング社
製))を用いた(図1(1))。このガラス基板1を有機
洗浄した後、直ちに真空蒸着装置内に導入し、真空度1
×10-5Torr.以下に真空排気した後、ガラス基板1の
表面清浄化のため550℃で加熱し、次いで基板温度を
下げ、400℃にし、Sb/In蒸発粒子数比2以上と
して成膜すると、In/Sb原子数比1/1の化学量論
的組成を満足したアンチモン化インジウム薄膜(以下I
nSb薄膜と呼ぶ)2が得られる(図1(2))。
FIG. 1 shows a manufacturing process diagram of the semiconductor thin film magnetoresistive element of this embodiment. In this example, a glass substrate 1 (CGW # 7059 (manufactured by Corning)) was used as the insulating substrate (FIG. 1 (1)). After this glass substrate 1 was organically washed, it was immediately introduced into a vacuum vapor deposition apparatus, and the vacuum degree 1
After evacuation to × 10 -5 Torr. Or less, the glass substrate 1 is heated at 550 ° C. to clean the surface, then the substrate temperature is lowered to 400 ° C., and the film is formed with the Sb / In evaporated particle number ratio of 2 or more. Then, an indium antimonide thin film (hereinafter referred to as I / Sb) satisfying the stoichiometric composition with an In / Sb atomic ratio of 1/1
2 (referred to as nSb thin film) is obtained (FIG. 1 (2)).

【0021】しかしながら、この状態で得られたInS
b薄膜2は、膜厚3μm程度のものでも十分結晶粒径が
大きくないため電子移動度は高々1m2/V・s程度のも
のである(電子移動度は結晶粒径に比例する)。このた
め、InSb薄膜2の結晶粒径を大きくするために熱処
理を必要とする。
However, the InS obtained in this state
The thin b film 2 has a crystal grain size not sufficiently large even if it has a thickness of about 3 μm, and therefore has an electron mobility of at most about 1 m 2 / V · s (electron mobility is proportional to the crystal grain size). Therefore, heat treatment is required to increase the crystal grain size of the InSb thin film 2.

【0022】この熱処理に先立ち、図2に示すように素
子間分離するための素子パターン形成3をフォトリソグ
ラフィー技術により行い、次いでInSb薄膜2の全面
を覆うようにスパッタリング法を用いてSiNでなる絶
縁層4を適切な厚さ形成する(図1(3))。この後、熱
処理を以下のように施す。
Prior to this heat treatment, as shown in FIG. 2, element pattern formation 3 for element isolation is performed by a photolithography technique, and then an insulating film made of SiN is used so as to cover the entire surface of the InSb thin film 2. The layer 4 is formed to have an appropriate thickness (FIG. 1 (3)). After that, heat treatment is performed as follows.

【0023】まず、300℃以上525℃未満の温度で
熱処理する場合には、InSb薄膜2は固体状態である
が、絶縁層4を設けずに熱処理時の雰囲気圧力が低い状
態では、InSb薄膜2からのSbの離脱再蒸発が生
じ、特性が劣化する。これに対して絶縁層4を設けるこ
とで、この現象を防ぐことが可能となる。ここで、熱処
理温度が低い程、熱処理時間を長くする必要がある。こ
れによりInSb薄膜2が固相成長を起こして、結晶粒
径が大きくなる。これにより、電子移動度が、3〜4m
2/V・s程度のInSb薄膜が得られる。尚、この際の
絶縁層4としては、本実施例のSiN以外にSiON,
SiO,ポリイミドでもこの熱処理温度範囲で安定であ
るため、同様な効果が得られる。
First, when the heat treatment is performed at a temperature of 300 ° C. or higher and lower than 525 ° C., the InSb thin film 2 is in a solid state. However, when the atmospheric pressure during the heat treatment is low without providing the insulating layer 4, the InSb thin film 2 is formed. Desorption of Sb from and re-evaporation occurs and the characteristics deteriorate. On the other hand, by providing the insulating layer 4, this phenomenon can be prevented. Here, the lower the heat treatment temperature, the longer the heat treatment time must be. As a result, the InSb thin film 2 undergoes solid phase growth, and the crystal grain size increases. As a result, the electron mobility is 3 to 4 m.
An InSb thin film of about 2 / V · s can be obtained. In this case, as the insulating layer 4, in addition to SiN of this embodiment, SiON,
Since SiO and polyimide are stable in this heat treatment temperature range, similar effects can be obtained.

