JPH06151278A - Focal point detecting method and focal point aligning method - Google Patents

Focal point detecting method and focal point aligning method

Info

Publication number
JPH06151278A
JPH06151278A JP4294794A JP29479492A JPH06151278A JP H06151278 A JPH06151278 A JP H06151278A JP 4294794 A JP4294794 A JP 4294794A JP 29479492 A JP29479492 A JP 29479492A JP H06151278 A JPH06151278 A JP H06151278A
Authority
JP
Japan
Prior art keywords
focus position
detection
reticle
wafer
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4294794A
Other languages
Japanese (ja)
Inventor
Yoshihiko Aiba
良彦 相場
Akira Inagaki
晃 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4294794A priority Critical patent/JPH06151278A/en
Publication of JPH06151278A publication Critical patent/JPH06151278A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7026Focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Projection-Type Copiers In General (AREA)
  • Variable Magnification In Projection-Type Copying Machines (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To enable a focal point aligning operation of high accuracy to be carried out by a method wherein a detection unit is mounted on a part other than a wafer stage, a detection pattern on a reticle is illuminated, and the variation of a focal point in position is detected basing on the detection pattern projected onto the detection unit. CONSTITUTION:A detection unit 8 which detects a focal point is mounted on a reducing lens 3. A detection mark 11 which detects a focal point is provided onto a spot on a reticle 2 other than a circuit pattern 10. When the circuit pattern 10 on a reticle 2 is irradiated with exposure light emitted from an exposure light source 1, the detection mark 11 provided onto the reticle 2 is also irradiated with exposure light at the same time, and the detection mark 11 is detected by the detection unit 8 through the intermediary of the reducing lens 3, whereby the variation of a focal point is detected. By this setup, a focal point can be detected independent of the position of a movable body 9 which moves attracting a wafer 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、投影露光装置における
焦点位置検出と焦点合わせ方法及びその装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a focus position detecting and focusing method and apparatus for a projection exposure apparatus.

【0002】[0002]

【従来の技術】投影露光装置の焦点位置の制御は、合焦
点位置を予め求め、求められた合焦点位置になるようエ
アマイクロメータを用いたギャップ検出等を用い、ウェ
ハの高さ方向の位置を合わせていた。この合焦点位置を
求める方式として特開昭58−7136に示すようなシ
ステムが用いられていた。このシステムは、図11に示
すように、投影露光装置のレチクル2上に検出マーク1
1を設け、ウェハステージ5上に検出ユニット8を設け
ている。その検出ユニット8は、受光板13と光量検出
器14より構成されている。受光板13には、レチクル
2に設けた検出マーク11と同形状の検出マークを設け
ておく。この受光板13の検出マークの下には光量検出
器14を設けておく。
2. Description of the Related Art For controlling the focus position of a projection exposure apparatus, the focus position is obtained in advance, and the position in the height direction of the wafer is measured by gap detection using an air micrometer so that the obtained focus position is reached. Was matched. A system as disclosed in Japanese Patent Laid-Open No. 58-7136 has been used as a method for obtaining the in-focus position. As shown in FIG. 11, this system includes a detection mark 1 on a reticle 2 of a projection exposure apparatus.
1 is provided, and the detection unit 8 is provided on the wafer stage 5. The detection unit 8 includes a light receiving plate 13 and a light amount detector 14. The light receiving plate 13 is provided with a detection mark having the same shape as the detection mark 11 provided on the reticle 2. A light amount detector 14 is provided below the detection mark of the light receiving plate 13.

【0003】このような構成において、図11に示すよ
うに検出ユニット8を投影レンズ3の下(レチクル2上
の検出マーク11が受光板13の検出マーク上に投影さ
れる位置)に移動させ、レチクル2上の検出マーク11
に露光光を照射して投影レンズ3を介して検出ユニット
8上に投影させ、ウェハステージ5を受光板13表面の
高さ方向の位置を計測しながら微動させ、光量検出器1
4で光量を検出し、メイン制御系7に取り込む。その結
果は、図5に示すように受光板Z軸方向位置に対して山
型の光量変化となる。この光量が最大のときの位置が、
受光板13表面の合焦点位置である。ウェハ露光時には
ウェハが前記合焦点位置になるよう制御する。
In such a structure, as shown in FIG. 11, the detection unit 8 is moved to below the projection lens 3 (the position where the detection mark 11 on the reticle 2 is projected onto the detection mark on the light receiving plate 13). Detection mark 11 on reticle 2
To the detection unit 8 through the projection lens 3 and finely move the wafer stage 5 while measuring the position of the surface of the light receiving plate 13 in the height direction.
The amount of light is detected at 4 and is taken into the main control system 7. As a result, as shown in FIG. 5, a mountain-shaped light amount change with respect to the Z-axis direction position of the light receiving plate. The position when this light intensity is maximum is
This is the focus position on the surface of the light receiving plate 13. At the time of wafer exposure, the wafer is controlled so as to be in the in-focus position.

