JPH06157771A - Production of polymer complex containing fine particle of metallic sulfide dispersed therein - Google Patents

Production of polymer complex containing fine particle of metallic sulfide dispersed therein

Info

Publication number
JPH06157771A
JPH06157771A JP34130392A JP34130392A JPH06157771A JP H06157771 A JPH06157771 A JP H06157771A JP 34130392 A JP34130392 A JP 34130392A JP 34130392 A JP34130392 A JP 34130392A JP H06157771 A JPH06157771 A JP H06157771A
Authority
JP
Japan
Prior art keywords
metal
polymer
sulfide
layer
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34130392A
Other languages
Japanese (ja)
Other versions
JP2623421B2 (en
Inventor
Susumu Murakami
晋 村上
Naoko Kosaka
直子 小阪
Kazuo Goto
和生 後藤
Toru Noguchi
徹 野口
Yoshio Yamaguchi
良雄 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP34130392A priority Critical patent/JP2623421B2/en
Publication of JPH06157771A publication Critical patent/JPH06157771A/en
Application granted granted Critical
Publication of JP2623421B2 publication Critical patent/JP2623421B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject complex which is a material, excellent in infrared ray absorptivity and having a metallic sulfide having an ultrafine particle diameter by subjecting a thermodynamically unstable polymeric layer composed of a crystalline polymer to a specific treatment. CONSTITUTION:A thermodynamically unstable polymeric layer is prepared by a vacuum evaporation method for initially thermally melting, e.g. a crystalline polymer (e.g. nylon 6, high-density polyethylene or polyethylene terephthalate) in a vacuum, evaporating the obtained melt and simultaneously solidifying the resultant vapor on a substrate, etc. A metallic layer is then brought into contact with the surface of the polymer according to the vacuum evaporation method, etc., and subsequently heated to a temperature below the melting temperature of the crystalline polymer to stabilize the polymeric layer and finely divide the metal in the metallic layer into fine particles. The resultant fine particles are then dispersed in the polymeric layer, which is then heat- treated in sulfur vapor or an atmosphere of H2S preferably at <=200 deg.C to sulfurize the fine particulate metal. Thereby, the objective complex containing the fine particles of the metallic sulfide dispersed therein is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属硫化物の微粒子を分
散させた高分子複合物の製造方法に係り、詳しくは赤外
線吸収能力を有する金属硫化物の微粒子を分散させた高
分子複合物を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polymer composite having fine particles of a metal sulfide dispersed therein, and more specifically to a polymer composite having fine particles of a metal sulfide having an infrared absorbing ability dispersed therein. It relates to a method of manufacturing.

【0002】[0002]

【従来の技術】今日、赤外線を吸収し、これを遮断する
機能を有する材料が開発され、車庫等の外壁に装着し、
車庫内の温度の上昇を防止している。この赤外線吸収材
料は硫化銅、硫化金、硫化銀、硫化亜鉛、硫化ニッケル
等の金属硫化物の粉体を高分子中に分散させたものであ
る。この製造方法は、一般に高分子のペレットと金属硫
化物の粉体とをタンブラーで混合し、これを押出し機に
よって成形している。
2. Description of the Related Art Today, a material having a function of absorbing infrared rays and blocking infrared rays has been developed and mounted on an outer wall of a garage,
Prevents the temperature inside the garage from rising. This infrared absorbing material is obtained by dispersing powder of a metal sulfide such as copper sulfide, gold sulfide, silver sulfide, zinc sulfide and nickel sulfide in a polymer. In this manufacturing method, generally, polymer pellets and metal sulfide powder are mixed in a tumbler, and the mixture is molded by an extruder.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来の赤外
線吸収材料に使用されていた金属硫化物は、その粒径が
0.1〜1.0μmであるため、多量の金属硫化物を添
加しないと赤外線吸収能力に欠け、しかも金属硫化物は
マトリックス中で均一に分散せず凝集するために赤外線
吸収も不均一になる欠点があった。本発明者らは、この
ような問題点に着目し、赤外線吸収能力に優れる材料の
素材であって、粒子径の極めて小さい金属硫化物を有す
る高分子複合物を製造する方法を提供することを目的と
する。
However, since the metal sulfide used in the conventional infrared absorbing material has a particle size of 0.1 to 1.0 μm, a large amount of metal sulfide must be added. There is a defect that the infrared absorption capacity is insufficient and the infrared absorption is not uniform because the metal sulfide does not disperse uniformly in the matrix but aggregates. The present inventors have paid attention to such problems, and provide a method for producing a polymer composite having a metal sulfide having a very small particle diameter, which is a material of a material having excellent infrared absorption ability. To aim.

