JPH06140324A - Method of crystallizing semiconductor film - Google Patents

Method of crystallizing semiconductor film

Info

Publication number
JPH06140324A
JPH06140324A JP30795892A JP30795892A JPH06140324A JP H06140324 A JPH06140324 A JP H06140324A JP 30795892 A JP30795892 A JP 30795892A JP 30795892 A JP30795892 A JP 30795892A JP H06140324 A JPH06140324 A JP H06140324A
Authority
JP
Japan
Prior art keywords
film
thin film
amorphous silicon
semiconductor thin
temperature range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30795892A
Other languages
Japanese (ja)
Inventor
Eiichi Onaka
栄一 尾中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP30795892A priority Critical patent/JPH06140324A/en
Publication of JPH06140324A publication Critical patent/JPH06140324A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To enlarge the grain size of a polysilicon film. CONSTITUTION:An amorphous silicon film 15 is crystallized and made a polysilicon film 16 by making an amorphous silicon film 15 on the topside of a base insulating film 14, where silicon nitride films 12 and silicon oxide films 13 are arranged in order alternately in stripe shapes or mosaic shapes, and applying excimer laser. In this case, since on the side of the silicon nitride film 1 higher in heat conductivity than the silicon oxide film 13, the heat is easy to radiate, the temperature of the amorphous silicon film 15 on the silicon nitride film 12 becomes lower than that of the amorphous silicon film 15 on the silicon oxide film 13 even if the amorphous silicon film 15 is heated nearly equally by laser irradiation. As a result, the growth speed of crystals from the nuclei of crystals existing in high-temperature range becomes higher than the growth speed of the crystals from the nuclei of crystals existing in the low temperature range, and the crystal grains having grown from the high- temperature range widens to the low-temperature range, and the grain size becomes large.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は半導体薄膜の結晶化方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor thin film crystallization method.

【0002】[0002]

【従来の技術】例えばアモルファスシリコン薄膜を結晶
化して薄膜トランジスタを製造する方法には、図2
(A)に示すように、ガラス基板1の上面に酸化シリコ
ンからなる下地絶縁膜2を形成し、この下地絶縁膜2の
上面にアモルファスシリコン薄膜3を形成し、このアモ
ルファスシリコン薄膜3にエキシマレーザを照射するこ
とにより該アモルファスシリコン薄膜3を結晶化してポ
リシリコン薄膜4とし、このポリシリコン薄膜4を素子
分離して薄膜トランジスタ形成領域を形成する方法があ
る。この場合、エキシマレーザのスポットサイズが直径
数mm程度とかなり小さいので、エキシマレーザをx方
向にスキャンさせてアモルファスシリコン薄膜3全体を
照射するようにしている。
2. Description of the Related Art For example, a method for manufacturing a thin film transistor by crystallizing an amorphous silicon thin film is described in FIG.
As shown in (A), a base insulating film 2 made of silicon oxide is formed on the upper surface of a glass substrate 1, an amorphous silicon thin film 3 is formed on the upper surface of the base insulating film 2, and an excimer laser is formed on the amorphous silicon thin film 3. There is a method in which the amorphous silicon thin film 3 is crystallized into a polysilicon thin film 4 by irradiating with, and the polysilicon thin film 4 is separated into elements to form a thin film transistor forming region. In this case, since the spot size of the excimer laser is as small as about several mm in diameter, the excimer laser is scanned in the x direction to irradiate the entire amorphous silicon thin film 3.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
このような半導体薄膜の結晶化方法では、エキシマレー
ザを照射された直径数mmの範囲内におけるアモルファ
スシリコン薄膜3がほぼ均等に加熱され、このため図2
(B)に示すように、レーザ照射範囲内におけるアモル
ファスシリコン薄膜3の温度分布がほぼ均等となり、こ
の結果レーザ照射範囲内におけるアモルファスシリコン
薄膜3中に存在する結晶核から非選択的に結晶粒が成長
するが、非選択的であるので結晶成長がすぐに飽和して
しまい、したがってグレインサイズの大きなポリシリコ
ン薄膜4を得ることができないという問題があった。こ
の発明の目的は、グレインサイズを大きくすることので
きる半導体薄膜の結晶化方法を提供することにある。
However, in such a conventional method for crystallizing a semiconductor thin film, the amorphous silicon thin film 3 within a range of a few mm in diameter irradiated with an excimer laser is heated almost uniformly, which is why Figure 2
As shown in (B), the temperature distribution of the amorphous silicon thin film 3 within the laser irradiation range becomes substantially uniform, and as a result, crystal grains are non-selectively selected from the crystal nuclei present in the amorphous silicon thin film 3 within the laser irradiation range. Although it grows, there is a problem in that the crystal growth is saturated immediately because it is non-selective, so that the polysilicon thin film 4 having a large grain size cannot be obtained. An object of the present invention is to provide a method of crystallizing a semiconductor thin film which can increase the grain size.