【0024】一方、525℃以上、即ちInSb薄膜2
の融点以上の温度で熱処理する場合には、絶縁層4がな
い場合には、InSb薄膜2は溶融し、玉のように凝集
する。絶縁層4を設けることでこれを防ぎ、溶融再結晶
化により基板面方向に十分大きく結晶が成長する。これ
により、電子移動度5〜6m2/V・s程度のInSb薄
膜を得ることが可能となる。いずれにしても、これら熱
処理によって、InSb薄膜の電子移動度は飛躍的に向
上する。尚、この際の絶縁層4としては、本実施例のS
iN以外にSiON,SiOでも良い(ポリイミドは、
使用できない)。
On the other hand, at 525 ° C. or higher, that is, the InSb thin film 2
When the heat treatment is performed at a temperature equal to or higher than the melting point of, the InSb thin film 2 is melted and aggregates like a ball when the insulating layer 4 is not present. This is prevented by providing the insulating layer 4, and the crystal is grown sufficiently large in the substrate surface direction by the melt recrystallization. This makes it possible to obtain an InSb thin film having an electron mobility of about 5 to 6 m 2 / V · s. In any case, these heat treatments dramatically improve the electron mobility of the InSb thin film. The insulating layer 4 used in this case is S of the present embodiment.
In addition to iN, SiON or SiO may be used (for polyimide,
I can not use it).

【0025】この後、絶縁層4およびInSb薄膜2の
電極を形成する部分のみを基板1から除去する(図1
(4), 及び(5))。具体的には、図3に示すように、電極
を形成する部分5のみを露出させるように絶縁層4上に
フォトレジスト等でなるマスク材6を形成し、SiNで
なる絶縁層4をウエットプロセスでは、リン酸とフッ酸
の混合液でエッチング除去し、また、ドライプロセスで
は、フッ素含有系ガス、即ちCF4とO2の混合ガスでド
ライエッチングして除去する。絶縁層4がSiONやS
iOの場合には、ウエットエッチングでは、フッ酸とフ
ッ化アンモニウムの混合液で除去し、ドライエッチング
では、CF4 ガスで除去する。また、絶縁層4がポリイ
ミドの場合は、ウエットエッチングではヒドラジン、ド
ライエッチングではCF4とO2の混合ガスでそれぞれ除
去する。次に、InSb薄膜2をウエットエッチングで
は、硝酸、乳酸、グリコール酸の混合液で除去し、ドラ
イエッチングでは、CF4とO2の混合ガスで除去するこ
とにより、電極形成部分5ができあがる。このとき、電
極形成部分のInSb薄膜の側壁7の形状は、順テーパ
形状が好ましい。
After that, only the portions of the insulating layer 4 and the InSb thin film 2 where the electrodes are formed are removed from the substrate 1 (FIG. 1).
(4), and (5)). Specifically, as shown in FIG. 3, a mask material 6 made of photoresist or the like is formed on the insulating layer 4 so as to expose only a portion 5 where an electrode is formed, and the insulating layer 4 made of SiN is subjected to a wet process. Then, it is removed by etching with a mixed solution of phosphoric acid and hydrofluoric acid. In the dry process, it is removed by dry etching with a fluorine-containing gas, that is, a mixed gas of CF 4 and O 2 . The insulating layer 4 is SiON or S
In the case of iO, in wet etching, it is removed with a mixed solution of hydrofluoric acid and ammonium fluoride, and in dry etching, it is removed with CF 4 gas. When the insulating layer 4 is polyimide, it is removed by hydrazine in wet etching and by a mixed gas of CF 4 and O 2 in dry etching. Next, the InSb thin film 2 is removed by wet etching with a mixed solution of nitric acid, lactic acid, and glycolic acid, and by dry etching with a mixed gas of CF 4 and O 2 , the electrode forming portion 5 is completed. At this time, the shape of the side wall 7 of the InSb thin film in the electrode formation portion is preferably a forward tapered shape.

