JPH06144856A - Method for measuring very small amount of thermal shrinkage of plate glass - Google Patents

Method for measuring very small amount of thermal shrinkage of plate glass

Info

Publication number
JPH06144856A
JPH06144856A JP32267192A JP32267192A JPH06144856A JP H06144856 A JPH06144856 A JP H06144856A JP 32267192 A JP32267192 A JP 32267192A JP 32267192 A JP32267192 A JP 32267192A JP H06144856 A JPH06144856 A JP H06144856A
Authority
JP
Japan
Prior art keywords
plate glass
measuring
heat treatment
vickers
pressure traces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP32267192A
Other languages
Japanese (ja)
Inventor
Yoichi Ozawa
洋一 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP32267192A priority Critical patent/JPH06144856A/en
Publication of JPH06144856A publication Critical patent/JPH06144856A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PURPOSE:To precisely measure very small thermal shrinkage caused by heat treatment of plate glass by making Vickers pressure traces on plate glass, measuring the apex of the dent or the gap of the ridgelines of the pressure traces before or after the heat treatment. CONSTITUTION:In a technology field of raw plate glass for liquid crystal display, plate glass having thermally stable dimension in various heat treatments in a production process is required. In this measurement, heat shrinkage of <=10ppm can be accurately measured. As shown by the figure, a sample having 100mm width and 250mm length is cut, and pressure traces comprising a dent of quadrangular pyramid are formed by using Vickers hardness tester in the vicinity of both the ends. The sample having the Vickers pressure traces is allowed to stand in a room conditioned at 24+ or -2 deg.C for >=12 hours together with a measuring device. Then the sample is fixed, the Vickers pressure traces are searched by a polarization microscope (X1,000), the apex of the dent or the gap of the ridgelines of the pressure traces is adjusted to a reference line of the microscope. The distance between the two points are read up to 0.1mum unit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は板ガラスの熱処理前後の
収縮量、特に微小な熱収縮量または熱収縮率の測定方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the amount of shrinkage of a sheet glass before and after heat treatment, particularly a minute amount of heat shrinkage or a heat shrinkage rate.

【0002】[0002]

【従来の技術】液晶ディスプレー用ガラス素板には通常
数μmのパターン精度を持つ薄膜トランジスター(TF
T)が、熱処理、露光、現像工程の繰り返しを経て形成
される。したがってガラス素板は使用される温度で熱的
に寸法が安定でなければならない。最近ではTFT形成
の熱処理工程(350℃×2hr)でガラス素板の熱収
縮率が3ppm以下であることが要求されている。これ
らの熱収縮の測定方法には2種類の方法がある。すなわ
ち熱処理の前後でのガラスの長さ変化を測定する方法
と、ガラスの密度変化による方法であり、熱収縮率をC
とすると、それぞれ次式で求めることができる。
2. Description of the Related Art A thin film transistor (TF) having a pattern accuracy of usually several μm is used for a glass base plate for a liquid crystal display.
T) is formed by repeating heat treatment, exposure, and development steps. Therefore, the glass blank must be thermally dimensionally stable at the temperature at which it will be used. Recently, it is required that the heat shrinkage rate of the glass base plate is 3 ppm or less in the heat treatment step (350 ° C. × 2 hours) for forming the TFT. There are two methods for measuring these heat shrinkages. That is, there are a method of measuring the change in length of glass before and after heat treatment and a method of changing the density of glass.
Then, each can be calculated by the following equations.