【0004】[0004]

【課題を解決するための手段】即ち、本発明の金属硫化
物の微粒子を分散させた高分子複合物の製造方法におい
ては、結晶性高分子から熱力学的に不安定な高分子層を
作製し、この高分子の表面に金属層を密着した後、該融
解温度以下で加熱して高分子層を安定化させることで金
属層の金属を微粒子化して高分子層内に分散させた後、
かかる高分子層を硫黄蒸気中あるいはH2 S雰囲気下で
熱処理して、前記微粒子化した金属を硫化してなる金属
硫化物を有する高分子複合物を製造方法にある。
That is, in the method for producing a polymer composite in which fine particles of a metal sulfide are dispersed according to the present invention, a thermodynamically unstable polymer layer is produced from a crystalline polymer. Then, after adhering a metal layer to the surface of the polymer, the metal of the metal layer is finely divided and dispersed in the polymer layer by heating the polymer layer at a temperature not higher than the melting temperature to stabilize the polymer layer,
A method for producing a polymer composite having a metal sulfide obtained by sulfurizing the finely divided metal by heat-treating the polymer layer in sulfur vapor or in an H 2 S atmosphere.

【0005】上記高分子複合物を得る場合において、第
1に高分子層を熱力学的に不安定な状態に成形すること
である。具体的には、(1)結晶性高分子を真空中で加
熱して融解し蒸発させて基板の上に高分子層を固化する
真空蒸着方法、(2)結晶性高分子を融解温度以上で融
解し、この状態のまま直ちに液体窒素等に投入して急冷
し、基板の上に高分子層を付着させる融解急冷固化方
法、(3)高分子を溶剤に溶かし(濃度60%以下、好
ましくは20%以下)、基板上に塗布した後、密閉容器
の中で一定温度に保ちつつ、高速(240l/min以
上)で脱気して溶剤を除去する高速脱溶剤法、また
(4)高分子を溶剤に溶かし、基板上に塗布し凍結した
後、低温(20°C以下、好ましくは0°C以下)で、
かつ高速で脱気して溶剤を除去する凍結乾燥法がある。
この高速脱溶剤法や凍結乾燥法では、溶剤が減るととも
に高分子が安定構造にもどろうとするが、脱溶媒速度が
速いと、安定構造にもどることができず、熱力学的に不
安定な状態に成型することができる。
In obtaining the above polymer composite, the first is to form the polymer layer into a thermodynamically unstable state. Specifically, (1) a vacuum vapor deposition method in which a crystalline polymer is heated in a vacuum to melt and evaporate to solidify a polymer layer on a substrate, (2) the crystalline polymer at a melting temperature or higher. Melt and immediately put in liquid nitrogen or the like in this state to rapidly cool and then melt and quench solidify the polymer layer on the substrate, (3) dissolve the polymer in a solvent (concentration 60% or less, preferably (20% or less), a high-speed desolvation method of removing the solvent by degassing at a high speed (240 l / min or more) while maintaining a constant temperature in a closed container after coating on a substrate, and (4) polymer Is dissolved in a solvent, coated on a substrate and frozen, and then at low temperature (20 ° C. or lower, preferably 0 ° C. or lower),
There is also a freeze-drying method that removes the solvent by degassing at high speed.
In this high-speed desolvation method and freeze-drying method, the amount of solvent decreases and the polymer tries to return to a stable structure, but if the desolvation rate is fast, it cannot return to a stable structure, and the state is thermodynamically unstable. It can be molded into

