JPH06157876A - Conductive one-pack epoxy resin composition - Google Patents

Conductive one-pack epoxy resin composition

Info

Publication number
JPH06157876A
JPH06157876A JP31964892A JP31964892A JPH06157876A JP H06157876 A JPH06157876 A JP H06157876A JP 31964892 A JP31964892 A JP 31964892A JP 31964892 A JP31964892 A JP 31964892A JP H06157876 A JPH06157876 A JP H06157876A
Authority
JP
Japan
Prior art keywords
epoxy resin
conductive
resin composition
pack type
type epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31964892A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Kitamura
信義 北村
Masako Ueda
雅子 植田
Koichiro Sagawa
幸一郎 佐川
Mitsuo Takahashi
三雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP31964892A priority Critical patent/JPH06157876A/en
Publication of JPH06157876A publication Critical patent/JPH06157876A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject composition which is excellent in storage stability at ordinary temperature and adhesion and can cure rapidly at high temperatures to give a conductive cured product of excellent properties by using a specified fine fibrous powder, a specified curing agent and a specified epoxy resin as the essential ingredients. CONSTITUTION:The objective resin composition essentially consists of a fine fibrous powder coated with a noble metal (e.g. potassium titanate fiber coated with silver), an epoxy resin (e.g. bisphenol F epoxy resin) and a solid-dispersible latent curing agent (e.g. dicyadiamide), and desirably may contain a coupling agent (e.g. titanate coupling agent).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は種々の基板に導電層を形
成したり、各種電子部品及びリード線等の導電性を必要
とする部分の接着に用いられる導電性一液型エポキシ樹
脂組成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive one-pack type epoxy resin composition used for forming a conductive layer on various substrates and for bonding various electronic parts, lead wires and the like where conductivity is required. It is about.

【0002】[0002]

【従来の技術】導電性樹脂組成物はフェノール樹脂、ア
クリル樹脂、ポリエステル樹脂、エポキシ樹脂、ポリイ
ミド樹脂等の合成樹脂に導電性充填剤を混合してイン
キ、塗料、ペースト状等にしたものであり、通常は電気
特性に優れたエポキシ樹脂が多用されている。現在一般
に用いられている導電性エポキシ樹脂組成物には、エポ
キシ樹脂に導電性充填剤を配合した主剤と硬化剤とを使
用直前に混合する二液型と、エポキシ樹脂に導電性充填
剤と硬化剤及び硬化促進剤を予め配合した一液型とがあ
る。二液型の硬化剤としては、一般にポリアミド樹脂或
はアミン類が用いられ、一液型の硬化剤としてはフェノ
ール樹脂、イミダゾール化合物、ジシアンジアミドと尿
素化合物等が用いられている。
2. Description of the Related Art A conductive resin composition is prepared by mixing a synthetic resin such as a phenol resin, an acrylic resin, a polyester resin, an epoxy resin or a polyimide resin with a conductive filler to prepare an ink, a paint or a paste. Usually, epoxy resins with excellent electrical characteristics are often used. Currently used conductive epoxy resin compositions include a two-component type in which a main agent prepared by mixing a conductive filler into an epoxy resin and a curing agent are mixed immediately before use, and an epoxy resin containing a conductive filler and a curing agent. There is a one-pack type in which an agent and a curing accelerator are pre-blended. Polyamide resins or amines are generally used as the two-pack type curing agent, and phenol resins, imidazole compounds, dicyandiamide and urea compounds, etc. are used as the one-pack type curing agent.

【0003】導電性充填剤には金、銀、パラジウム、
銅、ニッケル等の金属微粉末及びその酸化物、カーボン
ブラック或は炭素繊維等の炭素粉末が用いられているが
導電性と価格の面から、通常は粉末或はフレーク状の銀
粉が多用されている。
Conductive fillers include gold, silver, palladium,
Fine powders of metals such as copper and nickel and oxides thereof, carbon powders such as carbon black or carbon fibers are used, but powders or flake-shaped silver powders are often used from the viewpoint of conductivity and price. There is.

【0004】従来の二液型の導電性エポキシ樹脂組成物
では主剤と硬化剤を混合すると、可使時間が短いために
速やかに粘度が上昇し、数時間から数日で樹脂組成物が
硬化してしまうので作業性に問題が生じている。また、
これらの問題点を解決する目的で一液型の導電性エポキ
シ樹脂組成物が種々開発され、用いられているがこれら
に用いられている金属又はその酸化物の粉末、炭素粉末
では安定した導電性を得るために導電性充填剤を多く用
いる必要があった。しかしながら、導電性充填剤を多く
用いると接着性等が低下し、組成物としての物性と安定
した導電性を得るための配合の選択、製造時の工程管理
等に熟練が必要とされている。また製品の高性能、信頼
性等の点から導電性充填剤としては金、銀、白金族の金
属粉末が用いられ、また高充填されている。特にこれら
導電性充填剤において安価な銀粉末が多用されているが
銀はエレクトロマイグレーションが発生しやすいために
絶縁不良を起こすと言った欠点を持つている。
In the conventional two-component type conductive epoxy resin composition, when the main agent and the curing agent are mixed, the viscosity is rapidly increased because the pot life is short, and the resin composition is cured in several hours to several days. Therefore, there is a problem in workability. Also,
Various one-component type conductive epoxy resin compositions have been developed and used for the purpose of solving these problems, but the powder of the metal or its oxide used for them and the carbon powder have stable conductivity. Therefore, it was necessary to use a large amount of conductive filler in order to obtain However, when a large amount of conductive filler is used, the adhesiveness and the like are deteriorated, and it is necessary to have skill in selecting the composition for obtaining the physical properties of the composition and stable conductivity, and controlling the process during manufacturing. Further, from the viewpoints of high performance and reliability of the product, gold, silver and platinum group metal powders are used as the conductive filler and are highly filled. In particular, inexpensive silver powder is often used in these conductive fillers, but silver has a drawback that it causes insulation failure because electromigration easily occurs.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的はこのよ
うな導電性エポキシ樹脂組成物の欠点を改良すべく、常
温における貯蔵安定性に優れ、高温時には速やかに硬化
して優れた物性の導電性硬化物を得る導電性一液型エポ
キシ樹脂組成物を開発することにある。
SUMMARY OF THE INVENTION The object of the present invention is to improve the drawbacks of such a conductive epoxy resin composition by providing excellent storage stability at room temperature and quick curing at a high temperature to provide a conductive material having excellent physical properties. The purpose is to develop a conductive one-pack type epoxy resin composition for obtaining a cured product.