【0004】[0004]

【発明が解決しようとする課題】投影露光装置におい
て、露光を連続すると露光光により投影レンズが温まり
焦点位置が変動する。また、投影レンズ周辺での温度、
湿度、気圧などの環境の変化においても投影レンズの焦
点位置は変動する。従来技術では、検出ユニットがウェ
ハステージ上に設けられていたため、露光時の焦点位置
の変動を検出することはできなかった。また、1チップ
毎または数チップ毎の露光後の焦点位置検出を行うため
には、ウェハステージを検出ユニットが投影レンズの下
にくるよう移動しなければならず、スループットの低下
は免れなかった。
In a projection exposure apparatus, when exposure is continued, the projection lens warms up due to the exposure light and the focal position fluctuates. Also, the temperature around the projection lens,
The focus position of the projection lens changes even when the environment such as humidity and atmospheric pressure changes. In the prior art, since the detection unit was provided on the wafer stage, it was not possible to detect the variation in the focus position during exposure. In addition, in order to detect the focal position after exposure for each chip or every several chips, the wafer stage must be moved so that the detection unit is below the projection lens, and the decrease in throughput cannot be avoided.

【0005】本発明の目的は、露光中の焦点位置変動の
検出を可能とし、この焦点位置変動のデータを用いて、
従来技術等を用い予め求められている焦点位置を補正す
ることにより高精度な焦点位置合わせを行う方法及びそ
の装置を提供するものである。
An object of the present invention is to make it possible to detect a change in the focal position during exposure, and by using the data of the change in the focal position,
(EN) A method and an apparatus for performing highly accurate focus position adjustment by correcting a focus position which is obtained in advance by using a conventional technique or the like.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、検出ユニットをウェハステージ以外の場所例えば投
影レンズにマウントし、レチクル上の検出用パターンを
露光光で照明し投影レンズを介して検出ユニット上に投
影された検出パターンより焦点位置の変動を検出する。
従来技術等で求めた焦点位置データをこの焦点位置の変
動のデータで補正することにより、露光中での焦点位置
合わせを可能とした。
In order to achieve the above object, a detection unit is mounted on a place other than a wafer stage, for example, a projection lens, and a detection pattern on a reticle is illuminated with exposure light and detected through the projection lens. The fluctuation of the focus position is detected from the detection pattern projected on the unit.
By correcting the focus position data obtained by the conventional technique with this focus position variation data, the focus position during exposure can be adjusted.

【0007】[0007]

【作用】検出ユニットをウェハステージ以外の場所例え
ば投影レンズにマウントし、レチクル上の検出用パター
ンを露光光で照明し投影レンズを介して検出ユニット上
に投影された検出パターンより焦点位置の変動を検出す
ることにより、露光中での焦点位置変動を検出し、この
焦点位置変動データにより焦点位置を補正することによ
り、高精度な焦点位置合わせが可能となった。
The detection unit is mounted on a position other than the wafer stage, for example, on a projection lens, and the detection pattern on the reticle is illuminated with exposure light to change the focus position from the detection pattern projected on the detection unit via the projection lens. By detecting the focus position fluctuation during the exposure by detecting it, and correcting the focus position by this focus position fluctuation data, it becomes possible to perform highly accurate focus position adjustment.

【0008】[0008]

【実施例】以下、本発明の実施例を用いて説明する。EXAMPLES Examples of the present invention will be described below.

【0009】実施例1 図1は、本発明を縮小投影露光装置に適用した一実施例
である。
Embodiment 1 FIG. 1 is an embodiment in which the present invention is applied to a reduction projection exposure apparatus.