【0006】このうち真空蒸着方法の場合には、通常の
真空蒸着装置を使用して10-4〜10-6Torrの真空
度、蒸着速度0.1〜100μm/分、好ましくは0.
5〜5μm/分で、ガラス等の基板の上に高分子層を得
ることができる。融解急冷固化方法では、結晶性高分子
を融解し、該高分子固有の臨界冷却速度以上の速度で冷
却し、高分子層を得る。得られた高分子層は熱力学的に
不安定な状態におかれ、時間の経過につれて平衡状態へ
移行する。
Among them, in the case of the vacuum deposition method, a vacuum degree of 10 −4 to 10 −6 Torr and a deposition rate of 0.1 to 100 μm / min, preferably 0.
At 5 to 5 μm / min, a polymer layer can be obtained on a substrate such as glass. In the melt-quenching and solidification method, the crystalline polymer is melted and cooled at a rate equal to or higher than the critical cooling rate specific to the polymer to obtain a polymer layer. The obtained polymer layer is placed in a thermodynamically unstable state and shifts to an equilibrium state with the passage of time.

【0007】本発明で使用する結晶性高分子は、例えば
ナイロン6、ナイロン66、ナイロン11、ナイロン1
2、ナイロン69、高密度ポリエチレン(HDPE)、
低密度ポリエチレン(LDPE)、ポリエチレンテレフ
タレート(PET)、ポリビニルアルコール、ポリフェ
ニレンスルフィド(PPS)等である。
The crystalline polymer used in the present invention is, for example, nylon 6, nylon 66, nylon 11, nylon 1
2, nylon 69, high density polyethylene (HDPE),
Low density polyethylene (LDPE), polyethylene terephthalate (PET), polyvinyl alcohol, polyphenylene sulfide (PPS) and the like.

【0008】続いて、前記熱力学的に不安定にある高分
子層は、その表面に金属層を密着させる工程へと移され
る。この工程では真空蒸着装置によって金属層を高分子
層に蒸着させるか、もしくは金属板を直接高分子層に密
着させる等の方法で金属板を高分子層に積層させる。上
記金属の材料としては金、銀、銅、鉄、ニッケル、コバ
ルト、スズ、亜鉛、イットリウム、インジウム、カドミ
ウム、クロム、コバルト、チタン、鉛、パラジム、マン
ガン等であり、特に限定されない。
Subsequently, the thermodynamically unstable polymer layer is transferred to the step of bringing the metal layer into close contact with the surface of the polymer layer. In this step, the metal layer is deposited on the polymer layer by a vacuum deposition apparatus, or the metal plate is laminated on the polymer layer by a method of directly adhering the metal plate to the polymer layer. The material of the above metal is gold, silver, copper, iron, nickel, cobalt, tin, zinc, yttrium, indium, cadmium, chromium, cobalt, titanium, lead, paradium, manganese, etc., and is not particularly limited.

【0009】このようにして得られた金属層と高分子層
とが密着した複合物を、加熱して高分子層を安定状態へ
移行させる。この工程では前記金属層付の高分子層を恒
温槽中で結晶性高分子の融解温度以下において加熱す
る。その結果、金属層の金属は、粒径1,000nm以
下、好ましくは300nm以下、より好ましくは100
nm以下の金属もしくは金属酸化物の微粒子となって高
分子層内へ拡散浸透し、この状態は高分子層が完全に緩
和するまで続き、高分子層に付着している金属層はその
厚さも減少して最終的に無くなる。従って、金属層が全
て金属もしくは金属酸化物の微粒子となって高分子層に
分散するためには、その厚みを調節する必要がある。前
記微粒子は前記金属と、Cu2 O、Fe3 4 、Zn
O、Y2 3 等の金属酸化物を含んでいる。
The thus obtained composite in which the metal layer and the polymer layer are adhered to each other is heated to shift the polymer layer to a stable state. In this step, the polymer layer with the metal layer is heated in a thermostat at a temperature not higher than the melting temperature of the crystalline polymer. As a result, the metal of the metal layer has a particle diameter of 1,000 nm or less, preferably 300 nm or less, more preferably 100 nm or less.
Fine particles of metal or metal oxide having a size of nm or less diffuse and permeate into the polymer layer, and this state continues until the polymer layer is completely relaxed, and the metal layer attached to the polymer layer also has a thickness. It will decrease and eventually disappear. Therefore, the thickness of the metal layer needs to be adjusted so that the metal layer becomes fine particles of metal or metal oxide and is dispersed in the polymer layer. The fine particles are Cu 2 O, Fe 3 O 4 , Zn
It contains metal oxides such as O and Y 2 O 3 .