【0026】次いで、電極8をInSb薄膜2の側壁7
を十分覆うように形成し、埋め込み電極9を形成し、こ
の後、マスク材6をリフトオフ法により剥離除去して、
所望の素子形状を得、最後にSiON保護膜を素子全面
に被覆して、素子が完成する(図1(5))。この際のマ
スク材6の形状は、逆テーパ形状が好ましい。
Next, the electrode 8 is formed on the side wall 7 of the InSb thin film 2.
To form a buried electrode 9, and then the mask material 6 is peeled off and removed by a lift-off method.
A desired element shape is obtained, and finally the SiON protective film is coated on the entire surface of the element to complete the element (FIG. 1 (5)). The shape of the mask material 6 at this time is preferably an inverse taper shape.

【0027】こうして完成した素子では、埋め込み電極
9を有するため、磁気抵抗効果を生じない無効な電流経
路が無く、従来に比して、磁気抵抗効果を向上させるこ
とが可能となる。この点を具体的に、従来の作成方式と
比較して述べるものとする。
Since the element thus completed has the embedded electrode 9, there is no ineffective current path that does not cause the magnetoresistive effect, and the magnetoresistive effect can be improved as compared with the conventional one. This point will be specifically described in comparison with the conventional creation method.

【0028】図4に、従来の技術で作成した半導体薄膜
磁気抵抗素子の断面図を示す。同図に示すように電極1
0は、単純にInSb薄膜2の上に形成されている。こ
の構成において、通常素子における電流経路は、素子部
11では、電流経路12のように膜面に平行であるが、
電極近傍では、特にInSb薄膜2の表面から深い所ほ
ど電流経路13のように曲がりを生じる。ここで素子面
に対して垂直に磁界を印加すると、電流経路12につい
ては、磁気抵抗効果を生じるものの、電流経路13につ
いては、磁気抵抗効果を生じない。従って従来の構造で
は、トータルの磁気抵抗効果にロスを生じるのに対し
て、本実施例の半導体薄膜磁気抵抗素子の埋め込み電極
9では、従来の電流経路13がないため、磁気抵抗効果
特性が向上する。加えて、従来の電極構成では、素子の
L寸法に応じて電極形状(L寸法)を変える必要があ
り、この最適化設計が複雑であったのに対して、埋め込
み電極構成ではこうした設計の制約を考える必要がな
く、素子設計の自由度が向上する。
FIG. 4 shows a sectional view of a semiconductor thin film magnetoresistive element manufactured by a conventional technique. As shown in the figure, electrode 1
0 is simply formed on the InSb thin film 2. In this configuration, the current path in the normal element is parallel to the film surface in the element section 11 like the current path 12,
In the vicinity of the electrodes, in particular, a deeper portion from the surface of the InSb thin film 2 is bent like a current path 13. When a magnetic field is applied perpendicularly to the element surface, the current path 12 produces a magnetoresistive effect, but the current path 13 does not produce a magnetoresistive effect. Therefore, in the conventional structure, a loss occurs in the total magnetoresistive effect, whereas in the embedded electrode 9 of the semiconductor thin film magnetoresistive element of this embodiment, the conventional current path 13 is not provided, so that the magnetoresistive effect characteristic is improved. To do. In addition, in the conventional electrode configuration, it is necessary to change the electrode shape (L dimension) according to the L dimension of the element, and this optimization design is complicated, whereas in the embedded electrode configuration, such a design constraint is imposed. Therefore, the degree of freedom in device design is improved.