【0006】[0006]

【問題点を解決するための手段】本発明者らは導電性エ
ポキシ樹脂組成物の常温貯蔵安定性と硬化物の性能、特
に銀のエレクトロマイグレーション性を改良し導電性一
液型エポキシ樹脂組成物を完成させた。すなわち本発明
は(A)貴金属被覆繊維状微粉末、(B)エポキシ樹
脂、(C)固体分散型潜在性硬化剤を必須成分とするこ
とを特徴とする導電性一液型エポキシ樹脂組成物に関す
るものであり、更には導電性一液型エポキシ樹脂組成物
がシラン系、チタネート系、ジルコニウム系又はアルミ
ニウム系カップリング剤を含むことを特徴とする導電性
一液型エポキシ樹脂組成物に関するものである。
SUMMARY OF THE INVENTION The present inventors have improved the storage stability of a conductive epoxy resin composition at room temperature and the performance of a cured product, especially the electromigration property of silver, to improve the conductive one-pack type epoxy resin composition. Was completed. That is, the present invention relates to a conductive one-pack type epoxy resin composition comprising (A) a noble metal-coated fibrous fine powder, (B) an epoxy resin, and (C) a solid dispersion type latent curing agent as essential components. The present invention further relates to a conductive one-pack type epoxy resin composition, wherein the conductive one-pack type epoxy resin composition contains a silane-based, titanate-based, zirconium-based or aluminum-based coupling agent. .

【0007】以下に本発明に係わる導電性一液型エポキ
シ樹脂組成物について詳細に説明する。本発明おける貴
金属被覆繊維状微粉末とは、繊維長と繊維径の比(アス
ペクト比)が10以上の繊維形状を有する心材であり、
導電性一液型エポキシ樹脂組成物として用いる場合の加
工性等を考慮すると繊維長1μm〜10mm、繊維径1
0nm〜1mm程度のものが好ましい。繊維形状の心材
としてはアスベスト、ロックウール、石英繊維、アルミ
ナ繊維、炭素繊維、炭化珪素及び炭化ホウ素繊維、ホウ
化アルミニウム繊維、ホウ化チタン繊維、ホウ素繊維、
二酸化チタン繊維、酸化ベリリウム繊維、マグネシウム
パイロボレート繊維、チタン酸アルカリ及びチタン酸ア
ルカリ土類金属繊維等が例示されるが、これらに限定さ
れるものではない。
The conductive one-pack type epoxy resin composition according to the present invention will be described in detail below. The noble metal-coated fibrous fine powder in the present invention is a core material having a fiber shape with a fiber length to fiber diameter ratio (aspect ratio) of 10 or more,
Considering processability when used as a conductive one-pack type epoxy resin composition, fiber length 1 μm to 10 mm, fiber diameter 1
It is preferably about 0 nm to 1 mm. As the fiber-shaped core material, asbestos, rock wool, quartz fiber, alumina fiber, carbon fiber, silicon carbide and boron carbide fiber, aluminum boride fiber, titanium boride fiber, boron fiber,
Examples thereof include titanium dioxide fibers, beryllium oxide fibers, magnesium pyroborate fibers, alkali titanates and alkaline earth metal titanates, but are not limited thereto.

【0008】これら繊維形状の心材に貴金属、即ち金、
銀、白金族の金属を被覆する方法としては無電解めっき
法、湿式中和法、CVD法、PVD法等の現在常用され
ている表面導電化方法が適用できるが、特に好ましい方
法としては従来から公知の無電解めっき法、即ち錯化剤
を含む貴金属化合物の水溶液又は水分散液に活性化処理
を施した繊維状心材の水分散液を添加し、還元剤を用い
て繊維状心材表面に貴金属の薄膜を被覆形成させる製法
が好適である。
Noble metal, that is, gold, is added to these fiber-shaped core materials.
As the method for coating the metal of the silver or platinum group, currently used surface conductive methods such as electroless plating method, wet neutralization method, CVD method and PVD method can be applied. A known electroless plating method, that is, an aqueous dispersion of an activated fibrous core material is added to an aqueous solution or an aqueous dispersion of a noble metal compound containing a complexing agent, and a reducing agent is used to add the precious metal to the surface of the fibrous core material. The manufacturing method of forming a thin film by coating is preferable.

【0009】本発明における貴金属被覆層は貴金属被覆
層が連結していればよいが、好ましくは均一に被覆され
ていることが好ましい。貴金属被覆層の厚さは特に制限
されないが貴金属被覆層が薄すぎると目的とする導電性
が不充分になり、逆に厚すぎると導電性は満足するもの
の経済性の面では不利益となるため、貴金属被覆層は1
nm〜1μmの範囲が好適である。
The noble metal coating layer in the present invention may be formed by connecting the noble metal coating layers, but it is preferable that the noble metal coating layers are uniformly coated. The thickness of the noble metal coating layer is not particularly limited, but if the noble metal coating layer is too thin, the target conductivity will be insufficient, and conversely if it is too thick, the conductivity will be satisfactory but it will be disadvantageous in terms of economy. , The precious metal coating layer is 1
The range of nm to 1 μm is suitable.