【0010】尚、この工程で高分子層を加熱すると、高
分子層が金属もしくは金属酸化物の微粒子との相互作用
で固有の着色を示し、金属もしくは金属酸化物の微粒子
が高分子層内へ浸透していることがわかる。また、この
色は金属もしくは金属酸化物の種類、金属もしくは金属
酸化物の微粒子径、高分子の種類により変化しうる。こ
のようにして得られた高分子複合物は、微粒子が独立し
た状態で分離分散している。
When the polymer layer is heated in this step, the polymer layer exhibits unique coloring due to the interaction with the fine particles of metal or metal oxide, and the fine particles of metal or metal oxide enter the polymer layer. You can see that it has penetrated. Further, this color can change depending on the type of metal or metal oxide, the particle size of metal or metal oxide, and the type of polymer. In the polymer composite thus obtained, the fine particles are separated and dispersed in an independent state.

【0011】かかる高分子層を、恒温槽に設置し、減圧
下、硫黄蒸気中あるいはH2 S雰囲気下で200°C以
下で熱処理して、前記微粒子化した金属を硫化してなる
金属硫化物を有する高分子複合物を得る。200°Cを
越えると、高分子層が劣化し始める。この金属硫化物
は、硫化金、硫化銀、硫化銅、硫化鉄、硫化ニッケル、
硫化コバルト、硫化スズ、硫化亜鉛、硫化イットリウ
ム、硫化インジウム、硫化カドミウム、硫化クロム、硫
化コバルト、硫化チタン、硫化鉛、硫化パラジム、硫化
マンガン等である。このようにして得られた高分子複合
物は、赤外線吸収能力に優れる材料の素材となる。
The polymer layer is placed in a constant temperature bath and heat-treated at a temperature of 200 ° C. or lower under reduced pressure in a sulfur vapor or H 2 S atmosphere to sulfide the finely divided metal. A polymer composite having is obtained. When the temperature exceeds 200 ° C, the polymer layer starts to deteriorate. This metal sulfide includes gold sulfide, silver sulfide, copper sulfide, iron sulfide, nickel sulfide,
Cobalt sulfide, tin sulfide, zinc sulfide, yttrium sulfide, indium sulfide, cadmium sulfide, chromium sulfide, cobalt sulfide, titanium sulfide, lead sulfide, paradium sulfide, manganese sulfide and the like. The polymer composite thus obtained becomes a raw material for a material having excellent infrared absorbing ability.

【0012】[0012]