【0029】このようにして作成した素子について、従
来のInSb薄膜の電子移動度(1m2/V・s)を有
する図4に示すような従来の技術で作成した半導体薄膜
磁気抵抗素子の磁界−抵抗変化特性と、本実施例の熱処
理工程を経て従来の電極構造にしたものおよび熱処理工
程と埋め込み電極構成を有するものでの磁界−抵抗変化
特性を各々、図5の曲線14,15,16に示す。同図
より本発明の半導体薄膜磁気抵抗素子の製造方法により
作成した素子では、従来法によるものに比べ、格段に磁
気抵抗効果が向上することがわかる。
The magnetic field of the semiconductor thin film magnetoresistive element prepared by the conventional technique as shown in FIG. 4 having the electron mobility (1 m 2 / V · s) of the conventional InSb thin film of the element thus prepared The resistance change characteristics and the magnetic field-resistance change characteristics of the conventional electrode structure that has been subjected to the heat treatment process of this embodiment and the heat treatment process and the buried electrode structure are shown in curves 14, 15 and 16 of FIG. 5, respectively. Show. From the figure, it can be seen that the magnetoresistive effect is remarkably improved in the element manufactured by the method for manufacturing a semiconductor thin film magnetoresistive element of the present invention as compared with the element manufactured by the conventional method.

【0030】また、本実施例の作成方式により作成した
薄膜磁気抵抗素子を−50〜150℃の温度サイクル下
で繰り返し、特性劣化試験を行ったが、従来生じたよう
な素子劣化は生じず、極めて高い信頼性を有すること
が、確認された。加えて、InSb薄膜2を熱処理する
際にその表面に被覆する絶縁層4が素子のInSb薄膜
層2を常に保護しているために、最終素子全面に形成す
る保護膜を樹脂等としても素子劣化が生じにくい点も付
け加えておく。
Further, the thin film magnetoresistive element manufactured by the manufacturing method of this embodiment was repeatedly subjected to a characteristic deterioration test under a temperature cycle of -50 to 150 ° C., but the element deterioration which occurred conventionally does not occur. It was confirmed to have extremely high reliability. In addition, since the insulating layer 4 covering the surface of the InSb thin film 2 is always protecting the InSb thin film layer 2 of the element when the InSb thin film 2 is heat-treated, even if the protective film formed on the entire surface of the final element is made of resin or the like, the element is deteriorated. I also added that it is unlikely to occur.

【0031】尚、本実施例では、基板として、ガラス基
板を用いたが、Siウエハ等の半導体基板や表面絶縁化
基板、スルーホール電極を有するグレイズドアルミナ基
板等を用いても良いことは言うまでもない。
In this embodiment, the glass substrate is used as the substrate, but it goes without saying that a semiconductor substrate such as a Si wafer, a surface-insulated substrate, a glaze alumina substrate having a through hole electrode, or the like may be used. Yes.

【0032】[0032]

【発明の効果】以上述べたところから明らかなように、
本発明によれば、InSb薄膜の結晶性が改善され、電
子移動度が大きく、さらに埋め込み電極構成を有するた
め、磁気抵抗効果に対して無効となる電流経路を無くし
て磁気抵抗効果が向上し、加えて、InSb薄膜でなる
抵抗素子部の上に常に絶縁層が被覆され、素子部を保護
しているため信頼性が向上する。
As is apparent from the above description,
According to the present invention, the crystallinity of the InSb thin film is improved, the electron mobility is high, and the buried electrode structure is provided. Therefore, the current path that is ineffective against the magnetoresistive effect is eliminated and the magnetoresistive effect is improved. In addition, since the insulating layer is always coated on the resistance element portion made of the InSb thin film to protect the element portion, the reliability is improved.

【0033】従って、本発明を用いて作成したInSb
薄膜および埋め込み電極を用いることで、−50〜+1
50℃の温度範囲においても十分信頼性の高い半導体薄
膜磁気抵抗素子を提供することができ、産業上の利用価
値は、極めて大きい。
Therefore, the InSb prepared by using the present invention.
By using a thin film and a buried electrode, -50 to +1
It is possible to provide a semiconductor thin film magnetoresistive element having a sufficiently high reliability even in a temperature range of 50 ° C., and its industrial utility value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の半導体薄膜磁気抵抗素子の
製造方法の概略工程図である。
FIG. 1 is a schematic process drawing of a method of manufacturing a semiconductor thin film magnetoresistive element according to an embodiment of the present invention.