【0010】本発明に用いられるエポキシ樹脂とは、平
均して1分子当り2個以上のグリシジル基を有するもの
であればよく、例えばビスフェノールA、ビスフェノー
ルF、ビスフェノールAD、カテコール、レゾルシン等
の多価フェノール又はグリセリンやポリエチレングリコ
ールのような多価アルコールとエピクロールヒドリンと
を反応させて得られるポリグリシジルエーテル、或はP
−オキシ安息香酸、β−オキシナフトエ酸のようなヒド
ロキシカルボン酸のようなヒドロキシカルボン酸とエピ
クロールヒドリンとを反応させて得られるグリシジルエ
ーテルエステル、或はダイマー酸、フタル酸のようなポ
リカルボン酸から得られるポリグリシジルエステル、或
は4,4′−ジアミノジフェニルメタンやm−アミノフ
ェノール等から得られるグリシジルアミン化合物、3,
4−エポキシシクロヘキシルメチル−3,4−エポキシ
シクロヘキシルカルボキシレート、3,4−エポキシ−
6−メチルシクロヘキシルメチル−3,4−エポキシ−
6−メチルシクロヘキサンカルボキシレート等の環式脂
肪族エポキシ化合物、更にはエポキシ化ノボラックやエ
ポキシ化ポリオレフィン等が例示されるが、これらに限
定されるものではない。
The epoxy resin used in the present invention may be one having an average of two or more glycidyl groups per molecule, and examples thereof include polyhydric compounds such as bisphenol A, bisphenol F, bisphenol AD, catechol and resorcin. Polyglycidyl ether obtained by reacting phenol or polyhydric alcohol such as glycerin or polyethylene glycol with epichlorhydrin, or P
-Glycidyl ether ester obtained by reacting hydroxycarboxylic acid such as hydroxycarboxylic acid such as oxybenzoic acid and β-oxynaphthoic acid with epichlorhydrin, or polycarboxylic acid such as dimer acid and phthalic acid Polyglycidyl ester obtained from acid, or glycidyl amine compound obtained from 4,4′-diaminodiphenylmethane, m-aminophenol, or the like, 3,
4-epoxycyclohexylmethyl-3,4-epoxycyclohexylcarboxylate, 3,4-epoxy-
6-Methylcyclohexylmethyl-3,4-epoxy-
Examples thereof include cycloaliphatic epoxy compounds such as 6-methylcyclohexanecarboxylate, and epoxidized novolacs and epoxidized polyolefins, but the invention is not limited thereto.

【0011】本発明に用いられる固体分散型潜在性硬化
剤としては、従来から提案されている潜在性硬化剤を用
いることができ、その代表例としてはジシアンジアミ
ド、アジピン酸ジヒドラジド等のジヒドラジド化合物、
グアナミン類、メラミン類、エポキシ化合物とイミダゾ
ール化合物との付加化合物、エポキシ化合物とジアルキ
ルアミン類との付加化合物、アミンとチオ尿素との付加
化合物、アミンとイソシアネートとの付加化合物等が挙
げられるが、これらに限定されるものではない。
As the solid dispersion type latent curing agent used in the present invention, a latent curing agent proposed hitherto can be used, and representative examples thereof include dihydrazide compounds such as dicyandiamide and adipic acid dihydrazide,
Guanamines, melamines, addition compounds of epoxy compounds and imidazole compounds, addition compounds of epoxy compounds and dialkylamines, addition compounds of amines and thioureas, addition compounds of amines and isocyanates, and the like. It is not limited to.

【0012】また本発明に用いられる固体分散型潜在性
硬化剤は酸無水物等の硬化剤の硬化促進剤としても用い
られる。酸無水物硬化剤としては、例えば無水フタル
酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタ
ル酸、メチルヘキサヒドロ無水フタル酸、無水マレイン
酸、無水ピロメリット酸、無水メチルナジック酸、メチ
ルブテニルテトラヒドロ無水フタル酸、メチルテトラヒ
ドロ無水フタル酸等あげられるが、これらに限定される
ものではない。
The solid dispersion type latent curing agent used in the present invention is also used as a curing accelerator for a curing agent such as an acid anhydride. Examples of the acid anhydride curing agent include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, maleic anhydride, pyromellitic anhydride, methylnadic acid anhydride, methylbutenyltetrahydrophthalic anhydride. Examples thereof include acid and methyltetrahydrophthalic anhydride, but are not limited thereto.

【0013】本発明の導電性一液型エポキシ樹脂組成物
は所定量のエポキシ樹脂、固体分散型潜在性硬化剤を通
常の撹拌機、らい潰機、三本ロール等を用いて均一に混
合又は混練し、次に所定量の貴金属被覆繊維状微粉末と
前記樹脂組成物とを通常の撹拌機、らい潰機、三本ロー
ル等を用いて均一に混練すれば容易に得ることができ
る。
The conductive one-pack type epoxy resin composition of the present invention is prepared by uniformly mixing a predetermined amount of the epoxy resin and the solid dispersion type latent curing agent using a conventional stirrer, crusher, triple roll or the like. It can be easily obtained by kneading and then uniformly kneading a predetermined amount of the noble metal-coated fibrous fine powder and the resin composition by using an ordinary stirrer, mashing machine, three rolls or the like.

【0014】この場合に、固体分散型潜在性硬化剤の使
用量はエポキシ樹脂に対して1〜100重量%、好まし
くは1〜50重量%が望ましい。また酸無水物等の硬化
剤の硬化促進剤としての使用量はエポキシ樹脂に対して
0.1〜20重量%、好ましくは0.1〜10重量%が
望ましい。また貴金属被覆繊維状微粉末の使用量は上記
樹脂組成物に対して20〜90重量%、好ましくは30
〜80重量%が望ましい。貴金属被覆繊維状微粉末の使
用量が20重量%未満であると殆ど実用的な導電性は得
られず、また90重量%を越えると塗布性、接着性等が
著しく低下する。
In this case, the amount of the solid dispersion type latent curing agent used is 1 to 100% by weight, preferably 1 to 50% by weight based on the epoxy resin. The amount of the curing agent such as acid anhydride used as a curing accelerator is 0.1 to 20% by weight, preferably 0.1 to 10% by weight, based on the epoxy resin. The amount of the noble metal-coated fibrous fine powder used is 20 to 90% by weight, preferably 30%, based on the resin composition.
-80% by weight is desirable. When the amount of the noble metal-coated fibrous fine powder used is less than 20% by weight, practical conductivity is hardly obtained, and when it exceeds 90% by weight, coating properties, adhesiveness, etc. are significantly deteriorated.

【0015】また、本発明の方法に使用するシラン系、
チタネート系、ジルコニウム系又はアルミニウム系カッ
プリング剤等のカップリング剤は一液型エポキシ樹脂組
成物と貴金属被覆繊維状微粉末との親和性を向上させた
り、或はガラスやセラミックス等と硬化物との接着性及
び接続信頼性を安定化させることができる。
The silane-based compound used in the method of the present invention,
A coupling agent such as a titanate-based, zirconium-based or aluminum-based coupling agent improves the affinity between the one-pack type epoxy resin composition and the noble metal-coated fibrous fine powder, or a coupling agent such as glass or ceramics and a cured product. The adhesiveness and connection reliability of can be stabilized.