【実施例】次に、本発明を具体的な実施例により更に詳
細に説明する。 実施例 真空蒸着装置により、まずナイロン11をタングステン
ボード中に入れ、10-6Torrに減圧する。次いで、
電極間に電圧を印加してタングステンボードを真空中で
加熱して、ポリマーを融解させ、取り付け台の上部に設
置した下地(ガラス板)上に、10-4〜10-6Torr
の真空度で約1μm/分の速度で厚さ約5μmの蒸着膜
である高分子層を得た。この高分子層の分子量は前記ペ
レットのそれの1/2〜1/10程度になっている。更
に、銅、ニッケルあるいは錫をタングステン線に巻き付
け加熱融解して10-4〜10-6Torrの真空下で蒸着
を行い、高分子層の上に各金属の蒸着膜を付着し、この
積層膜が付着したガラス板を真空蒸着装置から取り出
し、120℃に保持した恒温槽中に10分間放置して複
合物を得た。
Next, the present invention will be described in more detail with reference to specific examples. Example First, nylon 11 is put into a tungsten board by a vacuum vapor deposition apparatus, and the pressure is reduced to 10 −6 Torr. Then
A voltage is applied between the electrodes to heat the tungsten board in a vacuum to melt the polymer, and 10 -4 to 10 -6 Torr is placed on the base (glass plate) installed on the top of the mounting base.
A polymer layer as a vapor-deposited film having a thickness of about 5 μm was obtained at a rate of about 1 μm / min at a vacuum degree of. The molecular weight of this polymer layer is about 1/2 to 1/10 of that of the pellet. Further, copper, nickel or tin is wrapped around a tungsten wire, heated and melted, and vapor deposition is performed under a vacuum of 10 −4 to 10 −6 Torr, and a vapor deposition film of each metal is attached onto the polymer layer. The glass plate to which was attached was taken out from the vacuum vapor deposition apparatus and left in a constant temperature bath kept at 120 ° C. for 10 minutes to obtain a composite.

【0013】このように得られた各試料を入射角0.5
°の薄膜X線回拆装置(理学電気社製RINT120
0)を用いて、同試料のX線回拆パターンを測定し、微
粒子の粒径をX線回拆ピークの半値幅よりシェラーの式
から算出し、また含有率を測定した。続いて、得られた
各高分子複合物を、減圧容器中に設置し、この中に硫黄
を高分子複合物と接しないように入れて10-1Torr
の減圧下で100°Cで60分の熱処理条件で硫化処理
した。得られた各高分子複合物中の微粒子の粒径、含有
量、組成を調べた結果を表1に示す。
Each sample thus obtained was measured with an incident angle of 0.5.
Thin film X-ray scanning device (RINT120 manufactured by Rigaku Denki Co., Ltd.)
0) was used to measure the X-ray diffraction pattern of the same sample, the particle size of the fine particles was calculated from the half-width of the X-ray diffraction peak from the Scherrer's formula, and the content was measured. Subsequently, each of the obtained polymer composites was placed in a decompression container, and sulfur was put therein so as not to come into contact with the polymer composite, and the mixture was placed at 10 -1 Torr.
Under a reduced pressure of 100 ° C. under a heat treatment condition of 60 minutes for sulfidation. Table 1 shows the results of examining the particle size, content, and composition of fine particles in each of the obtained polymer composites.

【0014】[0014]

【表1】 [Table 1]

【0015】この結果、各高分子複合物中の微粒子は金
属硫化物になっていた。
As a result, the fine particles in each polymer composite were metal sulfides.

【0016】[0016]

【発明の効果】以上のように本発明では、、赤外線吸収
能力に優れる材料の素材となる粒子径の極めて小さい金
属硫化物を有する高分子複合物を得ることができる。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, it is possible to obtain a polymer composite having a metal sulfide having an extremely small particle size, which is a raw material of a material having excellent infrared absorption ability.