【図2】本実施例のInSb薄膜の素子間分離パターン
形成を説明する斜視図である。
FIG. 2 is a perspective view illustrating formation of an element isolation pattern of an InSb thin film of this example.

【図3】本実施例の素子製造工程の詳細を説明する図で
ある。
FIG. 3 is a diagram for explaining the details of the element manufacturing process of the present embodiment.

【図4】従来の技術で作成した半導体薄膜磁気抵抗素子
の断面図である。
FIG. 4 is a cross-sectional view of a semiconductor thin film magnetoresistive element prepared by a conventional technique.

【図5】従来及び本発明の製造方法により製造された半
導体薄膜磁気抵抗素子の磁界−抵抗変化特性の一例を示
すグラフである。
FIG. 5 is a graph showing an example of a magnetic field-resistance change characteristic of a semiconductor thin film magnetoresistive element manufactured by a conventional method and a manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 InSb薄膜 4 絶縁層 5 電極形成部分 9 埋め込み電極 1 substrate 2 InSb thin film 4 insulating layer 5 electrode forming portion 9 embedded electrode

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 基板上にアンチモン化インジウム薄膜を
形成する工程と、そのアンチモン化インジウム薄膜を素
子形状に加工する工程と、そのアンチモン化インジウム
薄膜上に絶縁層を形成する工程と、そのアンチモン化イ
ンジウム薄膜を300℃以上525℃未満の温度で熱処
理する工程と、前記絶縁層およびアンチモン化インジウ
ム薄膜の電極を形成する部分のみを前記基板から除去す
る工程と、この後電極を形成する工程とを備えたことを
特徴とする半導体薄膜磁気抵抗素子の製造方法。
1. A step of forming an indium antimonide thin film on a substrate, a step of processing the indium antimonide thin film into a device shape, a step of forming an insulating layer on the indium antimonide thin film, and its antimony conversion. A step of heat-treating the indium thin film at a temperature of 300 ° C. or higher and lower than 525 ° C., a step of removing only the insulating layer and a portion of the indium antimonide thin film forming an electrode from the substrate, and a step of forming an electrode thereafter. A method of manufacturing a semiconductor thin film magnetoresistive element, comprising:
【請求項2】 基板上にアンチモン化インジウム薄膜を
形成する工程と、そのアンチモン化インジウム薄膜を素
子形状に加工する工程と、そのアンチモン化インジウム
薄膜上に絶縁層を形成する工程と、そのアンチモン化イ
ンジウム薄膜を525℃以上の温度で熱処理する工程
と、前記絶縁層およびアンチモン化インジウム薄膜の電
極を形成する部分のみを前記基板から除去する工程と、
この後電極を形成する工程とを備えたことを特徴とする
半導体薄膜磁気抵抗素子の製造方法。
2. A step of forming an indium antimonide thin film on a substrate, a step of processing the indium antimonide thin film into an element shape, a step of forming an insulating layer on the indium antimonide thin film, and its antimony conversion. A step of heat-treating the indium thin film at a temperature of 525 ° C. or higher; a step of removing only the insulating layer and a portion of the indium antimonide thin film forming an electrode from the substrate;
A method of manufacturing a semiconductor thin film magnetoresistive element, comprising the step of forming electrodes thereafter.
【請求項3】 絶縁層が珪素と窒素もしくは酸素を主成
分としてなる材料層であることを特徴とする請求項1又
は2記載の半導体薄膜磁気抵抗素子の製造方法。
3. The method for manufacturing a semiconductor thin film magnetoresistive element according to claim 1, wherein the insulating layer is a material layer containing silicon and nitrogen or oxygen as main components.
【請求項4】 絶縁層がポリイミドであることを特徴と
する請求項1記載の半導体薄膜磁気抵抗素子の製造方
法。
4. The method of manufacturing a semiconductor thin film magnetoresistive element according to claim 1, wherein the insulating layer is polyimide.
【請求項5】 基板が絶縁性基板もしくは半導体基板で
あることを特徴とする請求項1又は2記載の半導体薄膜
磁気抵抗素子の製造方法。
5. The method of manufacturing a semiconductor thin film magnetoresistive element according to claim 1, wherein the substrate is an insulating substrate or a semiconductor substrate.
【請求項6】 基板が絶縁性基板で素子を形成する面か
ら裏面に貫通するスルーホール導体を備えたものである
ことを特徴とする請求項1又は2記載の半導体薄膜磁気
抵抗素子の製造方法。
6. The method of manufacturing a semiconductor thin film magnetoresistive element according to claim 1, wherein the substrate has an insulating substrate and a through-hole conductor penetrating from the surface on which the element is formed to the back surface. .
JP4307182A 1992-11-17 1992-11-17 Manufacture of semiconductor thin-film magneto resistance element Pending JPH06164017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4307182A JPH06164017A (en) 1992-11-17 1992-11-17 Manufacture of semiconductor thin-film magneto resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4307182A JPH06164017A (en) 1992-11-17 1992-11-17 Manufacture of semiconductor thin-film magneto resistance element

Publications (1)

Publication Number Publication Date
JPH06164017A true JPH06164017A (en) 1994-06-10

Family

ID=17966027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4307182A Pending JPH06164017A (en) 1992-11-17 1992-11-17 Manufacture of semiconductor thin-film magneto resistance element

Country Status (1)

Country Link
JP (1) JPH06164017A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7244368B2 (en) 2002-03-29 2007-07-17 Fujitsu Limited Manufacturing process of a magnetic head, magnetic head, pattern formation method
US20230042689A1 (en) * 2018-06-06 2023-02-09 Government Of The United States, As Represented By The Secretary Of The Air Force Optimized Heteroepitaxial Growth of Semiconductors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7244368B2 (en) 2002-03-29 2007-07-17 Fujitsu Limited Manufacturing process of a magnetic head, magnetic head, pattern formation method
US20230042689A1 (en) * 2018-06-06 2023-02-09 Government Of The United States, As Represented By The Secretary Of The Air Force Optimized Heteroepitaxial Growth of Semiconductors
US11761115B2 (en) 2018-06-06 2023-09-19 United States Of America As Represented By The Secretary Of The Air Force Optimized heteroepitaxial growth of semiconductors

Similar Documents

Publication Publication Date Title
US5385864A (en) Method of fabricating semiconductor thin film and a Hall-effect device
US20060046488A1 (en) Germanium-on-insulator fabrication utilizing wafer bonding
JPH06164017A (en) Manufacture of semiconductor thin-film magneto resistance element
JP3158588B2 (en) Transfer formation method of InSb thin film
JPS6128213B2 (en)
JP3180378B2 (en) Method of manufacturing semiconductor thin film and method of manufacturing semiconductor magnetoresistive element
JPH0964319A (en) Soi substrate and its manufacture
KR940003745B1 (en) Active device having an oxide super conductor and a fabrication process thereof
JP2009158612A (en) Diamond field effect transistor
JPH0634411B2 (en) Superconducting device
JPH03104209A (en) Manufacture of semiconductor device
JPS57211749A (en) Manufacture of dielectric separating substrate
JPH10326921A (en) Production of semiconductor thin-film magnetoresistive element
JPH06209130A (en) Forming method of insb thin film
JPH07169686A (en) Manufacture of semiconductor thin film and semiconductor thin film magnetoresistance element
JPH0210882A (en) Semiconductor thin film magnetoresistance element and manufacture thereof
JPH07166323A (en) Production of thin '-fesi2 film and device with the same
JPH10209523A (en) Magnetoelectric transducer
Gottlieb et al. The epitaxial deposition of silicon on insulating substrates for MOS circuitry
JPH02163935A (en) Manufacture of semiconductor device
JP2540185B2 (en) Semiconductor device
JP3551134B2 (en) Method for manufacturing magnetic tunnel effect element
JP2731513B2 (en) Superconducting element and method of manufacturing the same
JPH0242729A (en) Aluminum-based thin-film wiring
JP2689946B2 (en) Manufacturing method of infrared detector