【0010】縮小投影露光装置は、露光光源1、レチク
ル2、レチクル2上のパターンを縮小転写するための縮
小レンズ3、ウェハ4を吸着し移動するためのウェハス
テージ5、ウェハ4のZ方向の位置を検出する測定機
6、装置全体の制御を行うメイン制御系7から主に構成
されている。
The reduction projection exposure apparatus includes an exposure light source 1, a reticle 2, a reduction lens 3 for reducing and transferring a pattern on the reticle 2, a wafer stage 5 for adsorbing and moving a wafer 4, and a Z direction of the wafer 4. It is mainly composed of a measuring machine 6 for detecting a position and a main control system 7 for controlling the entire apparatus.

【0011】ここで、露光中の焦点位置変動を測定する
ためには、ウェハステージ5のウェハ4を吸着し移動す
る部分9の位置に関係なく焦点位置を検出するために、
縮小レンズ3に焦点位置を検出する検出ユニット8をマ
ウントする。レチクル2上には回路パターン部10以外
の場所に焦点位置を検出するためのレチクル上検出マー
ク11を設け、露光中、すなわち露光光源1から露光光
をレチクル2上の回路パターン10を照射していると
き、同時にレチクル2上のレチクル検出マーク11に露
光光を照射し、レチクル上検出マーク11を縮小レンズ
3を介して検出ユニット8で検出することにより焦点位
置変動を検出する。図2に検出ユニット8を示す。検出
ユニット8は、光路を曲げるミラー12、X(またはY
またはXY)とZ方向に駆動する。受光板13、光量検
出器14から構成されている。受光板13と光量検出器
14は1体型としておく。受光板13には受光板上検出
マーク15の様な矩形マークを設けておく。また、図3
にレチクル上検出マーク11を示す。この様に受光板上
検出マーク15とレチクル上検出マーク11を同様な形
にし、レチクル上検出マーク11に露光光を照射し、受
光板13に投影させる。ここで、レチクル上検出マーク
11と受光板上検出マーク15を図6及び図7に示す様
な矩形マーク群にし、情報量を増やし精度向上させても
よい。そこで、受光板13をX(またはY)方向に移動
しながら、受光板上検出マーク15を介して光量検出器
14に得られる受光板X軸方向位置に対する光量検出値
は図4に示す様な変化をする。ここで、この図4で示す
変化のピークのときの受光板X軸方向位置が、レチクル
上検出マーク11の投影像の中心と受光板上検出マーク
15の中心が一致した位置となる。受光板13をこのレ
チクル上検出マーク11の投影像の中心と受光板上検出
マーク15の中心が一致した位置に移動し、受光板13
をZ軸方向に移動しながら光量検出器14で得られる受
光板Z軸方向位置に対する光量検出値は、図5に示す様
な変化をする。この図5で示す変化のピークのときの受
光板Z軸方向位置が、レチクル上検出マーク11を露光
光を用いて受光板上に投影した時の焦点位置となる。こ
のレチクル上検出マーク11を露光光を用いて受光板上
に投影した時の焦点位置を繰り返し検出することにより
露光中の焦点位置変動の検出を行う。
Here, in order to measure the focus position fluctuation during exposure, in order to detect the focus position regardless of the position of the portion 9 of the wafer stage 5 that attracts and moves the wafer 4,
The detection unit 8 for detecting the focal position is mounted on the reduction lens 3. A reticle detection mark 11 for detecting a focus position is provided on the reticle 2 at a position other than the circuit pattern portion 10, and during exposure, that is, the exposure light from the exposure light source 1 irradiates the circuit pattern 10 on the reticle 2. At the same time, the reticle detection mark 11 on the reticle 2 is irradiated with the exposure light at the same time, and the detection unit 8 detects the on-reticle detection mark 11 via the reduction lens 3 to detect the focus position fluctuation. The detection unit 8 is shown in FIG. The detection unit 8 includes a mirror 12, X (or Y) that bends the optical path.
Alternatively, it is driven in the XY) and Z directions. The light receiving plate 13 and the light amount detector 14 are included. The light receiving plate 13 and the light amount detector 14 are integrated. The light receiving plate 13 is provided with a rectangular mark such as the detection mark 15 on the light receiving plate. Also, FIG.
The reticle detection mark 11 is shown in FIG. In this way, the detection mark 15 on the light receiving plate and the detection mark 11 on the reticle are made to have the same shape, and the exposure light is irradiated to the detection mark 11 on the reticle to project it on the light receiving plate 13. Here, the reticle detection mark 11 and the light-receiving plate detection mark 15 may be a group of rectangular marks as shown in FIGS. 6 and 7 to increase the amount of information and improve the accuracy. Therefore, while moving the light receiving plate 13 in the X (or Y) direction, the light amount detection value with respect to the light receiving plate X-axis direction position obtained by the light amount detector 14 via the light receiving plate detection mark 15 is as shown in FIG. Make a change. Here, the position of the light receiving plate in the X-axis direction at the peak of the change shown in FIG. 4 is the position where the center of the projected image of the reticle detection mark 11 and the center of the light receiving plate detection mark 15 coincide. The light receiving plate 13 is moved to a position where the center of the projected image of the detection mark 11 on the reticle and the center of the detection mark 15 on the light receiving plate coincide with each other.
While moving in the Z-axis direction, the light-quantity detection value with respect to the light-receiving plate Z-axis direction position obtained by the light quantity detector 14 changes as shown in FIG. The position of the light receiving plate in the Z-axis direction at the peak of the change shown in FIG. 5 is the focus position when the reticle detection mark 11 is projected onto the light receiving plate using the exposure light. By repeatedly detecting the focus position when the reticle detection mark 11 is projected on the light receiving plate using the exposure light, the focus position fluctuation during the exposure is detected.

【0012】ここで、検出ユニットのZ軸方向距離とウ
ェハステージのZ軸(高さ)方向の距離の関係を予め求
めておく。前記従来方式を用いて合焦点位置合せを行っ
たウェハに対して上記検出ユニットを用い検出した露光
中の焦点位置変動量分に相当するウェハの高さを変更す
ることにより、露光中に露光光TTLで実際にレチクル
パターンを投影した時の焦点位置合せを行う。ここで、
1チップ露光中の焦点変動量が少ない場合、焦点位置を
合わせは露光中に行わず、次のチップ露光するための移
動の際に、上記検出ユニットを用い検出した焦点変動量
分に相当するウェハの高さを変更することにより焦点位
置合わせを行ってもよい。
Here, the relationship between the distance in the Z-axis direction of the detection unit and the distance in the Z-axis (height) direction of the wafer stage is obtained in advance. By changing the height of the wafer corresponding to the amount of focus position fluctuation during exposure detected by the detection unit for the wafer on which the in-focus position is adjusted by using the conventional method, the exposure light during exposure is changed. Focusing is performed when the reticle pattern is actually projected by TTL. here,
If the amount of focus fluctuation during one-chip exposure is small, the focus position is not adjusted during exposure, and the wafer corresponding to the amount of focus fluctuation detected using the above-mentioned detection unit during movement for the next chip exposure. The focus position may be adjusted by changing the height of the.

【0013】実施例2 実施例において、受光板13を図8に示す様に光軸に対
して垂直な位置から少し傾けておき、受光板上検出マー
ク15を複数個15−1〜5の様に配置することによ
り、各受光板検出マーク15間のZ軸方向位置を変え設
置する。これは受光板13を階段状に製作しても同じで
ある。レチクル2上にも受光板上検出マーク15−1〜
5に対応する複数個のレチクル上検出マーク11をZ軸
方向の位置を変えずに設ける。ここで、各受光板検出マ
ーク15−1〜5に対応し、光量検出器14−1〜5を
設ける。光量検出器14は、1次元光量検出器を用いて
もよい。図8に示す様、受光板検出マーク15−1用光
量検出器14−1と受光板検出マーク15−2用光量検
出器14−2では、受光板を△Z移動した時と同様な結
果を得られる。ここで、受光板検出マークZ軸方向位置
とそれに対応する光量検出器14の出力である光量検出
値14の間では図9に示す様な関係が得られ、この変化
のピーク位置を求めることによりレチクル上検出マーク
11の投影像の受光板13上での焦点位置を受光板13
をZ軸方向に移動することなく検出を行うことができ、
受光板13移動による振動及び移動量検出精度等の誤差
要因を除去できる。
Embodiment 2 In the embodiment, the light receiving plate 13 is slightly tilted from the position perpendicular to the optical axis as shown in FIG. By arranging them, the positions of the respective light-receiving plate detection marks 15 in the Z-axis direction are changed and installed. This is the same even if the light receiving plate 13 is manufactured in a stepped shape. Also on the reticle 2, the detection marks 15-1 to 15-1 on the light receiving plate
A plurality of reticle detection marks 11 corresponding to No. 5 are provided without changing the position in the Z-axis direction. Here, light quantity detectors 14-1 to 14-5 are provided corresponding to the respective light-receiving plate detection marks 15-1 to 15-5. The light amount detector 14 may use a one-dimensional light amount detector. As shown in FIG. 8, with the light amount detector 14-1 for the light receiving plate detection mark 15-1 and the light amount detector 14-2 for the light receiving plate detection mark 15-2, the same result as when the light receiving plate is moved by ΔZ is obtained. can get. Here, the relationship as shown in FIG. 9 is obtained between the Z-axis direction position of the light receiving plate detection mark and the corresponding light amount detection value 14 which is the output of the light amount detector 14, and the peak position of this change is obtained. The focus position of the projected image of the detection mark 11 on the reticle on the light receiving plate 13 is determined by the light receiving plate 13.
Can be detected without moving in the Z-axis direction,
It is possible to eliminate the error factors such as the vibration due to the movement of the light receiving plate 13 and the detection accuracy of the movement amount.

【0014】実施例3 実施例1及び2で用いる検出ユニット8は縮小レンズ3
にマウントされているため、図10に示す様に縮小レン
ズ3が動いてしまった時の焦点位置ずれは検出できな
い。そこで、縮小レンズ3に縮小レンズの傾きや高さ方
向の移動量を計測する縮小レンズ位置測定系15を設
け、縮小レンズの移動による焦点位置ずれを検出し、こ
の焦点位置ずれをかみして変動を補正することにより、
さらに高精度に焦点位置を検出する。
Embodiment 3 The detection unit 8 used in Embodiments 1 and 2 is a reduction lens 3
Since it is mounted on the camera, the focus position shift when the reduction lens 3 moves as shown in FIG. 10 cannot be detected. Therefore, the reduction lens 3 is provided with a reduction lens position measurement system 15 that measures the inclination of the reduction lens and the amount of movement in the height direction, detects the focal position shift due to the movement of the reduction lens, and changes by focusing on this focal position shift. By correcting
The focus position is detected with higher accuracy.

【0015】[0015]

【発明の効果】従来方式では露光中の焦点変動を求める
ことはできなかった。本発明によれば、検出ユニットを
ウェハステージ以外、例えば投影レンズにマウントする
ことより、ウェハステージ移動部の位置にかかわらず要
するに露光中においても焦点位置変動が検出可能とな
る。また、この焦点位置変動に伴い、ウェハのZ軸方向
を移動することにより、常に焦点が合った位置での露光
を可能とした。これにより、投影露光装置の露光光によ
り投影レンズが温まり生じる焦点位置変動及び投影レン
ズ周辺での温度、湿度、気圧などの環境の変化による焦
点位置変動を補正し、高精度な焦点位置合わせを行いパ
ターン寸法の安定化を図ることができる。
According to the conventional method, the focus fluctuation during exposure cannot be obtained. According to the present invention, by mounting the detection unit on a projection lens other than the wafer stage, for example, focus position fluctuation can be detected during exposure, regardless of the position of the wafer stage moving unit. In addition, by moving the wafer in the Z-axis direction in accordance with this change in the focus position, it is possible to perform exposure at a position that is always in focus. This corrects the focus position fluctuation caused by the exposure light of the projection exposure apparatus causing the projection lens to warm up, and the focus position fluctuation due to changes in the environment such as temperature, humidity, and atmospheric pressure around the projection lens to perform highly accurate focus position adjustment. It is possible to stabilize the pattern size.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を縮小投影露光装置に搭載した時の一実
施例の説明図である。
FIG. 1 is an explanatory diagram of an embodiment when the present invention is mounted on a reduction projection exposure apparatus.

【図2】検出ユニットの構成の説明図である。FIG. 2 is an explanatory diagram of a configuration of a detection unit.

【図3】レチクル上検出マークの説明図である。FIG. 3 is an explanatory diagram of reticle detection marks.

【図4】受光板X軸方向位置に対する光量検出値の説明
図である。
FIG. 4 is an explanatory diagram of a light amount detection value with respect to a position of the light receiving plate in the X-axis direction.

【図5】受光板Z軸方向位置に対する光量検出値の説明
図である。
FIG. 5 is an explanatory diagram of a light amount detection value with respect to a position of the light receiving plate in the Z-axis direction.

【図6】検出用マークの一例の説明図である。FIG. 6 is an explanatory diagram of an example of a detection mark.

【図7】検出用マークの一例の説明図である。FIG. 7 is an explanatory diagram of an example of a detection mark.

【図8】受光板をZ軸方向に移動せず焦点位置を検出す
る一実施例の説明図である。
FIG. 8 is an explanatory diagram of an example in which the focus position is detected without moving the light receiving plate in the Z-axis direction.

【図9】受光板上検出マークZ軸方向位置に対する光量
検出値の説明図である。
FIG. 9 is an explanatory diagram of light amount detection values with respect to the Z-axis direction position of the detection mark on the light receiving plate.

【図10】縮小レンズの位置を測定し、Z軸方向のずれ
量を求める一実施例の説明図である。
FIG. 10 is an explanatory diagram of an example in which the position of the reduction lens is measured and the shift amount in the Z-axis direction is obtained.

【図11】従来の縮小投影露光装置の焦点位置検出の一
実施例の説明図である。
FIG. 11 is an explanatory diagram of an example of focus position detection of a conventional reduction projection exposure apparatus.

【符号の説明】[Explanation of symbols]

1…露光光源、 2…レチクル、 3…縮小レンズ、 4…ウェハ、 5…ウェハステージ、 6…ウェハのZ方向位置検出装置、 7…メイン制御系、 8…検出ユニット、 9…ウェハステージ移動部、 10…レチクル上回路パターン部、 11…レチクル上検出マーク、 12…ミラー、 13…受光板、 14…光量検出器、 15…受光板上検出マーク、 16…縮小レンズ位置検出器。 DESCRIPTION OF SYMBOLS 1 ... Exposure light source, 2 ... Reticle, 3 ... Reduction lens, 4 ... Wafer, 5 ... Wafer stage, 6 ... Wafer Z direction position detection device, 7 ... Main control system, 8 ... Detection unit, 9 ... Wafer stage moving part , 10 ... Circuit pattern part on reticle, 11 ... Detection mark on reticle, 12 ... Mirror, 13 ... Light receiving plate, 14 ... Light quantity detector, 15 ... Detection mark on light receiving plate, 16 ... Reduction lens position detector.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】投影露光装置のレチクル上の検出マークに
露光光を照射し、投影レンズを介してレチクル上の検出
マーク投影像の焦点位置を検出ユニットで検出する方式
において、上記検出ユニットをウェハステージ以外の場
所にマウントし、ウェハステージ移動部の位置に関係な
く、レチクル上の検出マークの投影像の焦点位置を求
め、露光中の焦点位置変動を検出することを特徴とする
焦点位置検出方法。
1. A method of irradiating a detection mark on a reticle of a projection exposure apparatus with exposure light and detecting a focal position of a detection mark projection image on the reticle by a detection unit via a projection lens, wherein the detection unit is a wafer. A focus position detection method characterized by mounting on a place other than the stage, determining the focus position of the projected image of the detection mark on the reticle, and detecting the focus position fluctuation during exposure regardless of the position of the wafer stage moving part. .
【請求項2】請求項1において検出ユニットを投影レン
ズにマウントすることを特徴とする焦点位置検出方法。
2. A focus position detecting method according to claim 1, wherein the detecting unit is mounted on a projection lens.
【請求項3】ウェハ露光中に、請求項1又は請求項2の
方法を用い求めた焦点位置変動に伴い、この焦点位置変
動量分だけウェハの高さを変え、露光中での焦点位置を
合わせることを特徴とする焦点位置合わせ方法。
3. During wafer exposure, the height of the wafer is changed by an amount corresponding to the focus position variation, which is determined by the method of claim 1 or 2, and the focus position during exposure is changed. A focusing method characterized by matching.
【請求項4】ウェハ内の1チップ露光中に、請求項1又
は請求項2の方法を用い焦点位置変動量を求め、次のチ
ップを露光するために行う移動の際、この焦点位置変動
量分だけウェハの高さを変え、焦点位置を合わせること
を特徴とする焦点位置合わせ方法。
4. A focus position variation amount is obtained by using the method according to claim 1 or 2 during one-chip exposure on a wafer, and the focus position variation amount is obtained during a movement for exposing the next chip. A focus position adjusting method characterized in that the height of the wafer is changed by an amount to adjust the focus position.
【請求項5】請求項3又は請求項4に、縮小レンズの位
置測定系を付加し、縮小レンズの焦点方向の位置の変動
による焦点位置の変動を検出し、この焦点位置変動量と
検出ユニットでえられた焦点位置変動量の両者を用い、
ウェハの高さを変えることを特徴とする焦点位置合わせ
方法。
5. A position measuring system for a reduction lens is added to claim 3 or 4, and a change in the focus position due to a change in the position of the reduction lens in the focal direction is detected. Using both of the focus position variation obtained in
A focusing method characterized by changing the height of a wafer.
JP4294794A 1992-11-04 1992-11-04 Focal point detecting method and focal point aligning method Pending JPH06151278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4294794A JPH06151278A (en) 1992-11-04 1992-11-04 Focal point detecting method and focal point aligning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4294794A JPH06151278A (en) 1992-11-04 1992-11-04 Focal point detecting method and focal point aligning method

Publications (1)

Publication Number Publication Date
JPH06151278A true JPH06151278A (en) 1994-05-31

Family

ID=17812363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4294794A Pending JPH06151278A (en) 1992-11-04 1992-11-04 Focal point detecting method and focal point aligning method

Country Status (1)

Country Link
JP (1) JPH06151278A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012168272A1 (en) * 2011-06-08 2012-12-13 Carl Zeiss Smt Gmbh Measuring system
JP2013210440A (en) * 2012-03-30 2013-10-10 Topcon Corp Imaging position variation detecting method for projection lens, adjustment method for stage position, imaging position variation detecting device for projection lens, adjustment device for stage position, and projection exposure device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012168272A1 (en) * 2011-06-08 2012-12-13 Carl Zeiss Smt Gmbh Measuring system
CN103608729A (en) * 2011-06-08 2014-02-26 卡尔蔡司Smt有限责任公司 Measuring system
JP2014517533A (en) * 2011-06-08 2014-07-17 カール・ツァイス・エスエムティー・ゲーエムベーハー Measuring system
US9482968B2 (en) 2011-06-08 2016-11-01 Carl Zeiss Smt Gmbh Measuring system
JP2013210440A (en) * 2012-03-30 2013-10-10 Topcon Corp Imaging position variation detecting method for projection lens, adjustment method for stage position, imaging position variation detecting device for projection lens, adjustment device for stage position, and projection exposure device

Similar Documents

Publication Publication Date Title
JP3181050B2 (en) Projection exposure method and apparatus
KR100365602B1 (en) Exposure Method and Apparatus and Semiconductor Device Manufacturing Method
US5483056A (en) Method of projecting exposure with a focus detection mechanism for detecting first and second amounts of defocus
US6137561A (en) Exposure apparatus for aligning photosensitive substrate with image plane of a projection optical system
US7166855B2 (en) Surface position detecting system and method
JP3308063B2 (en) Projection exposure method and apparatus
JP3453818B2 (en) Apparatus and method for detecting height position of substrate
US4420233A (en) Projecting apparatus
JPH03233925A (en) Automatic focus adjustment and control apparatus
US5361122A (en) Autofocusing device and projection exposure apparatus with the same
JPH1145846A (en) Scanning type exposure method and aligner
JP2004071851A (en) Semiconductor exposure method and aligner
JP3335126B2 (en) Surface position detecting apparatus and scanning projection exposure apparatus using the same
KR19980024115A (en) Projection exposure method and projection exposure apparatus
US6455214B1 (en) Scanning exposure method detecting focus during relative movement between energy beam and substrate
JP3428825B2 (en) Surface position detection method and surface position detection device
US20110123934A1 (en) Scanning exposure apparatus
JPH06151278A (en) Focal point detecting method and focal point aligning method
JP3854734B2 (en) Surface position detection apparatus and device manufacturing method using the same
US20060221318A1 (en) Exposure apparatus
JPH10209030A (en) Method and apparatus for projection exposure
JPH104055A (en) Automatic focusing device and manufacture of device using it
JP3376219B2 (en) Surface position detecting device and method
JP3667009B2 (en) Exposure apparatus and device manufacturing method using the same
JPH0582410A (en) Method for detecting image forming plane