【0016】カップリング剤の使用方法としては、一液
型エポキシ樹脂組成物に直接添加し、撹拌混合して用い
る方法又は貴金属被覆繊維状微粉末をカップリング剤で
処理して用いる方法、例えばミキサー或はボールミル等
を用いて貴金属被覆繊維状微粉末に直接添加して撹拌混
合する乾式処理法又は貴金属被覆繊維状微粉末に相溶性
の良いトルエン、メチルエチルケトン等の溶剤で希釈し
たカップリング剤を添加して撹拌混合し、溶剤を除去す
る湿式処理法等が挙げられる。この場合のカップリング
剤の使用量は一液型エポキシ樹脂組成物又は貴金属被覆
繊維状微粉末に対して0.1〜10重量%が望ましい。
The coupling agent may be used by directly adding it to the one-pack type epoxy resin composition and stirring and mixing it, or by treating the precious metal-coated fibrous fine powder with the coupling agent and using it, for example, a mixer. Alternatively, a dry treatment method of directly adding to the noble metal-coated fibrous fine powder by using a ball mill or the like and stirring and mixing, or adding a coupling agent diluted with a solvent such as toluene or methyl ethyl ketone having good compatibility to the noble metal-coated fibrous fine powder. And agitating and mixing to remove the solvent. In this case, the amount of the coupling agent used is preferably 0.1 to 10% by weight based on the one-pack type epoxy resin composition or the noble metal-coated fibrous fine powder.

【0017】本発明による導電性一液型エポキシ樹脂組
成物は、貯蔵安定性、硬化性等に悪影響を及ぼさない限
り、通常の一液性エポキシ樹脂組成物に用いられる添加
剤、例えば溶剤、着色剤、粘度調整剤、充填剤その他い
ろいろな目的を持つ改質剤等を配合することは何等差し
支えなく、また硬化物の性能、例えば導電性及びエレク
トロマイグレーション等に悪影響を及ぼさない限り、他
の導電性充填剤を配合することは何等差し支えなく、こ
れらの配合もまた本発明の目的に合意しその範囲に包含
されるものである。
The conductive one-pack type epoxy resin composition according to the present invention is an additive such as a solvent or a coloring agent used in a conventional one-pack type epoxy resin composition, as long as it does not adversely affect storage stability, curability and the like. There is no problem in blending agents, viscosity modifiers, fillers and other modifiers having various purposes, and unless other adverse effects are exerted on the performance of the cured product such as conductivity and electromigration. There is no problem in blending the functional filler, and these blends are also within the scope of the object of the present invention.

【0018】[0018]

【実施例】以下に参考例及び実施例を挙げて本発明を詳
しく説明するが、これらの例によって本発明の範囲が制
限されるものではない。例中において部及び%とは特に
説明がない限り重量部及び重量%を意味する。
The present invention will be described in detail below with reference to reference examples and examples, but the scope of the present invention is not limited by these examples. In the examples, parts and% mean parts by weight and% by weight, unless otherwise specified.

【0019】[0019]

【参考例1】エチレンジアミン四酢酸二ナトリウム2
7.9gと28%アンモニア水17mlを溶解した水溶
液700mlに硝酸銀12.4gを溶解した水溶液50
mlを加えて均一に溶解した。この溶液に塩化錫/塩酸
水溶液、塩化パラジウム/塩酸水溶液にて活性化処理し
たチタン酸カリウム繊維(大塚化学製、ティスモN)
2.5gの水分散液100mlを添加し、撹拌混合し
た。次に80%ヒドラジンヒドラート2.5mlの10
0ml水溶液を分散液中に加え、反応温度50℃に保ち
ながら撹拌化で2時間還元反応を行った。冷却後、沈澱
物をろ別、乾燥してチタン酸カリウム繊維の表面に37
nmの銀が被覆された灰色の導電性繊維状微粉末を1
0.0gを得た。得られた導電性繊維状微粉末の表面を
X線マイクロアナライザーを用いて観察したところ、心
材表面に銀が均一に被覆されていることを確認した。
[Reference Example 1] Disodium ethylenediaminetetraacetate 2
An aqueous solution of 12.4 g of silver nitrate dissolved in 700 ml of an aqueous solution of 7.9 g and 17% of 28% ammonia water 50
ml was added and uniformly dissolved. Potassium titanate fibers activated by tin chloride / hydrochloric acid aqueous solution and palladium chloride / hydrochloric acid aqueous solution (Otsuka Chemical, Tismo N)
100 g of an aqueous dispersion of 2.5 g was added and mixed with stirring. Next, 2.5 ml of 80% hydrazine hydrate 10
A 0 ml aqueous solution was added to the dispersion, and the reduction reaction was performed for 2 hours with stirring while maintaining the reaction temperature at 50 ° C. After cooling, the precipitate is filtered off and dried to form 37 on the surface of the potassium titanate fiber.
1 nm of gray conductive fibrous fine powder coated with nm of silver
0.0 g was obtained. When the surface of the obtained conductive fibrous fine powder was observed using an X-ray microanalyzer, it was confirmed that the surface of the core material was uniformly coated with silver.

【0020】[0020]

【参考例2】エチレンジアミン四酢酸二ナトリウム2
2.6gと28%アンモニア水15mlを溶解した水溶
液700mlに硝酸銀10.3gを溶解した水溶液50
mlを加えて均一に溶解した。この溶液に塩化錫/塩酸
水溶液、塩化パラジウム/塩酸水溶液にて活性化処理し
たホウ酸アルミニウム繊維(四国化成工業製、アルボレ
ックスG)3.5gの水分散液100mlを添加し、撹
拌混合した。次に80%ヒドラジンヒドラート2.2m
lの100ml水溶液を分散液中に加え、反応温度40
℃に保ちながら撹拌化で2時間還元反応を行った。冷却
後、沈澱物をろ別、乾燥してホウ酸アルミニウム繊維の
表面に95nmの銀が被覆された灰色の導電性繊維状微
粉末を10.2gを得た。得られた導電性繊維状微粉末
の表面をX線マイクロアナライザーを用いて観察したと
ころ、心材表面に銀が均一に被覆されていることを確認
した。
[Reference Example 2] Disodium ethylenediaminetetraacetic acid 2
Aqueous solution 50 in which 10.3 g of silver nitrate is dissolved in 700 ml of an aqueous solution in which 2.6 g and 15 ml of 28% ammonia water are dissolved.
ml was added and uniformly dissolved. To this solution, 100 ml of an aqueous dispersion of 3.5 g of aluminum borate fibers (Alborex G, manufactured by Shikoku Chemicals) activated by a tin chloride / hydrochloric acid aqueous solution and a palladium chloride / hydrochloric acid aqueous solution was added, and mixed with stirring. Then 80% hydrazine hydrate 2.2m
1 ml of 100 ml aqueous solution was added to the dispersion, and the reaction temperature was 40
The reduction reaction was carried out for 2 hours with stirring while maintaining the temperature at ℃. After cooling, the precipitate was filtered off and dried to obtain 10.2 g of gray conductive fibrous fine powder in which the surface of aluminum borate fiber was coated with 95 nm of silver. When the surface of the obtained conductive fibrous fine powder was observed using an X-ray microanalyzer, it was confirmed that the surface of the core material was uniformly coated with silver.

【0021】[0021]

【参考例3】エチレンジアミン四酢酸二ナトリウム6
9.7gと水酸化ナトリウム11.8gを溶解した水溶
液700mlに硝酸銀12.4gを溶解した水溶液50
mlを加えて均一に溶解した。この溶液に塩化錫/塩酸
水溶液、塩化パラジウム/塩酸水溶液にて活性化処理し
た二酸化チタン繊維(石原産業製、FTL−100)
2.5gの水分散液100mlを添加し、撹拌混合し
た。次にジ亜リン酸ナトリウム15.8gを溶解した水
溶液100mlを分散液中に加え、反応温度80℃に保
ちながら撹拌化で1時間還元反応を行った。冷却後、沈
澱物をろ別、乾燥して二酸化チタン繊維の表面に15n
mの銀が被覆された灰色の導電性繊維状微粉末を9.9
gを得た。得られた導電性繊維状微粉末の表面をX線マ
イクロアナライザーを用いて観察したところ、心材表面
に銀が均一に被覆されていることを確認した。
[Reference Example 3] Disodium ethylenediaminetetraacetic acid 6
An aqueous solution of 12.4 g of silver nitrate dissolved in 700 ml of an aqueous solution of 9.7 g and 11.8 g of sodium hydroxide 50
ml was added and uniformly dissolved. Titanium dioxide fiber activated by tin chloride / hydrochloric acid aqueous solution or palladium chloride / hydrochloric acid aqueous solution (ITL, FTL-100)
100 g of an aqueous dispersion of 2.5 g was added and mixed with stirring. Next, 100 ml of an aqueous solution in which 15.8 g of sodium diphosphite was dissolved was added to the dispersion, and the reduction reaction was carried out for 1 hour with stirring while maintaining the reaction temperature at 80 ° C. After cooling, the precipitate was filtered off and dried to deposit 15n on the surface of the titanium dioxide fiber.
m of silver-coated gray conductive fibrous fine powder for 9.9
g was obtained. When the surface of the obtained conductive fibrous fine powder was observed using an X-ray microanalyzer, it was confirmed that the surface of the core material was uniformly coated with silver.

【0022】[0022]

【参考例4】パラジウム溶液(パラジウム金属5gを王
水70mlに溶解したもの)70mlに塩化アンモニウ
ム12g(パラジウムに対して1.2等量倍)を加えて
だいだい色ゲル状溶液を得た。この溶液にアンモニア水
(25%水溶液)45mlを加えることにより溶液はピ
ンク色ゲル状溶液となり、溶液のPHは約7となった。
この溶液にチタン酸カリウム繊維(大塚化学製、ティス
モN)5gを加え、撹拌しながら水素化ホウ素ナトリウ
ム水溶液(0.75重量%)を100mlを加えたとこ
ろ、ゲル状態が解消して黒色の繊維状微粉末が生成し
た。沈澱物をろ別、乾燥してチタン酸カリウム繊維の表
面に24nmのパラジウムが被覆された導電性繊維状微
粉末を9.9gを得た。得られた導電性繊維状微粉末の
表面をX線マイクロアナライザーを用いて観察したとこ
ろ、心材表面にパラジウムが均一に被覆されていること
を確認した。
[Reference Example 4] To 70 ml of a palladium solution (5 g of palladium metal dissolved in 70 ml of aqua regia) was added 12 g of ammonium chloride (1.2 equivalent times the amount of palladium) to obtain a dark gel solution. By adding 45 ml of ammonia water (25% aqueous solution) to this solution, the solution became a pink gel solution and the pH of the solution became about 7.
To this solution, 5 g of potassium titanate fiber (manufactured by Otsuka Chemical, Tismo N) was added, and 100 ml of an aqueous sodium borohydride solution (0.75% by weight) was added with stirring. A fine powder was produced. The precipitate was filtered off and dried to obtain 9.9 g of conductive fibrous fine powder in which the surface of potassium titanate fiber was coated with 24 nm of palladium. When the surface of the obtained conductive fibrous fine powder was observed using an X-ray microanalyzer, it was confirmed that the core material surface was uniformly coated with palladium.

【0023】[0023]

【実施例1〜3】エピコート807(油化シェルエポキ
シ製、ビスフェノールF型エポキシ樹脂)100部、ジ
シアンジアミド(油化シェルエポキシ製)8部、アミキ
ュアPN−23(味の素製、硬化剤)3部を真空らい潰
機にて10分間混練し、一液型エポキシ樹脂組成物Aを
得た。この樹脂組成物A3.5gと湿式処理法を用いて
2%TTS(味の素製、チタネートカップリング剤)処
理した参考例1〜参考例3の銀被覆繊維状微粉末6.5
gとを乳鉢中で予備混合後、次に三本ロールにて混練
し、導電性一液型エポキシ樹脂組成物1〜3を得た。こ
の導電性一液型エポキシ樹脂組成物1〜3の硬化時間、
保存安定性、導電性を測定した。測定結果を表−1に示
した。
Examples 1 to 3 Epicoat 807 (Oilized shell epoxy, bisphenol F type epoxy resin) 100 parts, dicyandiamide (Oilized shell epoxy) 8 parts, Amicure PN-23 (Ajinomoto, hardener) 3 parts The mixture was kneaded with a vacuum crusher for 10 minutes to obtain a one-pack type epoxy resin composition A. Silver coating fibrous fine powder 6.5 of Reference Example 1 to Reference Example 3 treated with 3.5 g of this resin composition A and 2% TTS (manufactured by Ajinomoto Co., Inc., titanate coupling agent) using a wet treatment method.
g was premixed in a mortar and then kneaded with a three-roll mill to obtain conductive one-pack type epoxy resin compositions 1 to 3. Curing time of the conductive one-pack type epoxy resin compositions 1 to 3,
Storage stability and conductivity were measured. The measurement results are shown in Table-1.

【0024】[0024]

【表1】 [Table 1]

【0025】硬化時間の測定は熱板式ゲル化試験器(日
新化学製)を用い、保存安定性は粘度の経日変化を求め
て測定した。また、導電性はスクリーン印刷により40
μmの塗膜をポリイミドフィルム上に印刷し、ギャーオ
ーブンにて硬化させた後、表面抵抗計(三菱油化製)を
用いて測定した。
The curing time was measured using a hot plate gelation tester (manufactured by Nisshin Chemical Co., Ltd.), and the storage stability was measured by determining the change with time of viscosity. The conductivity is 40 by screen printing.
A μm coating film was printed on a polyimide film, cured in a gear oven, and then measured using a surface resistance meter (manufactured by Mitsubishi Yuka).

【0026】[0026]

【実施例4〜6】エピコート828(油化シェルエポキ
シ製、ビスフェノールA型エポキシ樹脂)100部、H
N−5500(日立化成工業製、酸無水物硬化剤)85
部、アミキュアMY−24(味の素製、硬化剤)3部を
真空らい潰機にて10分間混練し、一液型エポキシ樹脂
組成物Bを得た。この樹脂組成物B40〜60%と参考
例1の銀被覆繊維状微粉末60〜40%とを真空らい潰
機にて3分間混練し、導電性一液型エポキシ樹脂組成物
4〜6を得た。この導電性一液型エポキシ樹脂組成物4
〜6の硬化時間、保存安定性、導電性を測定した。測定
結果を表−1に示した。
Examples 4 to 6 Epicoat 828 (Oilized shell epoxy, bisphenol A type epoxy resin) 100 parts, H
N-5500 (Hitachi Chemical Co., Ltd., acid anhydride curing agent) 85
Parts and 3 parts of Amicure MY-24 (manufactured by Ajinomoto Co., Inc., a curing agent) were kneaded with a vacuum crusher for 10 minutes to obtain a one-pack type epoxy resin composition B. 40-60% of this resin composition B and 60-40% of the silver-coated fibrous fine powder of Reference Example 1 were kneaded with a vacuum crusher for 3 minutes to obtain conductive one-pack type epoxy resin compositions 4-6. It was This conductive one-pack type epoxy resin composition 4
A curing time of ~ 6, storage stability, and conductivity were measured. The measurement results are shown in Table-1.

【0027】[0027]

【実施例7】エピコート807(油化シェルエポキシ
製、ビスフェノールF型エポキシ樹脂)100部、アミ
キュアMY−24(味の素製、硬化剤)20部、KBM
−403(信越シリコーン製、シランカップリング剤)
5.0部を真空らい潰機にて10分間混練し、一液型エ
ポキシ樹脂組成物Cを得た。この樹脂組成物C3.0g
と参考例3の銀被覆繊維状微粉末7.0gとを乳鉢中で
予備混合後、次に三本ロールにて混練し、導電性一液型
エポキシ樹脂組成物7を得た。この導電性一液型エポキ
シ樹脂組成物7の硬化時間、保存安定性、導電性を測定
した。測定結果を表−1に示した。
Example 7 Epicoat 807 (Oilized Shell Epoxy, bisphenol F type epoxy resin) 100 parts, Amicure MY-24 (Ajinomoto, hardener) 20 parts, KBM
-403 (Shin-Etsu Silicone, silane coupling agent)
5.0 parts were kneaded with a vacuum crusher for 10 minutes to obtain a one-pack type epoxy resin composition C. This resin composition C 3.0 g
And 7.0 g of the silver-coated fibrous fine powder of Reference Example 3 were premixed in a mortar and then kneaded with a three-roll mill to obtain a conductive one-pack type epoxy resin composition 7. The curing time, storage stability, and conductivity of this conductive one-pack type epoxy resin composition 7 were measured. The measurement results are shown in Table-1.

【0028】[0028]

【実施例8】実施例1の一液型エポキシ樹脂組成物A
3.5gと湿式処理法を用いて2%TTS(味の素製、
チタネートカップリング剤)処理した参考例4のパラジ
ウム被覆繊維状微粉末6.5gとを乳鉢中で予備混合
後、次に三本ロールにて混練し、導電性一液型エポキシ
樹脂組成物8を得た。この導電性一液型エポキシ樹脂組
成物8の硬化時間、保存安定性、導電性を測定した。測
定結果を表−1に示した。
Example 8 One-pack type epoxy resin composition A of Example 1
2% TTS (made by Ajinomoto,
Titanate coupling agent) treated with 6.5 g of the palladium-coated fibrous fine powder of Reference Example 4 was premixed in a mortar and then kneaded with a three-roll to give a conductive one-pack type epoxy resin composition 8. Obtained. The curing time, storage stability, and conductivity of this conductive one-pack type epoxy resin composition 8 were measured. The measurement results are shown in Table-1.

【0029】[0029]

【比較例1〜2】実施例1の一液型エポキシ樹脂組成物
Aを2.5g又は1.5gと銀粉(福田金属箔粉工業
製、Agc−B)を7.5g又は8.5gとを用いた以
外は実施例1と同様に行い、導電性一液型エポキシ樹脂
組成物1及び2を得た。この導電性一液型エポキシ樹脂
組成物1及び2の硬化時間、保存安定性、導電性を測定
した。測定結果を表−1に示した。
[Comparative Examples 1 and 2] 2.5 g or 1.5 g of the one-pack type epoxy resin composition A of Example 1 and 7.5 g or 8.5 g of silver powder (Agc-B manufactured by Fukuda Metal Foil & Powder Co., Ltd.). In the same manner as in Example 1 except that was used, conductive one-pack type epoxy resin compositions 1 and 2 were obtained. The curing time, storage stability, and conductivity of the conductive one-pack type epoxy resin compositions 1 and 2 were measured. The measurement results are shown in Table-1.