【0003】 (1)長さの変化 C=(l1 −l2 )/l11 :熱収縮前の長さ l2 :熱収縮後の長さ (2)密度の変化 C=(1/3)×[(ρ2 /ρ1
−1] ρ1 :熱収縮前の密度 ρ2 :熱収縮後の密度
(1) Change in length C = (l 1 −l 2 ) / l 1 l 1 : Length before heat shrinkage l 2 : Length after heat shrinkage (2) Change in density C = (1 / 3) × [(ρ 2 / ρ 1 )
−1] ρ 1 : Density before heat shrinkage ρ 2 : Density after heat shrinkage

【0004】これらの方法による熱収縮率の測定では、
これ迄の方法では通常10〜15ppmの範囲の熱収縮
率の測定が限界であり、測定精度についても±15pp
m程度であるため、10ppm以下の熱収縮率の測定に
は不向きである。
In measuring the heat shrinkage ratio by these methods,
In the conventional method, the measurement of the heat shrinkage rate in the range of 10 to 15 ppm is usually the limit, and the measurement accuracy is ± 15 pp.
Since it is about m, it is not suitable for measuring the thermal shrinkage of 10 ppm or less.

【0005】[0005]

【発明が解決しようとする課題】従来の熱収縮量または
熱収縮率の測定に関して以下のような問題点がある。密
度変化による測定方法においては、現状の測定精度が1
0〜15ppmであるため、10ppm以下の測定は無
理である。
However, there are the following problems in the conventional measurement of the heat shrinkage amount or heat shrinkage ratio. The current measurement accuracy is 1 in the measuring method by density change.
Since it is 0 to 15 ppm, it is impossible to measure 10 ppm or less.

【0006】また長さ変化による測定方法については、
従来技術としてSID 91 DIGE ST 663
で発表されている方法がある。この方法によればガラス
板の両端にダイヤモンドペンを用いて平行な基準線をケ
ガキ、その後サンプルを半分に切断し、一方のサンプル
を熱処理した後もう一方と突き合わせ、ケガキ線のズレ
量を測定するとあるが、測定するケガキ線が顕微鏡下で
波状になっていたり、半分に切断した面にチッピングが
発生してしまい、ズレとして探知しにくい。本発明の目
的は上述の問題点を解決しようというものである。
Regarding the measuring method based on the change in length,
As conventional technology, SID 91 DIGE ST 663
There is a method announced in. According to this method, parallel reference lines are marked with a diamond pen on both ends of the glass plate, then the sample is cut in half, one sample is heat-treated and then butted against the other, and the deviation amount of the marking line is measured. However, the marking lines to be measured are wavy under the microscope, or chipping occurs on the half-cut surface, which is difficult to detect as a deviation. The object of the present invention is to solve the above-mentioned problems.

【0007】[0007]

【課題を解決するための手段】本発明は前述の問題点を
解決すべくなされたものであり、熱処理による板ガラス
の長さの収縮量の測定方法であって、該板ガラスの面に
所要の距離を隔てて選んだ2箇所にそれぞれ1個のビッ
カース圧痕をつけ、該板ガラスの熱処理の前後における
それぞれの該ビッカース圧痕のくぼみの頂点または該圧
痕の稜線の間の距離を測定し収縮量を求めることを特徴
とする熱処理による板ガラスの微小熱収縮量の測定方法
を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and is a method for measuring the amount of shrinkage of the length of a glass sheet by heat treatment. One Vickers indentation is made at each of the two selected locations, and the amount of shrinkage is determined by measuring the distance between the apex of the depression of each Vickers indentation or the ridgeline of the indentation before and after heat treatment of the sheet glass. The present invention provides a method for measuring the amount of microscopic heat shrinkage of plate glass by heat treatment.

【0008】液晶ディスプレー用ガラス素板に限らず、
磁気ディスク、光ディスク、光磁気ディスク等の記録媒
体や電子部品等の技術分野において、その製造工程中で
発生する各種の熱処理に対し寸法が熱的に安定な板ガラ
スが要求されているが、その要求は従来の測定可能な領
域を超えてきているのが現状である。本発明者等は鋭意
研究した結果、10ppm以下の熱収縮を精度良く測定
する方法を発明し、寸法が熱的に安定なガラス板の徐冷
条件等を探索するための指針とすることができた。
Not only the glass base plate for liquid crystal display,
In the technical field of recording media such as magnetic disks, optical disks, magneto-optical disks, and electronic parts, there is a demand for sheet glass whose dimensions are thermally stable against various heat treatments that occur during the manufacturing process. Is currently beyond the conventional measurable range. As a result of intensive studies, the inventors of the present invention have invented a method for accurately measuring thermal contraction of 10 ppm or less, and can use it as a guideline for searching for conditions such as slow cooling of a glass plate whose dimensions are thermally stable. It was

