JPH06145920A - Production of al-li alloy forged material excellent in toughness - Google Patents

Production of al-li alloy forged material excellent in toughness

Info

Publication number
JPH06145920A
JPH06145920A JP32117292A JP32117292A JPH06145920A JP H06145920 A JPH06145920 A JP H06145920A JP 32117292 A JP32117292 A JP 32117292A JP 32117292 A JP32117292 A JP 32117292A JP H06145920 A JPH06145920 A JP H06145920A
Authority
JP
Japan
Prior art keywords
toughness
forging
alloy
forged material
alloy forged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32117292A
Other languages
Japanese (ja)
Inventor
Takuzo Hagiwara
卓三 萩原
Kazunori Kobayashi
一徳 小林
Yoshihiro Tsuji
美紘 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARISHIUMU KK
Original Assignee
ARISHIUMU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ARISHIUMU KK filed Critical ARISHIUMU KK
Priority to JP32117292A priority Critical patent/JPH06145920A/en
Publication of JPH06145920A publication Critical patent/JPH06145920A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE:To clarify the producing conditions for improving the toughness of an Al-Li alloy forged material. CONSTITUTION:An Al-Li alloy ingot contg., by weight, 1.0 to 3.0% Li, 1.0 to 3.0% Cu and 0.04 to 0.20% Zr or furthermore contg. 0.5 to 2.O% Mg, and the balance Al with inevitable impurities is subjected to soaking treatment and is thereafter subjected to hot forging at 340 to 420 deg.C for >= two times to regulate its cumulative forging ratio into 8 to 16. In this way, its structure is formed into an unrecrystallized one in which the grain size of subcrystals is regulated to <=10mum, by which the Al-Li alloy forged material excellent in toughness can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はAl−Li系合金鍛造材
の製造方法に関し、特に靭性を向上させたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an Al-Li alloy forged material, and more particularly, to a material having improved toughness.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】現在A
l−Li系合金としては2090(Al− 1.9〜2.6 wt%L
i− 2.4〜3.0wt%Cu−0.08〜0.16wt%Zr)、2091
(Al− 1.7〜2.3 wt%Li− 1.8〜2.5 wt%Cu−
1.1〜1.9 wt%Mg−0.04〜0.16wt%Zr)、8090(A
l− 2.2〜2.7 wt%Li− 1.0〜1.6 wt%Cu− 0.6〜
1.3 wt%Mg−0.04〜0.16wt%Zr)等の規格合金があ
り、これら材料は高比強度、高比剛性という特性を備え
ているため、航空宇宙、車両、自動車等各種の構造用材
料としての実用化が期待されているものである。
2. Prior Art and Problems to be Solved by the Invention
As an l-Li alloy, 2090 (Al-1.9 to 2.6 wt% L
i-2.4 to 3.0 wt% Cu-0.08 to 0.16 wt% Zr), 2091
(Al-1.7 to 2.3 wt% Li- 1.8 to 2.5 wt% Cu-
1.1-1.9 wt% Mg-0.04-0.16 wt% Zr), 8090 (A
l-2.2-2.7 wt% Li-1.0-1.6 wt% Cu-0.6-
There are standard alloys such as 1.3 wt% Mg-0.04 to 0.16 wt% Zr). Since these materials have the characteristics of high specific strength and high specific rigidity, they are used as various structural materials for aerospace, vehicles, automobiles, etc. Is expected to be put to practical use.

【0003】しかし、これらの材料の実用化の最大の問
題点は低靭性であることであり、これを解決することが
これらの合金研究の最大の問題点となっている。低靭性
の原因は転位の局部粗大すべりによる粒界への応力集中
であるとされており、これを解決するためには、サブ組
織を微細化することにより、局部粗大滑りによる応力集
中を緩和する必要がある。しかしこれまでAl−Li系
合金鍛造材に関しサブ組織を微細化し靭性を向上させる
ための材料の製造方法及び条件が明確でなかった。
However, the biggest problem in putting these materials to practical use is their low toughness, and solving these problems is the biggest problem in research on these alloys. It is said that the cause of low toughness is stress concentration at grain boundaries due to local coarse slip of dislocations.To solve this, the stress concentration due to local coarse slip is relaxed by making the substructure finer. There is a need. However, until now, the manufacturing method and conditions of the material for refining the substructure and improving the toughness of the Al-Li alloy forged material have not been clarified.

【0004】[0004]

【課題を解決するための手段】本発明はこれに鑑み、こ
れらAl−Li系合金鍛造材のサブ組織微細化による靭
性向上について検討した結果、靭性を向上させる製造法
を開発したものである。
In view of this, the present invention has developed a manufacturing method for improving the toughness as a result of studying the improvement of the toughness by refining the substructure of these Al-Li alloy forged materials.

【0005】即ち本発明は、Li: 1.0〜3.0 wt%、C
u: 1.0〜3.0 wt%、Zr:0.04〜0.20wt%を含み、又
はこれらにさらにMg: 0.5〜2.0 wt%を含み、残部A
lと不可避的不純物からなるAl−Li系合金鋳塊を均
熱処理後、 340〜420 ℃の温度で2回以上熱間鍛造を行
って累積鍛造比を8〜16とすることにより、サブ結晶粒
径を10μm以下の未再結晶組織とすることを特徴とする
ものである。
That is, according to the present invention, Li: 1.0 to 3.0 wt%, C
u: 1.0 to 3.0 wt%, Zr: 0.04 to 0.20 wt%, or these further containing Mg: 0.5 to 2.0 wt%, the balance A
After soaking the Al-Li alloy ingot consisting of 1 and unavoidable impurities, hot forging is performed twice or more at a temperature of 340 to 420 ° C. to obtain a cumulative forging ratio of 8 to 16 to obtain sub crystal grains. It is characterized by having a non-recrystallized structure with a diameter of 10 μm or less.

【0006】[0006]

【作用】まず本発明においてAl−Li系合金の組成を
上記のように限定した理由を説明する。
First, the reason why the composition of the Al--Li alloy is limited as described above in the present invention will be explained.

【0007】Liは軽量化及び高強度化のために含有さ
せるものであり、その含有量を 1.0〜3.0 wt%と限定し
たのは、 1.0wt%未満では軽量化の効果及び高強度・高
剛性化の効果が少なく、 3.0wt%を越えると鋳造割れ感
受性を増加させると同時に粗大なδ′を生成するなどし
て合金の延性及び靭性を低下させるからである。
Li is contained in order to reduce the weight and increase the strength. The content of Li is limited to 1.0 to 3.0 wt% because when it is less than 1.0 wt%, the effect of weight reduction and the high strength and high rigidity are achieved. This is because the alloying effect is small, and if it exceeds 3.0% by weight, the susceptibility to casting cracking is increased, and at the same time, coarse δ'is produced and the ductility and toughness of the alloy are reduced.

【0008】CuはAl−Cu系の板状析出物θ′(A
2 Cu)やAl−Cu−Li系の板状の析出相T1
(Al2 CuLi)を生成し、強度及び靭性の向上に寄
与する。しかしてその含有量が 1.0wt%未満では強度及
び靭性向上の効果が不足し、3.0 wt%を越えると上記効
果が飽和すると同時に軽量化が損なわれる。なお本合金
にMgを含まない場合のCuの含有量は 1.5〜3.0 wt%
が望ましく、またMgを含む合金の場合はMgによる強
度向上効果も期待できるのでCuの含有量は1.0 〜2.5
wt%程度でも良い。
Cu is an Al--Cu based plate-like precipitate θ '(A
L 2 Cu) or an Al—Cu—Li-based plate-like precipitation phase T 1 phase (Al 2 CuLi) is generated, which contributes to improvement in strength and toughness. If the content is less than 1.0 wt%, the effect of improving strength and toughness is insufficient, and if it exceeds 3.0 wt%, the above effect is saturated and the weight reduction is impaired. If the alloy does not contain Mg, the Cu content is 1.5 to 3.0 wt%
Is desirable, and in the case of an alloy containing Mg, the effect of improving strength by Mg can be expected, so the Cu content is 1.0 to 2.5.
It may be about wt%.

【0009】Zrは鋳造組織を微細化すると共に再結晶
の抑止効果があるので合金組織を微細な未再結晶組織に
するために含有させるものであるが、その含有量が0.04
wt%未満では上記効果が不足し、0.20wt%を越えるとそ
の効果が飽和すると同時にAl−Zrの粗大金属間化合
物を生成して強度、靭性及び延性等が低下する。
Zr has the effect of refining the cast structure and suppressing recrystallization, so it is contained in order to make the alloy structure a fine unrecrystallized structure, but its content is 0.04.
If it is less than wt%, the above effect is insufficient, and if it exceeds 0.20 wt%, the effect is saturated, and at the same time, a coarse intermetallic compound of Al-Zr is formed to lower strength, toughness, ductility and the like.

【0010】またMgは固溶効果により材料の延性及び
靭性を低下させることなく合金を強化すると同時に、A
l−Cu−Mg系の準安定相の板状析出物S′(Al2
CuMg)を生成し、これによりさらに強度向上に寄与
する。しかしてMg含有量が 0.5wt%未満では強度向上
の効果が少く、 2.0wt%を越えると強度は向上するもの
の靭性及び延性が低下してしまう。
Further, Mg strengthens the alloy by the solid solution effect without lowering the ductility and toughness of the material, and at the same time, A
1-Cu-Mg system metastable phase plate-like precipitate S '(Al 2
CuMg) is produced, which further contributes to the strength improvement. However, if the Mg content is less than 0.5 wt%, the effect of improving the strength is small, and if it exceeds 2.0 wt%, the strength is improved but the toughness and ductility are deteriorated.

【0011】また上記Al合金に対してFe≦0.30wt
%、Si≦0.20wt%、Zn≦0.25wt%、Ti≦0.15wt
%、Cr≦0.10wt%、Mn≦0.10wt%等は通常の不純物
であって、これらが含有されても本発明の効果を損うこ
とはないが、これらの不純物は化合物を作るか、又は亜
粒界に偏析する等して、靭性を低下させるため、可能な
らばFe≦0.10wt%、Si≦0.10wt%、Zn≦0.10wt
%、Ti≦0.05wt%、Cr≦0.05wt%、Mn≦0.05wt%
程度に少ない方が望ましい。特にTiは0.02〜0.05wt%
程度は鋳塊結晶粒の微細化のため積極的に添加される。
Further, with respect to the above Al alloy, Fe ≦ 0.30 wt
%, Si ≦ 0.20 wt%, Zn ≦ 0.25 wt%, Ti ≦ 0.15 wt
%, Cr ≦ 0.10 wt%, Mn ≦ 0.10 wt% and the like are ordinary impurities, and the inclusion of these does not impair the effects of the present invention, but these impurities form a compound, or If possible, Fe ≦ 0.10 wt%, Si ≦ 0.10 wt%, Zn ≦ 0.10 wt in order to reduce toughness by segregating to sub-grain boundaries.
%, Ti ≦ 0.05 wt%, Cr ≦ 0.05 wt%, Mn ≦ 0.05 wt%
It is desirable that the number is small. Especially Ti is 0.02-0.05wt%
The degree is positively added for refining ingot crystal grains.

【0012】本発明では上記のAl−Li系合金溶湯を
鋳造した後、Zr系化合物を微細分散させることにより
サブ組織を未再結晶組織とするため、面削後Al−Zr
の析出C曲線ノーズ近傍の 500℃以下と、さらに添加元
素や不純物元素をできるだけ固溶させるため、それより
高温の 520℃近傍での2段熱処理を行う。その後、これ
を熱間押出、鍛造予備加熱、熱間鍛造(荒鍛造→仕上げ
鍛造)を行った後、さらに溶体化、コイニング型による
冷間圧縮、時効のT8処理を行うか、又は鍛造予備加熱
・熱間鍛造、溶体化、時効のT6処理を行う工程が多く
とられているが、本合金は高強度高靭性が目的であるた
め通常はT8処理が選択される。なおT8処理時におけ
る溶体化処理後のストレッチは強化相の均一な析出サイ
トを与えるためのもので、これにより強度と靭性がさら
に改善される。
In the present invention, after casting the above Al-Li alloy melt, the Zr compound is finely dispersed to make the substructure an unrecrystallized structure.
In order to make the additive element and the impurity element as a solid solution as much as possible at 500 ° C or less near the nose of the precipitation C curve, a two-step heat treatment is performed at a temperature higher than 520 ° C. After that, this is subjected to hot extrusion, forging preheating, hot forging (rough forging → finish forging), and then solution treatment, cold compression by coining die, aging T8 treatment, or forging preheating. -Many steps are performed for hot forging, solution treatment, and aging T6 treatment, but since this alloy aims at high strength and high toughness, T8 treatment is usually selected. The stretch after the solution treatment at the time of T8 treatment is to provide uniform precipitation sites of the strengthening phase, and thereby the strength and toughness are further improved.

【0013】そして本発明の製造法において上記熱間鍛
造温度を 340〜420 ℃としたのは、鍛造性が良好で、か
つ組織的にもサブ結晶粒径が10μm以下の微細なものが
得られるからである。しかして鍛造温度が 340℃未満で
は、変形能が低くて鍛造割れが生じると同時にプレスの
所要圧力も高くなる等鍛造性に問題があり、一方 420℃
を越えるとサブ結晶粒が粗大化して粒径が10μmを越え
てしまう。さらに鍛造温度が 450℃を越えると加工発熱
により材料温度が上昇して熱間割れを引き起してしま
う。
In the manufacturing method of the present invention, the hot forging temperature is set to 340 to 420 ° C., because the forgeability is good, and the subcrystal grain size is 10 μm or less. Because. However, if the forging temperature is less than 340 ° C, there is a problem in forgeability such that the deformability is low and forging cracks occur, and at the same time the required pressure of the press becomes high.
If it exceeds, the sub-crystal grains become coarse and the grain size exceeds 10 μm. Further, if the forging temperature exceeds 450 ° C, the material temperature rises due to heat generation during processing, causing hot cracking.

【0014】また上記温度で行う鍛造を2回以上と限定
したのは、1回の鍛造で鍛造比を8以上とすると変形能
が小さいので割れを生じると同時にプレス圧力が増大し
てしまう問題があるため、2回以上の鍛造で鍛造比8以
上を得るものである。
Further, the reason that the forging carried out at the above temperature is limited to two times or more is that when the forging ratio is 8 or more in one forging, the deformability is small, so that cracking occurs and at the same time the pressing pressure increases. Therefore, a forging ratio of 8 or more is obtained by forging twice or more.

【0015】なお1回目の鍛造で鍛造比を4以下とする
と安定した鍛造組織を得ることができないため、1回目
の鍛造での鍛造比は4〜8とするのが望ましく、2回目
以降の鍛造において累積の鍛造比を8〜16とするもので
ある。そして累積鍛造比が16を越えると材料の変形能が
不足して割れや座屈と寸法不良が発生し、8未満ではサ
ブ組織の微細化効果が不足してサブ結晶粒径が10μmを
越えるため靭性の改善効果が少ない。
Since a stable forging structure cannot be obtained when the forging ratio is 4 or less in the first forging, the forging ratio in the first forging is preferably set to 4 to 8 and the forging in the second and subsequent forgings is preferable. In the above, the cumulative forging ratio is 8-16. If the cumulative forging ratio exceeds 16, the deformability of the material is insufficient and cracks, buckling and dimensional defects occur. If it is less than 8, the sub-structure refinement effect is insufficient and the sub-crystal grain size exceeds 10 μm. Little improvement effect on toughness.

【0016】また本発明において得られる鍛造材の微細
組織を未再結晶組織とし、そのサブ結晶粒径を10μm以
下と規定したのは、このように微細化することにより局
部粗大滑りによる転位の集積によって起こる結晶粒界へ
の応力集中を緩和し、粒界破壊傾向を減少させて粒内滑
りを増加させることにより靭性を向上させるためであ
る。
Further, the fine structure of the forged material obtained in the present invention is defined as a non-recrystallized structure and the sub-crystal grain size is defined as 10 μm or less. This is to alleviate the stress concentration on the crystal grain boundaries caused by the above, reduce the tendency to break at the grain boundaries, and increase the intragranular slip, thereby improving the toughness.

【0017】[0017]

【実施例】次に本発明を実施例によりさらに説明する。EXAMPLES The present invention will be further described with reference to examples.

【0018】表1に示す組成のAl−Li系規格合金
A,B及びCをそれぞれArガス雰囲気中で溶解後、 2
30mmφ×500mm Lの半連続水冷鋳塊ビレットを得た。こ
れらビレットを 450±20℃×24時間及び 520±20℃×4
時間の2段均熱処理後、押出温度 400℃で60mmφの丸棒
に熱間押出した。
Al-Li standard alloys A, B and C having the compositions shown in Table 1 were melted in an Ar gas atmosphere, respectively, and then 2
A 30 mmφ × 500 mm L semi-continuous water-cooled ingot billet was obtained. These billets are 450 ± 20 ℃ × 24 hours and 520 ± 20 ℃ × 4
After the two-stage soaking for an hour, hot extrusion was performed at a extrusion temperature of 400 ° C. into a round bar of 60 mmφ.

【0019】その後以下に示す工程に従ってこれら合金
A,B,Cについて表2に示すように 320〜470 ℃の各
鍛造温度に加熱保持してそれぞれ同表に示すような累積
鍛造比となるように1次及び2次の熱間鍛造を施した
(このとき鍛造の型温度は 380〜400 ℃とした)。次に
鍛造後の各合金について 520±20℃×60分の溶体化処理
後、コイニング型により合金Aについては6%及び合金
Bと合金Cについては3%の冷間圧縮を行い、その後時
効温度 160℃の時効曲線のピーク近傍に強度調整してT
8材の試験材料とした。
Thereafter, the alloys A, B and C were heated and maintained at the respective forging temperatures of 320 to 470 ° C. as shown in Table 2 according to the following steps so that the cumulative forging ratios shown in the same table were obtained. Primary and secondary hot forging were performed (at this time, the die temperature for forging was 380 to 400 ° C). Next, each alloy after forging is subjected to solution treatment at 520 ± 20 ° C for 60 minutes, then cold-pressed to 6% for alloy A and 3% for alloys B and C by the coining type, and then the aging temperature. Adjust the strength near the peak of the aging curve at 160 ° C
Eight test materials were used.

【0020】 [0020]

【0021】このように調整して得られた試験材料につ
いて、引張試験により機械的性質を調べ、2000倍で撮影
した透過電子顕微鏡写真5枚の平均粒径よりサブ結晶粒
径を求め、また計装化シャルピー試験におけるL−T方
向の全吸収エネルギーにより靭性を評価し、さらに鍛造
性については鍛造後材料に割れが発生したり寸法精度が
悪化しているものについて鍛造性を×とし、そのような
欠陥の発生しなかったものについては鍛造性を○として
評価し、これらの結果を表2に併記した。なお靭性は計
装化シャルピー試験における全吸収エネルギーが高い程
優れるものである。
The mechanical properties of the test material thus prepared were examined by a tensile test, and the sub-crystal grain size was determined from the average grain size of five transmission electron microscope photographs taken at 2000 times. The toughness is evaluated by the total absorbed energy in the L-T direction in the mounting Charpy test. Further, for the forgeability, the forgeability is set to x for those in which cracks have occurred in the material after forging or the dimensional accuracy has deteriorated. For those with no significant defects, the forgeability was evaluated as ◯, and these results are also shown in Table 2. The higher the total absorbed energy in the instrumented Charpy test, the better the toughness.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】表2から、同じ合金から製造した試験材料
であっても、本発明製造法によるものは比較製造法によ
るものに比べて靭性及び鍛造性の両者に優れていること
が判る。これに対して累積鍛造比の大き過ぎる比較例N
o.16, 20, 24や鍛造温度の低過ぎる比較例No.17, 21,
25は靭性は良好なるも鍛造性に劣り、鍛造温度の高過ぎ
る比較例No.18, 19, 22, 23, 26, 27はいずれも靭性が
劣ることが明らかである。
It can be seen from Table 2 that even the test materials manufactured from the same alloy are superior in both toughness and forgeability to those manufactured by the manufacturing method of the present invention as compared with those manufactured by the comparative manufacturing method. On the other hand, Comparative Example N in which the cumulative forging ratio is too large
o.16, 20, 24 and Comparative Example with too low forging temperature No. 17, 21, 21
It is clear that No. 25 has good toughness but poor forgeability, and Comparative Examples Nos. 18, 19, 22, 23, 26 and 27 having too high a forging temperature all have poor toughness.

【0025】[0025]

【発明の効果】このように本発明によれば、高比強度と
高比剛性を有するAl−Li系合金鍛造材の靭性を向上
させる条件が明確となり、実用材料として十分に使用で
きる材料が提供できるようになった等の顕著な効果を有
する。
As described above, according to the present invention, the conditions for improving the toughness of an Al-Li alloy forged material having high specific strength and high specific rigidity are clarified, and a material that can be sufficiently used as a practical material is provided. It has a remarkable effect such as being able to.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Li: 1.0〜3.0 wt%、Cu: 1.0〜3.
0 wt%、Zr:0.04〜0.20wt%を含み、残部Alと不可
避的不純物からなるAl−Li系合金鋳塊を均熱処理
後、 340〜420 ℃の温度で2回以上熱間鍛造を行って累
積鍛造比を8〜16とすることにより、サブ結晶粒径を10
μm以下の未再結晶組織とすることを特徴とする靭性の
優れたAl−Li系合金鍛造材の製造方法。
1. Li: 1.0 to 3.0 wt%, Cu: 1.0 to 3.
After soaking the Al-Li alloy ingot containing 0 wt% and Zr: 0.04 to 0.20 wt% and the balance Al and unavoidable impurities, hot forging is performed twice or more at a temperature of 340 to 420 ° C. By setting the cumulative forging ratio to 8 to 16, the sub crystal grain size is 10
A method for producing an Al-Li-based alloy forged material having excellent toughness, which has a non-recrystallized structure of μm or less.
【請求項2】 Li: 1.0〜3.0 wt%、Cu: 1.0〜3.
0 wt%、Mg: 0.5〜2.0 wt%、Zr:0.04〜0.20wt%
を含み、残部Alと不可避的不純物からなるAl−Li
系合金鋳塊を均熱処理後、 340〜420 ℃の温度で2回以
上熱間鍛造を行って累積鍛造比を8〜16とすることによ
り、サブ結晶粒径を10μm以下の未再結晶組織とするこ
とを特徴とする靭性の優れたAl−Li系合金鍛造材の
製造方法。
2. Li: 1.0 to 3.0 wt%, Cu: 1.0 to 3.
0 wt%, Mg: 0.5 to 2.0 wt%, Zr: 0.04 to 0.20 wt%
Al-Li containing Al and the balance Al and unavoidable impurities
After soaking of the alloy-base alloy ingot, hot forging is performed twice or more at a temperature of 340 to 420 ° C. to obtain a cumulative forging ratio of 8 to 16 to obtain a non-recrystallized structure with a sub-crystal grain size of 10 μm or less. A method for producing an Al-Li alloy forged material having excellent toughness, which is characterized by:
JP32117292A 1992-11-05 1992-11-05 Production of al-li alloy forged material excellent in toughness Pending JPH06145920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32117292A JPH06145920A (en) 1992-11-05 1992-11-05 Production of al-li alloy forged material excellent in toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32117292A JPH06145920A (en) 1992-11-05 1992-11-05 Production of al-li alloy forged material excellent in toughness

Publications (1)

Publication Number Publication Date
JPH06145920A true JPH06145920A (en) 1994-05-27

Family

ID=18129601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32117292A Pending JPH06145920A (en) 1992-11-05 1992-11-05 Production of al-li alloy forged material excellent in toughness

Country Status (1)

Country Link
JP (1) JPH06145920A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115418534A (en) * 2022-09-19 2022-12-02 郑州轻研合金科技有限公司 8090 aluminum lithium alloy fine-grain plate and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115418534A (en) * 2022-09-19 2022-12-02 郑州轻研合金科技有限公司 8090 aluminum lithium alloy fine-grain plate and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3194742B2 (en) Improved lithium aluminum alloy system
KR100245632B1 (en) Low density high strength al-li alloy
EP0642598B1 (en) Low density, high strength al-li alloy having high toughness at elevated temperatures
JP3335732B2 (en) Hypoeutectic Al-Si alloy and casting method thereof
JPH0372147B2 (en)
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JPH07109536A (en) Aluminum alloy for forging and heat treatment therefor
JPS59159961A (en) Superplastic al alloy
JPS63290252A (en) Heat-treatment of al base alloy
JPH11286758A (en) Production of forged product using aluminum casting material
JPH08269652A (en) Production of aluminum alloy extruded shape having excellent bendability and high strength
JPH07145440A (en) Aluminum alloy forging stock
JPH07242976A (en) Aluminum alloy for elongation, excellent in heat resistance, and its production
JP3145904B2 (en) Aluminum alloy sheet excellent in high speed superplastic forming and its forming method
JPS6050864B2 (en) Aluminum alloy material for forming with excellent bending workability and its manufacturing method
JPH06145918A (en) Production of al-li alloy extruded material excellent in toughness
JPH07150312A (en) Manufacture of aluminum alloy forged base stock
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
JPS6256942B2 (en)
JPH0711363A (en) High strength and high conductivity copper alloy member and its production
JPH06145920A (en) Production of al-li alloy forged material excellent in toughness
JPH10259441A (en) Aluminum alloy sheet excellent in high speed superplastic formability and small number of cavity after forming and its production
JP2551882B2 (en) Aluminum alloy for forging
JPH06212336A (en) Al alloy extruded material excellent in strength and bendability
JPH08333644A (en) Aluminum alloy foil and its production