【0030】[0030]

【比較例3】エピコート807(油化シェルエポキシ
製、ビスフェノールF型エポキシ樹脂)35部、参考例
1の銀被覆繊維状微粉末65部とを乳鉢中で予備混合
後、次に三本ロールにて混練し、エポキシ樹脂組成物を
得た。この樹脂組成物にトリエチレンテトラミン(東洋
ソーダ製)3.5部を添加し、乳鉢中で均一に混練して
二液型の導電性エポキシ樹脂組成物3を得た。保存安定
性、導電性の測定結果を表−1に示した。
[Comparative Example 3] 35 parts of Epicoat 807 (produced by oiled shell epoxy, bisphenol F type epoxy resin) and 65 parts of the silver-coated fibrous fine powder of Reference Example 1 were premixed in a mortar, and then three-rolled. And kneaded to obtain an epoxy resin composition. To this resin composition, 3.5 parts of triethylenetetramine (manufactured by Toyo Soda) was added and uniformly kneaded in a mortar to obtain a two-component conductive epoxy resin composition 3. Table 1 shows the results of measurement of storage stability and conductivity.

【0031】[0031]

【比較例4】実施例1の一液型エポキシ樹脂組成物Aを
2.0gと約1μmのパラジウム粉(高純度化学研究所
製)を8.0gとを用いた以外は実施例1と同様に行
い、導電性一液型エポキシ樹脂組成物4を得た。この導
電性一液型エポキシ樹脂組成物4の硬化時間、保存安定
性、導電性を測定した。測定結果を表−1に示した。
Comparative Example 4 The same as Example 1 except that 2.0 g of the one-pack type epoxy resin composition A of Example 1 and 8.0 g of palladium powder of about 1 μm (manufactured by Kojundo Chemical Laboratory Co., Ltd.) were used. Then, a conductive one-pack type epoxy resin composition 4 was obtained. The curing time, storage stability, and conductivity of this conductive one-pack type epoxy resin composition 4 were measured. The measurement results are shown in Table-1.

【0032】[0032]

【実施例9】実施例1、5、7の導電性一液型エポキシ
樹脂組成物、比較例1、2の導電性一液型エポキシ樹脂
組成物、比較例3の二液型導電性エポキシ樹脂組成物を
スクリーン印刷により線幅0.25mm、ピッチ0.4
mmの交差指型電極をポリイミドフィルム上に印刷し、
硬化させた。次に、この印刷面をUV絶縁ペースト(ア
サヒ化学研究所製、UVF10G)で被覆し、硬化させ
てエレクトロマイグレーション試験を行った。エレクト
ロマイグレーション試験は60℃、95%の恒温恒湿雰
囲気下で30Vの電圧を印可し、絶縁抵抗(抵抗値が1
0の6乗オーム以下となった場合)の経日変化を求めて
測定した。測定結果を表−2に示した。
[Example 9] Conductive one-pack type epoxy resin composition of Examples 1, 5 and 7, conductive one-pack type epoxy resin composition of Comparative Examples 1 and 2, two-pack type conductive epoxy resin of Comparative Example 3 The composition was screen-printed to have a line width of 0.25 mm and a pitch of 0.4.
mm interdigitated electrodes are printed on the polyimide film,
Cured. Next, this printed surface was covered with a UV insulating paste (UVF10G, manufactured by Asahi Chemical Research Institute) and cured to carry out an electromigration test. In the electromigration test, a voltage of 30 V was applied in a constant temperature and humidity atmosphere of 60 ° C. and 95%, and insulation resistance (resistance value was 1
It was measured by obtaining the change over time in the case of 0 to the sixth power ohm or less). The measurement results are shown in Table-2.

【0033】[0033]

【表2】 [Table 2]

【0034】表−1及び表−2の実施例の結果より本発
明の導電性一液型エポキシ樹脂組成物は比較例に比べて
長期間の保存安定性と低添加量での導電性に優れ、また
エレクトロマイグレーション性にも優れていることが判
る。
From the results of the examples in Tables 1 and 2, the conductive one-pack type epoxy resin composition of the present invention is superior in storage stability for a long period of time and conductivity at a low addition amount as compared with Comparative Examples. It is also found that the electromigration property is also excellent.

【0035】[0035]

【発明の効果】本発明の導電性一液型エポキシ樹脂組成
物は、常温での貯蔵安定性に優れ、かつ従来の粉末又は
フレーク状の貴金属を配合した一液型エポキシ樹脂組成
物に比べ、貴金属被覆繊維状微粉末の配合量が少なくて
も安定した導電性が得られ、また種々の基板に導電層を
形成したり、各種電子部品及びリード線等の導電性を必
要とする部分に用いるとエレクトロマイグレーション
性、更には密着性に優れた導電性硬化物を与えるもので
ある。従って、一度に導電性樹脂組成物を調整して貯蔵
することができ、二液型のようにその都度煩雑な操作を
必要としない利点がある。
EFFECT OF THE INVENTION The conductive one-pack type epoxy resin composition of the present invention has excellent storage stability at room temperature, and is superior to conventional one-pack type epoxy resin compositions containing powder or flake-shaped noble metal. Stable conductivity can be obtained even with a small amount of noble metal-coated fibrous fine powder, and it is used for forming conductive layers on various substrates and for parts that require conductivity such as various electronic parts and lead wires. And an electroconductive cured product having excellent electromigration property and adhesiveness. Therefore, the conductive resin composition can be prepared and stored at one time, and there is an advantage that a complicated operation is not required each time unlike the two-pack type.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H05K 1/09 D 6921−4E (72)発明者 高橋 三雄 神奈川県川崎市川崎区鈴木町1−1 味の 素株式会社中央研究所内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication location H05K 1/09 D 6921-4E (72) Inventor Mitsuo Takahashi 1-Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 1 Central Research Institute of Ajinomoto Co., Inc.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】(A)貴金属被覆繊維状微粉末、(B)エ
ポキシ樹脂、(C)固体分散型潜在性硬化剤を必須成分
とすることを特徴とする導電性一液型エポキシ樹脂組成
1. A conductive one-pack type epoxy resin composition comprising (A) a noble metal-coated fibrous fine powder, (B) an epoxy resin, and (C) a solid dispersion type latent curing agent as essential components.
【請求項2】貴金属被覆繊維状微粉末の貴金属が銀であ
ることを特徴とする請求項1記載の導電性一液型エポキ
シ樹脂組成物。
2. The conductive one-pack type epoxy resin composition according to claim 1, wherein the noble metal of the noble metal-coated fibrous fine powder is silver.
【請求項3】シラン系、チタネート系、ジルコニウム系
又はアルミニウム系カップリング剤等のカップリング剤
を含むことを特徴とする請求項1及び請求項2記載の導
電性一液型エポキシ樹脂組成物。
3. The conductive one-pack type epoxy resin composition according to claim 1, further comprising a coupling agent such as a silane-based, titanate-based, zirconium-based or aluminum-based coupling agent.
JP31964892A 1992-11-30 1992-11-30 Conductive one-pack epoxy resin composition Pending JPH06157876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31964892A JPH06157876A (en) 1992-11-30 1992-11-30 Conductive one-pack epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31964892A JPH06157876A (en) 1992-11-30 1992-11-30 Conductive one-pack epoxy resin composition

Publications (1)

Publication Number Publication Date
JPH06157876A true JPH06157876A (en) 1994-06-07

Family

ID=18112648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31964892A Pending JPH06157876A (en) 1992-11-30 1992-11-30 Conductive one-pack epoxy resin composition

Country Status (1)

Country Link
JP (1) JPH06157876A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1114852A3 (en) * 2000-01-07 2001-11-07 Matsushita Electric Industrial Co., Ltd. Conductive adhesive and connection structure using the same
EP1275674A4 (en) * 2000-04-21 2003-08-06 Mitsubishi Rayon Co Epoxy resin composition and prepreg made with the epoxy resin composition
WO2006028205A1 (en) * 2004-09-10 2006-03-16 Mitsui Mining & Smelting Co., Ltd. Conductive paste and flexible printed wiring board obtained by using the conductive paste
WO2006090794A1 (en) * 2005-02-23 2006-08-31 Asahi Kasei Chemicals Corporation Latent hardener for epoxy resin and epoxy resin composition
WO2013010492A1 (en) * 2011-07-20 2013-01-24 Henkel (China) Company Limited Conductive adhesive for capacitor and the corresponding capacitors
JP2014510803A (en) * 2011-02-11 2014-05-01 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Conductive adhesive comprising at least one metal precursor
WO2014192839A1 (en) * 2013-05-28 2014-12-04 株式会社ダイセル Curable composition for sealing optical semiconductor
WO2023112667A1 (en) * 2021-12-13 2023-06-22 パナソニックIpマネジメント株式会社 Electronic component

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1114852A3 (en) * 2000-01-07 2001-11-07 Matsushita Electric Industrial Co., Ltd. Conductive adhesive and connection structure using the same
EP1275674A4 (en) * 2000-04-21 2003-08-06 Mitsubishi Rayon Co Epoxy resin composition and prepreg made with the epoxy resin composition
WO2006028205A1 (en) * 2004-09-10 2006-03-16 Mitsui Mining & Smelting Co., Ltd. Conductive paste and flexible printed wiring board obtained by using the conductive paste
JP2006080013A (en) * 2004-09-10 2006-03-23 Mitsui Mining & Smelting Co Ltd Conductive paste and flexible printed wiring board formed by using it
WO2006090794A1 (en) * 2005-02-23 2006-08-31 Asahi Kasei Chemicals Corporation Latent hardener for epoxy resin and epoxy resin composition
JP2014510803A (en) * 2011-02-11 2014-05-01 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Conductive adhesive comprising at least one metal precursor
US10000671B2 (en) 2011-02-11 2018-06-19 Henkel Ag & Co. Kgaa Electrically conductive adhesives comprising at least one metal precursor
WO2013010492A1 (en) * 2011-07-20 2013-01-24 Henkel (China) Company Limited Conductive adhesive for capacitor and the corresponding capacitors
WO2014192839A1 (en) * 2013-05-28 2014-12-04 株式会社ダイセル Curable composition for sealing optical semiconductor
US9685597B2 (en) 2013-05-28 2017-06-20 Daicel Corporation Curable composition for sealing optical semiconductor
WO2023112667A1 (en) * 2021-12-13 2023-06-22 パナソニックIpマネジメント株式会社 Electronic component

Similar Documents

Publication Publication Date Title
TWI712661B (en) Conductive paste and conductive film formed by using it
EP2315215A1 (en) Conductive adhesive and led substrate using the same
EP3125254B1 (en) Conductive paste
WO2006013793A1 (en) Electroconductive paste and substrate using the same for mounting electronic parts
JP2007019006A (en) Conductive paste and electronic component mounting substrate using the same
JP5976382B2 (en) Die attach paste, manufacturing method thereof, and semiconductor device
JPH06157876A (en) Conductive one-pack epoxy resin composition
JPH0547212A (en) Single-fluid type conductive adhesive
KR102498131B1 (en) Silver-coated silicone rubber particles, conductive paste containing the particles, and method for producing a conductive film using the conductive paste
JP2009269976A (en) Conductive resin composition
JP2006120665A (en) Conductive resin paste composition containing silver and carbon nano tube, and semiconductor device using the same
JPH07118217B2 (en) Conductive composition
JP3178309B2 (en) Conductive epoxy resin composition
JP6542077B2 (en) Method of producing conductive paste and conductive paste
JP2007204673A (en) Epoxy resin composition, electroconductive adhesive by using the same and anisotropic electroconductive film
JP2002128866A (en) Conductive paste
TWI631160B (en) Conductive paste and substrate with conductive film
JP2017076591A (en) Metallic paste
JP2005317491A (en) Conductive paste and electronic component mounting substrate using it
WO2016087613A1 (en) Conductive adhesive composition
JPH07138549A (en) Conductive adhesive
JPH06240464A (en) Silver coated copper powder and electric conductive composition using the same
EP4209562A1 (en) Conductive adhesive, electronic circuit using same, and method for producing same
JP2896471B2 (en) Epoxy resin composition
JP2006140206A (en) Conductive resin paste composite comprising silver and carbon nanotube and semiconductor device using the same