【0009】以下、本発明を実施例にしたがって説明す
る。図1に示すように、幅100mm、長さ250mm
のサンプルを切断し、サンプルの幅方向の中央、長さ方
向の両端付近にマジックインキで十字線の印をつけてお
き、その十字線の交点付近に、ビッカース硬度計を用
い、四角錐(対面角136°)圧子により、25g/c
2 、15secの条件で四角錐状のくぼみからなる圧
痕をつける(ビッカース圧痕という)。このとき2箇所
のビッカース圧痕の稜線が平行になるよう該圧痕をつけ
ることは容易である。ガラスサンプルの大きさは測定精
度を上げるため長さ方向で100mm以上必要で、好ま
しくは250mm以上とする。ビッカース圧痕をつけた
サンプルは温度調節(24±2℃)された室内に12h
r以上、測定装置と共に静置しておく。12hr以上経
過後、測定器のテーブル上に前記サンプルを載せ、サン
プルが動かないようにし、また、サンプルの反りによる
誤差を無くすことも含め、バキュームをかけて固定す
る。サンプルの両端にあるビッカースの圧痕を偏光顕微
鏡(×1000)で探し、ビッカース圧痕のくぼみの頂
点または該圧痕の稜線に顕微鏡の基準線を合わせ、X・
Y軸の座標点を記憶させた後、コンピュータ処理により
2点間距離を0.1μmの桁迄読み取る。測定精度の観
点からは前記稜線が平行になるようにビッカース圧痕を
つけ、該稜線に顕微鏡の基準線を合わせることが好まし
い。
The present invention will be described below with reference to examples. As shown in FIG. 1, width 100 mm, length 250 mm
The sample was cut, and cross marks were marked with magic ink near the center in the width direction and both ends in the length direction of the sample, and a quadrangular pyramid (face-to-face) was used near the intersection of the cross lines using a Vickers hardness tester. Angle 136 °) 25g / c by indenter
An indentation consisting of a quadrangular pyramid-shaped depression is made under the condition of m 2 and 15 sec (called Vickers indentation). At this time, it is easy to make the indentations so that the ridgelines of the two Vickers indentations are parallel to each other. The size of the glass sample needs to be 100 mm or more in the lengthwise direction in order to improve the measurement accuracy, and is preferably 250 mm or more. Samples with Vickers indentations were placed in a temperature-controlled room (24 ± 2 ° C) for 12 hours.
Let stand with the measuring device for at least r. After the lapse of 12 hours or more, the sample is placed on the table of the measuring device so that the sample does not move, and the sample is fixed by applying a vacuum to eliminate the error due to the warp of the sample. Look for Vickers indentations on both ends of the sample with a polarizing microscope (× 1000), align the reference line of the microscope with the apex of the depression of the Vickers indentation or the ridge of the indentation, and
After the Y-axis coordinate points are stored, the distance between the two points is read to the digit of 0.1 μm by computer processing. From the viewpoint of measurement accuracy, it is preferable to make Vickers indentations so that the ridge lines are parallel to each other and align the reference line of the microscope with the ridge lines.

【0010】この一連の測定はガラス板の熱処理前後に
ダミーガラスと共に同時測定し、測定時の温度の違いに
よる測定装置およびガラス板の熱膨張による誤差を消去
して、熱処理により生じた熱収縮量を求める方法であ
る。使用に供した測定装置は高精度測定顕微鏡で、偏光
レンズ系、電動移動テーブル方式、座標点記憶機能、サ
ンプル固定用バキュームテーブル付き、0.1μm読み
スケール付きを用いた。本発明におけるビッカース圧痕
は熱処理によって消失または変形が認められない。
This series of measurements is carried out simultaneously with the dummy glass before and after the heat treatment of the glass plate, and the error due to the thermal expansion of the measuring device and the glass plate due to the difference in temperature at the time of measurement is eliminated, and the heat shrinkage amount caused by the heat treatment. Is a method of asking for. The measuring device used was a high-precision measuring microscope with a polarizing lens system, an electric moving table system, a coordinate point storage function, a vacuum table for fixing a sample, and a 0.1 μm reading scale. The Vickers indentation according to the present invention is neither disappeared nor deformed by heat treatment.

【0011】本発明の方法において、ガラス板の両端付
近の箇所にビッカース圧痕をつけ、該圧痕の稜線に偏光
レンズ系顕微鏡の基準線を1000倍の拡大視野中で正
確に合わせ、その座標点を記憶させることにより、0.
1〜0.2μmの精度で位置合わせをすることができ
る。
In the method of the present invention, Vickers indentations are made in the vicinity of both ends of the glass plate, the reference line of the polarizing lens system microscope is accurately aligned with the ridgeline of the indentation in a magnified field of view of 1000 times, and the coordinate points are determined. By storing it, 0.
Positioning can be performed with an accuracy of 1 to 0.2 μm.

【0012】本発明の方法による測定時に、測定装置の
試料の移動テーブル上にバキュームテーブル(真空吸引
固定用テーブル)を載置することにより、被測定ガラス
板の反りによる測定誤差を避けることができる。また被
測定ガラス板は距離測定の測定前12時間以上にわたり
測定装置と同一環境に静置することにより、被測定ガラ
ス板の環境差による熱膨張等の影響を避けることができ
る。
By placing a vacuum table (vacuum suction fixing table) on the moving table of the sample of the measuring device at the time of measurement by the method of the present invention, the measurement error due to the warp of the glass plate to be measured can be avoided. . Further, by allowing the glass plate to be measured to stand in the same environment as the measuring device for 12 hours or more before the distance measurement, it is possible to avoid the influence of thermal expansion or the like due to the environmental difference of the glass plate to be measured.

【0013】また距離の測定が熱処理前後にわたるので
時間のずれが生じるが、測定時の温度差を補正するため
にダミーガラス板を同時またはおよそ10分程度以内の
時間差範囲内で測定し、測定装置およびガラス板の熱膨
張に基づく誤差を消去することができる。
Further, since the distance is measured before and after the heat treatment, there is a time lag, but in order to correct the temperature difference at the time of measurement, the dummy glass plates are measured at the same time or within a time difference range of about 10 minutes, and the measuring device is used. And the error due to the thermal expansion of the glass plate can be eliminated.

【0014】本発明の方法によれば熱処理前後のガラス
板の熱収縮量を±0.4μmの精度で測定することがで
きる。
According to the method of the present invention, the amount of heat shrinkage of the glass plate before and after heat treatment can be measured with an accuracy of ± 0.4 μm.

【0015】[0015]

【実施例】ガラス板の両端にビッカース圧痕をつけ、圧
痕と圧痕の間の距離を該ガラス板の熱処理前後で測定
し、それら熱処理前後の測定値の差から熱処理によるガ
ラス板の熱収縮量を精密に測定した。結果を表1に示
す。
[Examples] Vickers indentations were made on both ends of a glass plate, the distance between the indentations was measured before and after the heat treatment of the glass plate, and the heat shrinkage amount of the glass plate due to the heat treatment was determined from the difference between the measured values before and after the heat treatment. Measured precisely. The results are shown in Table 1.

【0016】[0016]

【表1】 [Table 1]

【0017】表1においてダミー板の偏差量は熱処理板
を熱処理の前後に測定するときに同時測定した結果であ
り、この偏差量が測定時の温度による熱膨張差であり、
この偏差量を熱処理板の偏差量から差し引くことによ
り、熱処理前後における実変化量を求めることができ
る。表1では350℃×2hrの熱処理で−0.000
5〜+0.0004μmの寸法変化が発生していたこと
がわかる実施例である。
In Table 1, the deviation amount of the dummy plate is the result of simultaneous measurement when the heat-treated plate is measured before and after the heat treatment, and this deviation amount is the difference in thermal expansion due to the temperature at the time of measurement,
By subtracting this deviation amount from the deviation amount of the heat-treated plate, the actual change amount before and after the heat treatment can be obtained. In Table 1, heat treatment at 350 ° C. for 2 hours gives -0.000.
This is an example in which it can be seen that a dimensional change of 5 to +0.0004 μm has occurred.

【0018】また本発明による測定精度について表2に
示した。この表2では5×10-7/℃の熱膨張係数を有
する石英ガラスと、50×10-7/℃の熱膨張係数を有
する無アルカリガラスを同一測定環境下に静置し、一日
4回の測定を4日間行った結果である。
Table 2 shows the measurement accuracy according to the present invention. In Table 2, quartz glass having a coefficient of thermal expansion of 5 × 10 −7 / ° C. and non-alkali glass having a coefficient of thermal expansion of 50 × 10 −7 / ° C. were allowed to stand under the same measurement environment, and This is the result of performing the measurement once for 4 days.

【0019】[0019]

【表2】 [Table 2]

【0020】表2でわかることは、ダミーガラスの偏差
量は最大10μm程度あり、その偏差量を補正した後の
実変化量が測定精度である。その精度は0±0.4μm
の高精度で測定できることがわかる。
As can be seen from Table 2, the deviation amount of the dummy glass is about 10 μm at maximum, and the actual change amount after correcting the deviation amount is the measurement accuracy. The accuracy is 0 ± 0.4 μm
It can be seen that the measurement can be performed with high accuracy.

【0021】[0021]

【発明の効果】本発明は、以下に示す如き従来技術にな
い顕著な効果を有する。 1.本発明においては、熱処理前後のガラス板の収縮量
を測定する基準位置としてビッカース圧痕のくぼみの頂
点または圧痕の稜線を利用していることが特徴であり、
該頂点および稜線は熱処理によって消失も変形も認めら
れないことが確認されており、それ故、微小な収縮量を
きわめて精度よく測定できる。 2.1〜2ppmの微小熱収縮率の測定が可能である。 3.板ガラス製造工程におけるガラス板の最適徐冷条件
の把握が容易になる。
The present invention has the following remarkable effects not found in the prior art. 1. In the present invention, it is characterized by using the apex of the depression of the Vickers indentation or the ridgeline of the indentation as a reference position for measuring the amount of shrinkage of the glass plate before and after heat treatment,
It has been confirmed that the vertices and ridges are neither disappeared nor deformed by heat treatment, and therefore, the minute shrinkage amount can be measured with extremely high accuracy. It is possible to measure a minute thermal shrinkage of 2.1 to 2 ppm. 3. It becomes easy to understand the optimum slow cooling conditions for the glass sheet in the sheet glass manufacturing process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の説明図。FIG. 1 is an explanatory diagram of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

L:ビッカース圧痕のくぼみの頂点または該圧痕の稜線
の間の距離
L: Distance between the apex of the depression of the Vickers indentation or the ridgeline of the indentation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】熱処理による板ガラスの長さの収縮量の測
定方法であって、被測定板ガラスの面に所要の距離を隔
てて選んだ2箇所にそれぞれ1個のビッカース圧痕をつ
け、該板ガラスの熱処理の前後におけるそれぞれの該ビ
ッカース圧痕のくぼみの頂点または該圧痕の稜線の間の
距離を測定し収縮量を求めることを特徴とする熱処理に
よる板ガラスの微小熱収縮量の測定方法。
1. A method for measuring the amount of contraction of the length of a sheet glass by heat treatment, wherein one Vickers indentation is made at each of two locations selected on the surface of the sheet glass to be measured with a required distance therebetween, A method for measuring a small amount of heat shrinkage of a sheet glass by heat treatment, characterized in that a shrinkage amount is obtained by measuring a distance between vertices of dents of the Vickers indentation or a ridgeline of the indentation before and after heat treatment.
【請求項2】前記距離の測定を、前記被測定板ガラスお
よび該被測定板ガラスと同様形状を有するダミー板ガラ
スについてほぼ同時に測定することを特徴とする請求項
1記載の板ガラスの微小熱収縮量の測定方法。
2. The measurement of the small amount of heat shrinkage of the plate glass according to claim 1, wherein the distance is measured for the plate glass for measurement and the dummy plate glass having the same shape as the plate glass for measurement almost at the same time. Method.
【請求項3】前記被測定板ガラス、前記ダミー板ガラス
および測定装置を温度24℃±2℃の環境に12時間以
上静置した後測定を行うことを特徴とする請求項1また
は2記載の板ガラスの微小熱収縮量の測定方法。
3. The plate glass according to claim 1, wherein the plate glass to be measured, the dummy plate glass and the measuring device are allowed to stand for 12 hours or more in an environment of a temperature of 24 ° C. ± 2 ° C. and then measured. Measuring method of micro heat shrinkage.
JP32267192A 1992-11-06 1992-11-06 Method for measuring very small amount of thermal shrinkage of plate glass Withdrawn JPH06144856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32267192A JPH06144856A (en) 1992-11-06 1992-11-06 Method for measuring very small amount of thermal shrinkage of plate glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32267192A JPH06144856A (en) 1992-11-06 1992-11-06 Method for measuring very small amount of thermal shrinkage of plate glass

Publications (1)

Publication Number Publication Date
JPH06144856A true JPH06144856A (en) 1994-05-24

Family

ID=18146311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32267192A Withdrawn JPH06144856A (en) 1992-11-06 1992-11-06 Method for measuring very small amount of thermal shrinkage of plate glass

Country Status (1)

Country Link
JP (1) JPH06144856A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454302A (en) * 2013-09-18 2013-12-18 四川旭虹光电科技有限公司 Method for measuring shrinkage factor of PDP (Plasma Display Panel) glass
CN104237298A (en) * 2014-09-23 2014-12-24 海南中航特玻材料有限公司 Method for testing shrinkage rate of electronic flat glass
CN105527313A (en) * 2015-12-30 2016-04-27 东旭科技集团有限公司 A glass shrinkage measuring method
JP2017065981A (en) * 2015-09-30 2017-04-06 AvanStrate株式会社 Method and device for measuring thermal shrinkage rate of glass substrate, and method for manufacturing glass substrate
CN106645270A (en) * 2016-11-24 2017-05-10 深圳市星源材质科技股份有限公司 Thermal contraction testing device of lithium-ion battery separator and application method
CN107228876A (en) * 2017-06-26 2017-10-03 东旭科技集团有限公司 A kind of method for evaluating glass substrate thermal contraction
JP2017181388A (en) * 2016-03-31 2017-10-05 AvanStrate株式会社 Thermal shrinkage measurement method of glass substrate and thermal shrinkage measurement device, and manufacturing method of glass substrate
CN108918579A (en) * 2018-05-15 2018-11-30 中国科学院合肥物质科学研究院 A kind of method for automatic measurement of film shrink rate
CN109142687A (en) * 2018-08-14 2019-01-04 佛山市天宝利硅工程科技有限公司 A kind of mold and its method measuring sealant linear shrinkage
CN112649465A (en) * 2020-11-20 2021-04-13 吉林大学 Method for testing low-temperature thermal shrinkage coefficient of material by utilizing residual indentation morphology

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454302A (en) * 2013-09-18 2013-12-18 四川旭虹光电科技有限公司 Method for measuring shrinkage factor of PDP (Plasma Display Panel) glass
CN104237298A (en) * 2014-09-23 2014-12-24 海南中航特玻材料有限公司 Method for testing shrinkage rate of electronic flat glass
JP2017065981A (en) * 2015-09-30 2017-04-06 AvanStrate株式会社 Method and device for measuring thermal shrinkage rate of glass substrate, and method for manufacturing glass substrate
CN105527313A (en) * 2015-12-30 2016-04-27 东旭科技集团有限公司 A glass shrinkage measuring method
JP2017181388A (en) * 2016-03-31 2017-10-05 AvanStrate株式会社 Thermal shrinkage measurement method of glass substrate and thermal shrinkage measurement device, and manufacturing method of glass substrate
CN106645270A (en) * 2016-11-24 2017-05-10 深圳市星源材质科技股份有限公司 Thermal contraction testing device of lithium-ion battery separator and application method
CN106645270B (en) * 2016-11-24 2020-11-24 深圳市星源材质科技股份有限公司 Lithium ion battery diaphragm thermal shrinkage testing device and using method
CN107228876A (en) * 2017-06-26 2017-10-03 东旭科技集团有限公司 A kind of method for evaluating glass substrate thermal contraction
CN107228876B (en) * 2017-06-26 2021-01-12 东旭光电科技股份有限公司 Method for evaluating thermal shrinkage of glass substrate
CN108918579A (en) * 2018-05-15 2018-11-30 中国科学院合肥物质科学研究院 A kind of method for automatic measurement of film shrink rate
CN109142687A (en) * 2018-08-14 2019-01-04 佛山市天宝利硅工程科技有限公司 A kind of mold and its method measuring sealant linear shrinkage
CN112649465A (en) * 2020-11-20 2021-04-13 吉林大学 Method for testing low-temperature thermal shrinkage coefficient of material by utilizing residual indentation morphology
CN112649465B (en) * 2020-11-20 2021-09-21 吉林大学 Method for testing low-temperature thermal shrinkage coefficient of material by utilizing residual indentation morphology

Similar Documents

Publication Publication Date Title
US6694634B2 (en) Position error evaluation method of moving device and method of improving movement accuracy based on evaluation results thereof
JPH06144856A (en) Method for measuring very small amount of thermal shrinkage of plate glass
KR20100023854A (en) Photomask substrate, photomask substrate forming member, photomask substrate manufacturing method, photomask, and exposure method using photomask
JPH11351857A (en) Method and apparatus for measurement of surface shape of thin plate
KR19980080075A (en) Wafer with laser mark
CN105527313A (en) A glass shrinkage measuring method
JP2007108037A (en) Position measurement method, distance measurement method and position measurement device
Theocaris The moiré method in thermal fields: Differential moiré method is used to analyze the strains and stresses in externally loaded bodies at elevated temperatures
Hickson A replica technique for measuring static strains
Mergerian et al. Diamond-machined geodesic lenses in LiNbO3
CN101542230A (en) Method and apparatus for distortion measurement imaging
JP2018105747A (en) Glass substrate inspection method and manufacturing method
JPH05149899A (en) Dimension change measurement device
JPH0579828A (en) Flatness measuring apparatus
US3948090A (en) Method of measuring dimensional variations in a workpiece
Östlund et al. Experimental determination of residual stresses in paperboard
Fütterer et al. Viscoelastic deformation of borosilicate glass substrates induced by a laser-patterned silicon suboxide film
Mainsah et al. Calibration of translational tables for use in three-dimensional surface topography measurement systems
US7286217B2 (en) Power driven coaxial-rotating fast-orientation system and method
US3487547A (en) Self-calibrating multilaterative plate comparator
Sherrington et al. Performance assessment of stylus based areal roughness measurement systems
Tilton et al. Refractive uniformity of a borosilicate glass after different annealing treatments
Adams Dislocation mobility and density in zinc single crystals
CN114646284A (en) Temperature compensation method for geometric parameters of precision gear
WO2023004048A1 (en) Optical system, laser spot position determination process, and calibration process for deterministically shaping substrates using laser pulses

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000201