フロントページの続き (72)発明者 野口 徹 神戸市長田区浜添通4丁目1番21号 三ツ 星ベルト株式会社内 (72)発明者 山口 良雄 神戸市長田区浜添通4丁目1番21号 三ツ 星ベルト株式会社内Front Page Continuation (72) Inventor Toru Noguchi 4-1-2-1, Hamazoe-dori, Nagata-ku, Kobe Mitsuboshi Belting Co., Ltd. (72) Yoshio Yamaguchi 4-1-21, Hamazoe-dori, Nagata-ku, Kobe Mitsuboshi Belt Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 結晶性高分子から熱力学的に不安定な高
分子層を作製し、この高分子の表面に金属層を密着した
後、該融解温度以下で加熱して高分子層を安定化させる
ことで金属層の金属を微粒子化して高分子層内に分散さ
せた後、かかる高分子層を硫黄蒸気中あるいはH2 S雰
囲気下で熱処理して、前記微粒子化した金属を硫化して
なる金属硫化物を有することを特徴とする金属硫化物の
微粒子を分散させた高分子複合物の製造方法。
1. A thermodynamically unstable polymer layer is prepared from a crystalline polymer, a metal layer is adhered to the surface of the polymer, and the polymer layer is stabilized by heating below the melting temperature. The metal of the metal layer is made into fine particles by dispersing and is dispersed in the polymer layer, and then the polymer layer is heat-treated in sulfur vapor or in an H 2 S atmosphere to sulfurize the finely divided metal. A method for producing a polymer composite in which fine particles of a metal sulfide are dispersed.
JP34130392A 1992-11-27 1992-11-27 Method for producing polymer composite in which fine particles of metal sulfide are dispersed Expired - Fee Related JP2623421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34130392A JP2623421B2 (en) 1992-11-27 1992-11-27 Method for producing polymer composite in which fine particles of metal sulfide are dispersed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34130392A JP2623421B2 (en) 1992-11-27 1992-11-27 Method for producing polymer composite in which fine particles of metal sulfide are dispersed

Publications (2)

Publication Number Publication Date
JPH06157771A true JPH06157771A (en) 1994-06-07
JP2623421B2 JP2623421B2 (en) 1997-06-25

Family

ID=18345012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34130392A Expired - Fee Related JP2623421B2 (en) 1992-11-27 1992-11-27 Method for producing polymer composite in which fine particles of metal sulfide are dispersed

Country Status (1)

Country Link
JP (1) JP2623421B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6592945B2 (en) 2000-03-03 2003-07-15 Dow Corning Asia, Ltd. Nanoparticle dispersed structure and laminate thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6592945B2 (en) 2000-03-03 2003-07-15 Dow Corning Asia, Ltd. Nanoparticle dispersed structure and laminate thereof

Also Published As

Publication number Publication date
JP2623421B2 (en) 1997-06-25

Similar Documents

Publication Publication Date Title
EP0598472B1 (en) Ultra-fine-particles-dispersed glassy material and method for making the same
US5966580A (en) Process for making a thin film using a metal paste
US5015618A (en) Laser zone melted Bi--Sr--Ca--Cu--O thick films
EP0059096B1 (en) An information recording material
EP0376536A2 (en) Thin oriented polymer films containing metal-organic compounds, and methods of making the same
Masui et al. Preparation and characterization of cerium oxide ultrafine particles dispersed in polymer thin films
JP2623421B2 (en) Method for producing polymer composite in which fine particles of metal sulfide are dispersed
Sayo et al. A novel method of preparing nano-sized gold and palladium particles dispersed in composites that uses the thermal relaxation technique
JP2535303B2 (en) Ultra fine particle dispersed glass and its manufacturing method
JP2798335B2 (en) Method for producing paste for optical filter
JPH05255709A (en) Joining method for material to be joined selected from metals or ceramics and joining agent used therein
JP2657748B2 (en) Production method of colored glass
JP2554599B2 (en) Method for producing polymer composite having high concentration of fine particles dispersed therein
JP2611888B2 (en) Method for producing polymer composite in which fine particles are dispersed
JP2678336B2 (en) Method for producing ultrafine particle-dispersed glassy material
JP2511767B2 (en) Coloring agent containing ultrafine particles and method for producing the same
Du et al. The preparation and properties of CdS colloid Langmuir-Blodgett film
Tanahashi et al. Temperature dependence of photoinduced Au particle formation in polyvinyl alcohol films
JP2521638B2 (en) Method for producing polymer composite in which fine particles are dispersed
JP2563066B2 (en) Ultra fine particle dispersed glass and its manufacturing method
JPH05112658A (en) Production of composite thin film of polymer
Wang et al. Melting behavior and superheating capacity of REBa2Cu3Oy films with nano‐layer buffered structures
JP2973390B2 (en) Method for producing metal in which fine particles of metal or metal oxide are dispersed
JPH09302285A (en) Production of composition for forming polymer film
KR101846054B1 (en) Method of forming hybrid surface layer on an organic substrate and hybrid structure

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees