JPH0616288Y2 - Triple tube combustor - Google Patents

Triple tube combustor

Info

Publication number
JPH0616288Y2
JPH0616288Y2 JP6226788U JP6226788U JPH0616288Y2 JP H0616288 Y2 JPH0616288 Y2 JP H0616288Y2 JP 6226788 U JP6226788 U JP 6226788U JP 6226788 U JP6226788 U JP 6226788U JP H0616288 Y2 JPH0616288 Y2 JP H0616288Y2
Authority
JP
Japan
Prior art keywords
steam
combustor
inner cylinder
cooling water
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6226788U
Other languages
Japanese (ja)
Other versions
JPH01170847U (en
Inventor
要三良 岩藤
茂紀 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6226788U priority Critical patent/JPH0616288Y2/en
Publication of JPH01170847U publication Critical patent/JPH01170847U/ja
Application granted granted Critical
Publication of JPH0616288Y2 publication Critical patent/JPH0616288Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Combustion Of Fluid Fuel (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 本考案は、MHD(Magnet Hydro Dynamics)発電に使用
される三重管構造を有する燃焼器に関する。しかしなが
ら、本考案は、これに限らず、高温溶融炉やロケットエ
ンジン用の燃焼器にも適用できるものである。
TECHNICAL FIELD The present invention relates to a combustor having a triple pipe structure used for MHD (Magnet Hydro Dynamics) power generation. However, the present invention is not limited to this, and can be applied to a combustor for a high temperature melting furnace or a rocket engine.

従来の技術 このような従来の高温ガス用の燃焼器を第3図に基づい
て説明すると、01は内筒、02は冷却水通路、03はジャケ
ットフィン、04は外筒、及び05はバーナ本体であって、
内筒01及び外筒04が多数のジャケットフィン03を介して
二重管構造となっており、それらの間隙部で冷却水通路
02が形成されている。
2. Description of the Related Art A conventional high temperature gas combustor will be described with reference to FIG. 3. 01 is an inner cylinder, 02 is a cooling water passage, 03 is a jacket fin, 04 is an outer cylinder, and 05 is a burner body. And
The inner cylinder 01 and the outer cylinder 04 have a double pipe structure with a large number of jacket fins 03 interposed therebetween, and a cooling water passage is formed in the gap between them.
02 is formed.

そして、内筒01の一端部中央にはバーナ本体05が設けら
れており、このバーナ本体05先端周囲にはスワラー06が
取付けられている。
A burner body 05 is provided at the center of one end of the inner cylinder 01, and a swirler 06 is attached around the tip of the burner body 05.

そして、冷却水通路02に通常、高圧水を高流速で流動さ
せ、約1千数百℃乃至は2,000℃以上もの高温の燃焼ガ
スと直接、接する内筒(壁)01を冷却して、その内筒の
焼損を防止している。
Then, normally, high-pressure water is caused to flow at a high flow rate in the cooling water passage 02 to cool the inner cylinder (wall) 01 which is in direct contact with the combustion gas having a high temperature of about 1,000 to several hundreds of degrees Celsius or 2,000 degrees Celsius or higher. Prevents the inner cylinder from burning.

なお、図中、符号07は冷却水供給系統、08は冷却水排出
系統、及び09は燃焼用空気供給系統を夫々示す。
In the figure, reference numeral 07 indicates a cooling water supply system, 08 indicates a cooling water discharge system, and 09 indicates a combustion air supply system.

考案が解決しようとする課題 以上詳述した従来の高温ガス用の燃焼器は、しかし、次
のような問題があった。
Problems to be Solved by the Invention However, the conventional combustor for high temperature gas described in detail above has the following problems.

周知の如く、1千数百℃乃至は2,000℃以上の高温ガス
を製造する二重管構造の燃焼器においては、第3図に示
す如く内筒(壁)01を熱伝導率の非常に大きい純銅又は
銅合金製等とし、更に耐熱性を高めるために内筒01の内
面にセラミックス又は貴金属等を内張りして構成せざる
を得なくなる。
As is well known, in a double-pipe structure combustor that produces high-temperature gas of 1,000 to several hundreds of degrees Celsius or 2,000 degrees Celsius or more, the inner cylinder (wall) 01 has a very high thermal conductivity as shown in FIG. It is inevitable that the inner cylinder 01 is made of pure copper or a copper alloy, and the inner surface of the inner cylinder 01 is lined with ceramics or a noble metal.

従って、製作コストが高価になるばかりでなく、冷却水
通路02に通す冷却水によって前述の如き高温ガスの熱量
を奪い去るため、内筒01からの熱損失が大きくなり燃焼
器出口の燃焼ガス温度が低下し燃焼器の熱効率が低下す
る不都合があった。
Therefore, not only the manufacturing cost becomes high, but also the amount of heat of the high temperature gas is removed by the cooling water passing through the cooling water passage 02, so that the heat loss from the inner cylinder 01 becomes large and the combustion gas temperature at the combustor outlet is increased. And the thermal efficiency of the combustor is reduced.

更にMHD発電用燃焼器の如く製造ガス温度が3000°K
に達する燃焼器の内筒(壁)01は、殊にセラミックス又
は内張りを施した耐熱性貴金属では、高温・高速ガスと
の接触によるエロージョン、アブレジョンによって損耗
するため、燃焼器の内筒01を消耗品として扱わざるを得
なくなる欠点があった。
Furthermore, the temperature of the produced gas is 3000 ° K like the combustor for MHD power generation.
The inner cylinder (wall) 01 of the combustor reaching the temperature reaches 0 to 0, especially in the case of ceramics or a heat-resistant noble metal with an inner lining, the inner cylinder 01 of the combustor is consumed because it is worn by erosion and abrasion due to contact with high temperature and high speed gas. It had the drawback that it had to be treated as a product.

一方、仮に600〜700℃程度の高温耐熱強度を有する在来
の耐熱鋼を内筒(壁)01に使用する場合は、その内壁の
熱流束(q150〜200W/cm2)が高いために、内筒01の厚
さδ(図示せず)は熱応力支配となってしまう。
On the other hand, if a conventional heat-resistant steel having a high temperature heat resistance strength of about 600 to 700 ° C. is used for the inner cylinder (wall) 01, the heat flux (q150 to 200 W / cm 2 ) of the inner wall is high, The thickness δ (not shown) of the inner cylinder 01 is governed by thermal stress.

ところが、冷却水通路02が外接する内筒01の冷却壁面で
はその熱流束により高温となるので、冷却水の沸騰を防
止するために、高圧水を高流速で通すことが必要とな
り、その結果、実用規模の大口径燃焼器では、内筒01の
強度が冷却水圧力に耐えられなくなる問題点があった。
However, the cooling wall surface of the inner cylinder 01 with which the cooling water passage 02 circumscribes has a high temperature due to its heat flux, so it is necessary to pass high-pressure water at a high flow rate in order to prevent boiling of the cooling water. In the practical large-scale combustor, there was a problem that the strength of the inner cylinder 01 could not withstand the pressure of the cooling water.

本考案は、このような従来技術の課題を解決するために
なされたもので、在来の耐熱鋼を内筒壁に使用が可能な
高温ガス用燃焼器を提供することを目的とする。
The present invention has been made in order to solve the problems of the prior art, and an object thereof is to provide a high temperature gas combustor in which conventional heat resistant steel can be used for the inner cylinder wall.

課題を解決するための手段 上記の課題を解決するために、本考案は、燃焼器内筒に
外接して蒸気通路を設け、更に蒸気通路の外周に冷却水
通路を設けて、三重管構造の燃焼器にしたものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a steam passage that is circumscribed in an inner cylinder of a combustor and further has a cooling water passage on the outer periphery of the steam passage. It is a combustor.

作用 このような手段によれば、内筒に外接した蒸気通路にそ
の内筒壁の冷却媒体として蒸気を流動させると共に、更
にこの蒸気を蒸気通路の外周に設けられた冷却水通路に
導かれる冷却水で冷却するので、蒸気通路が外接する内
筒の冷却壁面における熱伝達率を調節して、内筒壁の熱
応力及び壁面温度を許容値内に抑制することができる。
By such means, the steam is circulated in the steam passage circumscribing the inner cylinder as a cooling medium for the inner cylinder wall, and the steam is further guided to the cooling water passage provided on the outer periphery of the steam passage. Since it is cooled with water, it is possible to control the heat transfer coefficient in the cooling wall surface of the inner cylinder with which the steam passage is circumscribed, and suppress the thermal stress and wall surface temperature of the inner cylinder wall within the allowable values.

実施例 以下第1及び2図を参照して、本考案の実施例について
詳述する。
Embodiment Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS.

第1図は本実施例の三重管構造を有する燃焼器の断面、
第2図はその燃焼器器壁の熱授受(熱の流れ)の状態を
概念的に示しており、燃焼器の内筒1に外接して冷却媒
体として蒸気が流動する蒸気通路2が設けられている。
即ち、この内筒1の外周に中間胴3が多数のジャケット
フィン3′を介して取付けられ、これらのなす間隙部で
前記蒸気通路2が形成される。
FIG. 1 is a cross section of a combustor having a triple pipe structure according to this embodiment,
FIG. 2 conceptually shows the state of heat transfer (heat flow) of the combustor wall, in which a steam passage 2 is provided which is in contact with the inner cylinder 1 of the combustor and through which steam flows as a cooling medium. ing.
That is, the intermediate barrel 3 is attached to the outer periphery of the inner cylinder 1 via a number of jacket fins 3 ', and the steam passage 2 is formed in the gap formed by these.

更に、この蒸気通路2の外周には冷却水通路4が設けら
れている。即ち、前記中間胴3の外周に外筒5がやはり
多数のジャケットフィン3′を介して取付けられ、これ
らのなす間隙部で前記冷却水通路4が形成される。
Further, a cooling water passage 4 is provided on the outer circumference of the steam passage 2. That is, the outer cylinder 5 is also attached to the outer periphery of the intermediate body 3 via a large number of jacket fins 3 ', and the cooling water passage 4 is formed in the gap formed by these.

従って、内筒1と中間胴3と外筒5とで一体化した三重
管構造の燃焼器が構成されることとなる。
Therefore, a combustor having a triple-tube structure in which the inner cylinder 1, the intermediate barrel 3, and the outer cylinder 5 are integrated is configured.

さて、このような三重管構造の燃焼器において、冷却媒
体が蒸気であって、その作動温度約250〜350℃前後の循
環ループを、換言すれば、蒸気通路2に接続する蒸気の
供給及び排出系統を蒸気の流れに沿って説明すると、ス
ワラー6′を有するバーナ本体6側の蒸気通路2端部か
ら延びる蒸気排出系統7と、伝熱管8を介して例えばボ
イラ等の熱利用装置9に接続する熱回収器10と、この熱
回収器10から延びて燃焼ガス出口側の蒸気通路2端部に
接続する蒸気供給系統11とからなっている。
Now, in such a triple-tube combustor, the cooling medium is steam, and the circulation loop having an operating temperature of about 250 to 350 ° C., in other words, supply and discharge of steam connected to the steam passage 2 is performed. Explaining the system along the flow of steam, the system is connected to a steam discharge system 7 extending from the end of the steam passage 2 on the burner body 6 side having a swirler 6 ′ and a heat utilization device 9 such as a boiler via a heat transfer pipe 8. And a steam supply system 11 extending from the heat recovery device 10 and connected to the end of the steam passage 2 on the combustion gas outlet side.

そして、前記蒸気供給系統11の途中には蒸気循環ポンプ
12、この循環ポンプ12の後流に配置する蒸気流量調節弁
13及び蒸気膨張弁14が取付けられる。
And, a steam circulation pump is provided in the middle of the steam supply system 11.
12 、 Vapor flow control valve located downstream of this circulation pump 12
13 and a steam expansion valve 14 are attached.

更に、蒸気循環ポンプ12出口から分岐して熱回収器10に
接続する循環液バイパス系統14が設けられている。な
お、このバイパス系統14の途中には逃し弁15が取付けら
れる。
Further, a circulating liquid bypass system 14 is provided which branches from the outlet of the steam circulation pump 12 and is connected to the heat recovery device 10. A relief valve 15 is attached in the middle of the bypass system 14.

また、前記蒸気流量調節弁13には、燃焼器ガス出口付近
の内筒1冷却壁面における蒸気温度を検知する供給蒸気
温度検出センサ16が配線されている。
Further, a supply steam temperature detection sensor 16 for detecting the steam temperature on the cooling wall surface of the inner cylinder 1 near the combustor gas outlet is wired to the steam flow control valve 13.

一方、このような蒸気の供給及び排出系統14,7に対し
て、冷却水系統、即ち冷却水供給系統17及びその排出系
統18が、夫々冷却水通路4のバーナ本体6側及び燃焼ガ
ス出口側に冷却水の流れが前記蒸気の流れと対向するよ
う接続されている。
On the other hand, in contrast to such steam supply and discharge systems 14 and 7, a cooling water system, that is, a cooling water supply system 17 and a discharge system 18 thereof are respectively provided on the burner body 6 side and the combustion gas outlet side of the cooling water passage 4. Is connected so that the flow of cooling water faces the flow of steam.

そして、特に冷却水供給系統17の途中には冷却水流量調
節弁19が取付けられ、この調節弁19には、バーナ本体6
付近の内筒1冷却壁面における蒸気温度を検知する排出
蒸気温度検出センサ20が配線されている。
A cooling water flow rate control valve 19 is attached in the middle of the cooling water supply system 17, and the burner body 6 is attached to the control valve 19.
An exhaust steam temperature detection sensor 20 for detecting the steam temperature on the cooling wall surface of the inner cylinder 1 in the vicinity is wired.

なお、更に前記各温度検出センサ16,20の配線の途中に
は夫々制御信号発信用の変換器21,22が設けられる。
Furthermore, converters 21 and 22 for transmitting control signals are provided in the middle of the wiring of the temperature detection sensors 16 and 20, respectively.

以上のような構成により、一つの例として約3,000°K
程度の超高温ガスを製造する高温ガス用の燃焼器におい
ても、その構造を三重管とすることにより、殊に普通の
耐熱性を有する耐熱鋼を内筒1に使用することができ、
かつこの内筒1の熱応力を十分に緩和し、しかも低熱損
失の燃焼器を実現できる。
With the above configuration, as an example, about 3,000 ° K
Even in a high-temperature gas combustor for producing an extremely high-temperature gas, a heat-resistant steel having ordinary heat resistance can be used for the inner cylinder 1 by making the structure a triple pipe.
In addition, the thermal stress of the inner cylinder 1 can be sufficiently relaxed, and a combustor with low heat loss can be realized.

しかして、まず高温ガスに接する内筒1の熱応力を緩和
するためには、その壁材料の耐熱許容範囲でできる限り
高温の蒸気(冷却媒体)を用い、しかも高い冷却性能を
有することが必要である。従って、燃焼器内壁の、殊に
蒸気通路2の冷却は熱伝達率の高い気−液二相流の伝熱
機能を形成させることとなる。
However, first, in order to reduce the thermal stress of the inner cylinder 1 in contact with the high temperature gas, it is necessary to use the vapor (cooling medium) that is as hot as possible within the heat resistance allowable range of the wall material and has high cooling performance. Is. Therefore, the cooling of the inner wall of the combustor, especially the steam passage 2, forms a heat transfer function of a gas-liquid two-phase flow having a high heat transfer coefficient.

即ち、このことについて熱授受の観点から原理的に説明
すると、第1及び2図において、内筒1の外周壁(冷却
壁面)温度tは、高熱流束(q150〜200W/cm2
になると300〜400℃に達する。一方冷却媒体として、蒸
気供給系統7から供給される130〜150℃の飽和蒸気は蒸
気通路2を30〜40m/sの高速で流れ、内筒(壁)1で加
熱されるが、中間胴3の冷体面で冷却水通路4を流動す
る冷却水により冷却され蒸気の一部が凝縮し、蒸気通路
2内で蒸気流速によってミスト化され蒸気冷却媒体は、
蒸気と凝縮ミスト噴霧流との気−液二相流の状態とな
る。
That is, this will be described in principle from the viewpoint of heat transfer. In FIGS. 1 and 2, the outer peripheral wall (cooling wall surface) temperature t 2 of the inner cylinder 1 is high heat flux (q 1 150 to 200 W / cm 2). )
Reaches 300-400 ℃. On the other hand, as the cooling medium, saturated steam of 130 to 150 ° C. supplied from the steam supply system 7 flows through the steam passage 2 at a high speed of 30 to 40 m / s and is heated by the inner cylinder (wall) 1, but the intermediate cylinder 3 The part of the steam is condensed by being cooled by the cooling water flowing through the cooling water passage 4 on the cold body surface of No. 1, and the steam cooling medium is misted by the steam flow velocity in the steam passage 2,
A vapor-liquid two-phase flow of vapor and condensed mist spray flow is established.

このとき、燃焼器における内筒(壁)1の強度(必要厚
さδ)は熱応力支配であって、ここで内筒(壁)1の
熱応力σは、σ∝q・ΔT・・・(1)の関係で
表わされ、温度勾配ΔT(=t−t)は、 で表わされる。ただし、前記(2)式でq及びα
燃焼条件によって決り、λは内筒壁の物性定数であ
る。
At this time, the strength (required thickness δ 1 ) of the inner cylinder (wall) 1 in the combustor is governed by thermal stress, and here, the thermal stress σ t of the inner cylinder (wall) 1 is σ t ∝ q 1. ΔT is represented by the relationship of (1), and the temperature gradient ΔT (= t 1 −t 2 ) is It is represented by. However, in the equation (2), q 1 and α 1 are determined by the combustion conditions, and λ 1 is a physical constant of the inner cylinder wall.

従って、特に前述の如き蒸気の凝縮現象が得られるため
内筒1外周面(冷却壁面)の熱伝達率αは、蒸気単相
流の場合に比べ(単相流≒1,500kcal/m2h℃,噴霧二相
流≒15,000kcal/m2h℃)約10倍高くなり、冷却性能が大
巾に向上すると共に、内筒1冷却壁面を比較的高温(t
300〜400℃)で安定させ熱応力σを容易に、かつ
確実に低減させることが可能なる。
Therefore, since the vapor condensation phenomenon as described above is obtained, the heat transfer coefficient α 2 of the outer peripheral surface (cooling wall surface) of the inner cylinder 1 is smaller than that in the case of the vapor single-phase flow (single-phase flow ≈ 1,500 kcal / m 2 h ℃, spray two-phase flow ≈ 15,000 kcal / m 2 h ℃) About 10 times higher, the cooling performance is greatly improved, and the inner wall of the inner cylinder 1 has a relatively high temperature (t
(2 ) 300 to 400 ° C.) and the thermal stress σ t can be easily and surely reduced.

なお、気−液二相流の凝縮・蒸発熱伝達率は蒸気と凝縮
液との混合率によって変化するが、中間胴3壁面の温度
を外部冷却水通路4の冷却水流量(流速)を増減するこ
とにより調節することができるため、燃焼条件に対応し
て内筒(壁)1の温度上昇をやはり容易に抑制できる。
The condensation / evaporation heat transfer coefficient of the gas-liquid two-phase flow changes depending on the mixing ratio of the vapor and the condensed liquid, but the temperature of the wall surface of the intermediate barrel 3 is increased or decreased by the cooling water flow rate (flow velocity) of the external cooling water passage 4. The temperature rise of the inner cylinder (wall) 1 can be easily suppressed according to the combustion conditions because the temperature can be adjusted by adjusting the temperature.

そこで、以上のことより本実施例による蒸気の蒸気通路
2への具体的な導入の操作方法を説明すると、熱回収器
10から放出された蒸気は蒸気供給系統11の蒸気循環ポン
プ12で昇圧され、膨張弁14により膨張させ、ほぼ蒸気−
液ミストの二相流の状態にして蒸気通路2内に導かれ
る。
Therefore, the operation method of the concrete introduction of the steam into the steam passage 2 according to the present embodiment will be described above.
The steam released from 10 is boosted by the steam circulation pump 12 of the steam supply system 11, expanded by the expansion valve 14, and almost steam-
The liquid mist is introduced into the vapor passage 2 in a two-phase flow state.

そして、気−液ミストが蒸気通路2内で前述の如く内筒
(壁)1面で高温の燃焼ガスからの熱量を受取って加熱
されると同時に、その外周の中間胴3の冷体面にて冷却
され冷却水に放熱することにより、一定範囲の気−液二
相流混合割合にバランスして、蒸気通路2の全域に亘っ
て安定した冷却(伝熱)性能が得られることとなる。
Then, the gas-liquid mist receives heat from the high temperature combustion gas in the inner cylinder (wall) 1 surface in the steam passage 2 and is heated at the same time as described above, and at the same time, on the cold body surface of the intermediate barrel 3 on the outer periphery thereof. By cooling and radiating heat to the cooling water, a stable cooling (heat transfer) performance can be obtained over the entire area of the vapor passage 2 by balancing the gas-liquid two-phase flow mixing ratio within a certain range.

更に、燃焼器内の燃焼条件(燃焼量変化)に対応して、
冷却能力(伝熱性能)を調節する(効果的な冷却により
冷却水側への熱放散を抑える)操作手順について説明す
ると、まず燃焼器の燃焼量が増加すると当然燃焼器出口
側の内筒(壁)1の温度が上昇するので、この温度を供
給蒸気温度検出センサ16にて検知して変換器21から制御
信号を蒸気流量調節弁13に送る。
Furthermore, according to the combustion conditions (combustion amount change) in the combustor,
Explaining the operation procedure of adjusting the cooling capacity (heat transfer performance) (suppressing heat dissipation to the cooling water side by effective cooling), first of all, when the combustion amount of the combustor increases, the inner cylinder of the combustor outlet side ( Since the temperature of the wall 1 rises, this temperature is detected by the supply steam temperature detection sensor 16 and a control signal is sent from the converter 21 to the steam flow control valve 13.

次に、これに対応して冷却能力を高めるよう蒸気流量調
節弁13により蒸気循環流量を増やす。
Next, the steam flow control valve 13 correspondingly increases the steam circulation flow rate so as to increase the cooling capacity.

一方、燃焼量が減少した(低付加時の)場合は、燃焼器
頭部(バーナ本体6側)の内筒(壁)1の温度が低下す
るので、この温度を排出蒸気温度検出センサ20にて検知
して変換器22から制御信号を冷却水流量調節弁19に送
る。
On the other hand, when the combustion amount decreases (when the load is low), the temperature of the inner cylinder (wall) 1 of the combustor head (burner body 6 side) decreases, and this temperature is detected by the exhaust steam temperature detection sensor 20. And sends a control signal from the converter 22 to the cooling water flow control valve 19.

そして、今度は冷却能力を下げるよう冷却水流量調節弁
19により逐一冷却水流量が絞られる。
And this time, the cooling water flow control valve to reduce the cooling capacity.
The cooling water flow rate is throttled by 19 each time.

このように燃焼器内筒1の出入口付近における温度検出
に基づいて、蒸気の供給及び排出系統11,7での蒸気循
環流量、並びに冷却水の供給及び排出系統17,18での冷
却水流量の調節機能を夫々構成し、付加することによ
り、燃焼器内筒(壁)1の温度を全域に亘って一定した
温度に保ち、安定した冷却性能が得られるため、低熱損
失の高温・高負荷燃焼器の実現がより確実に可能とな
る。
As described above, based on the temperature detection in the vicinity of the inlet / outlet of the combustor inner cylinder 1, the steam circulation flow rate in the steam supply / discharge systems 11, 7 and the cooling water flow rate in the cooling water supply / discharge systems 17, 18 are determined. By configuring and adding each control function, the temperature of the combustor inner cylinder (wall) 1 is maintained at a constant temperature over the entire area, and stable cooling performance is obtained, so high temperature and high load combustion with low heat loss The realization of a container becomes possible more reliably.

なお、熱回収器10本体では、燃焼器で加熱された熱媒体
(蒸気−液)が伝熱管8を介して所定の温度まで冷却
(熱回収)される。この伝熱管8内の熱媒体に吸収され
た熱エネルギーは、前述した如く、熱利用装置9にて回
収され、ボイラ、冷暖房装置等が組合わされた各種コジ
エネシステムの熱源となり、プラントの熱効率向上を計
れる。
In the main body of the heat recovery device 10, the heat medium (vapor-liquid) heated by the combustor is cooled (heat recovery) to a predetermined temperature via the heat transfer tube 8. The heat energy absorbed in the heat medium in the heat transfer tube 8 is recovered by the heat utilization device 9 as described above, and becomes a heat source for various cogeneration systems in which a boiler, a cooling and heating device, etc. are combined to improve the thermal efficiency of the plant. Can be measured.

考案の効果 以上詳述したように、本考案によれば、従来方式では銅
又は銅合金等の熱伝導率の大きい高価な材料が必要であ
ったが、本考案の簡単な構成により在来の耐熱鋼で燃焼
器内筒を形成できるため、製作に供する材料費、加工費
が大巾に低減され、更に燃焼器の耐久性の信頼性が向上
する。
Effect of the Invention As described above in detail, according to the present invention, the conventional method requires an expensive material such as copper or a copper alloy having a large thermal conductivity. Since the combustor inner cylinder can be formed of heat-resistant steel, the material cost and processing cost for manufacturing can be greatly reduced, and the reliability of the durability of the combustor can be improved.

更に、燃焼器は、その出口での燃焼ガスを常時安定させ
ながら運転が可能である。
Furthermore, the combustor can be operated while always stabilizing the combustion gas at its outlet.

また、燃焼器の構成が三重構造となり、冷却熱媒体とし
て高圧水を使用していた従来の二重構造に比べると複雑
となるが、特に冷却水通路の圧力が従来の約2/3まで減
少可能となり、しかも内筒材の耐圧強度が中間胴を介す
ることにより高くなるため、筒壁厚さは従来の約1/2と
なり、全体として燃焼器本体を軽量化することができ
る。
In addition, the combustor has a triple structure, which is more complicated than the conventional double structure that uses high-pressure water as the cooling heat medium, but the pressure in the cooling water passage is reduced to about 2/3 of that of the conventional structure. This is possible, and since the pressure resistance of the inner cylinder is increased by the intermediate cylinder, the thickness of the cylinder wall is about half that of the conventional case, and the weight of the combustor body can be reduced as a whole.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案による三重管構造の燃焼器の一例を示す
要部断面及びその周辺の機器構成図、第2図はその燃焼
器器壁の熱授受の状態図、第3図は従来の二重管構造の
燃焼器を示す要部断面図である。 1……(燃焼器)内筒、2……蒸気通路、3……中間
胴、4……冷却水通路、5……外筒。
FIG. 1 is a sectional view of an essential part showing an example of a combustor having a triple pipe structure according to the present invention and a device configuration diagram around it, FIG. 2 is a state diagram of heat exchange of a combustor wall, and FIG. It is a principal part sectional view which shows the combustor of a double pipe structure. 1 ... (combustor) inner cylinder, 2 ... steam passage, 3 ... intermediate cylinder, 4 ... cooling water passage, 5 ... outer cylinder.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】燃焼器内筒に外接して蒸気通路を設け、更
に蒸気通路の外周に冷却水通路を設けてなる三重管構造
の燃焼器。
1. A combustor having a triple pipe structure in which a steam passage is provided externally to an inner cylinder of the combustor, and a cooling water passage is further provided on an outer periphery of the steam passage.
JP6226788U 1988-05-13 1988-05-13 Triple tube combustor Expired - Lifetime JPH0616288Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6226788U JPH0616288Y2 (en) 1988-05-13 1988-05-13 Triple tube combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6226788U JPH0616288Y2 (en) 1988-05-13 1988-05-13 Triple tube combustor

Publications (2)

Publication Number Publication Date
JPH01170847U JPH01170847U (en) 1989-12-04
JPH0616288Y2 true JPH0616288Y2 (en) 1994-04-27

Family

ID=31287893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6226788U Expired - Lifetime JPH0616288Y2 (en) 1988-05-13 1988-05-13 Triple tube combustor

Country Status (1)

Country Link
JP (1) JPH0616288Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5484707B2 (en) * 2008-10-10 2014-05-07 三菱重工業株式会社 Combustor and gas turbine

Also Published As

Publication number Publication date
JPH01170847U (en) 1989-12-04

Similar Documents

Publication Publication Date Title
JPH09203503A (en) Method and device for supplying heat to external combustion type power plant
JP6583617B2 (en) Evaporator, Rankine cycle device and cogeneration system
US6269754B1 (en) Steam generator for superheated steam for incineration plants with corrosive flue gases
US3610329A (en) Tube plate for hot gas coolers
US4989781A (en) High-efficiency heating unit
JP2001235101A (en) High-temperature high-pressure circulating fluidized bed boiler using refuse as fuel
JPH0616288Y2 (en) Triple tube combustor
JP3310900B2 (en) Cooling structure of combustor transition piece
Sztekler et al. Utilization of waste heat from rotary kiln for burning clinker in the cement plant
JPS63143485A (en) Cylindrical multitubular type heat exchanger
US2372992A (en) Waste heat boiler
US3315645A (en) Hot water boiler
JP3924175B2 (en) Steam superheater
US3590788A (en) Injection cooler for steam power plant
US3446279A (en) Air-cooled radiation recuperator
JP3190939B2 (en) Steam generator
JPS5610692A (en) Heat exchanger
JPH0783004A (en) Casing cooling/heating device
US3015319A (en) Radiant tubular heat exchanger
JP4074846B2 (en) Multi-tube boiler
JPS5833361Y2 (en) Reheating device for exhaust gas boiler
JPS6318141A (en) Temperature reducer for gas turbine
KR20000071947A (en) Single Passage-Type Heating Equipment for Supper-Heater
JP2694894B2 (en) Heat exchanger
SU382910A1 (en) THERMOGRAPHIC HEAT TUBE