【0004】[0004]

【課題を解決するための手段】この発明は、熱伝導率の
異なる2種類の膜をストライプ状又はモザイク状に交互
に配列してなる下地絶縁膜上に半導体薄膜を形成し、レ
ーザを照射することにより、前記半導体薄膜を結晶化す
るようにしたものである。
According to the present invention, a semiconductor thin film is formed on a base insulating film formed by alternately arranging two kinds of films having different thermal conductivities in a stripe shape or a mosaic shape, and laser irradiation is performed. As a result, the semiconductor thin film is crystallized.

【0005】[0005]

【作用】この発明によれば、下地絶縁膜のうち熱伝導率
の高い方の膜の方が熱伝導率の低い方の膜よりも熱が逃
げやすいので、レーザ照射範囲内における半導体薄膜が
ほぼ均等に加熱されても、熱伝導率の高い方の膜上に形
成された半導体薄膜の温度が熱伝導率の低い方の膜上に
形成された半導体薄膜の温度に比べて低温となり、この
ため高温領域の半導体薄膜中に存在する結晶核からの結
晶成長速度が低温領域の半導体薄膜中に存在する結晶核
からの結晶成長速度よりも速くなり、この結果高温領域
から成長した結晶粒が低温領域まで広がることとなり、
したがってグレインサイズを大きくすることができる。
According to the present invention, since the film having the higher thermal conductivity of the underlying insulating film is more likely to release the heat than the film having the lower thermal conductivity, the semiconductor thin film in the laser irradiation range is almost Even if heated uniformly, the temperature of the semiconductor thin film formed on the film with higher thermal conductivity becomes lower than the temperature of the semiconductor thin film formed on the film with lower thermal conductivity. The crystal growth rate from the crystal nuclei present in the semiconductor thin film in the high temperature region becomes faster than the crystal growth rate from the crystal nuclei present in the semiconductor thin film in the low temperature region, so that the crystal grains grown from the high temperature region are It will spread to
Therefore, the grain size can be increased.

【0006】[0006]

【実施例】図1(A)はこの発明の一実施例における半
導体薄膜の結晶化方法を説明するために示す断面図であ
る。この半導体薄膜の結晶化方法では、まず、ガラス基
板11の上面全体にプラズマCVDにより窒化シリコン
膜12を数千Åの厚さに堆積し、次いでこれを周知のフ
ォトリソグラフィにより幅および間隔が共に数μmのピ
ッチでストライプ状又はモザイク状にパターンニングす
る。次に、窒化シリコン膜12間におけるガラス基板1
1の上面に、スピン塗布およびその後の熱処理により、
SOG(spin on glass)膜と呼ばれる無機質の酸化シ
リコン膜13を形成する。これにより、ガラス基板11
の上面には、窒化シリコン膜12と酸化シリコン膜13
とをストライプ状又はモザイク状に交互に配列してなる
下地絶縁膜14が形成されることになる。この場合、窒
化シリコン膜12および酸化シリコン膜13の幅は共に
数μmであって、エキシマレーザのスポットサイズ(直
径数mm)よりもかなり小さくなっている。次に、下地
絶縁膜14の上面にプラズマCVDによりアモルファス
シリコン薄膜15を500Å程度の厚さに堆積する。次
に、波長308nmのXeClエキシマレーザをx方向
にスキャンさせて照射すると、次に詳述するように、ア
モルファスシリコン薄膜15が結晶化してポリシリコン
薄膜16となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1A is a sectional view shown for explaining a method of crystallizing a semiconductor thin film in an embodiment of the present invention. In this method of crystallizing a semiconductor thin film, first, a silicon nitride film 12 is deposited on the entire upper surface of a glass substrate 11 by plasma CVD to a thickness of several thousand Å, and then this is formed by well-known photolithography in both width and interval. Patterning is performed in a stripe shape or a mosaic shape with a pitch of μm. Next, the glass substrate 1 between the silicon nitride films 12
Spin coating and subsequent heat treatment on the upper surface of 1
An inorganic silicon oxide film 13 called an SOG (spin on glass) film is formed. Thereby, the glass substrate 11
On the upper surface of the silicon nitride film 12 and the silicon oxide film 13
The base insulating film 14 is formed by alternately arranging and in a stripe shape or a mosaic shape. In this case, the width of both the silicon nitride film 12 and the silicon oxide film 13 is several μm, which is considerably smaller than the spot size (diameter several mm) of the excimer laser. Next, an amorphous silicon thin film 15 is deposited on the upper surface of the base insulating film 14 by plasma CVD to a thickness of about 500 Å. Next, when a XeCl excimer laser having a wavelength of 308 nm is scanned and irradiated in the x direction, the amorphous silicon thin film 15 is crystallized and becomes a polysilicon thin film 16, as described in detail below.

【0007】ここで、アモルファスシリコン薄膜15の
結晶化について説明する。下地絶縁膜14のうち窒化シ
リコン膜12の熱伝導率は酸化シリコン膜13の熱伝導
率よりも高いので、窒化シリコン膜12の方が酸化シリ
コン膜13よりも熱が逃げやすい。しかも、窒化シリコ
ン膜12および酸化シリコン膜13の幅が共に数μmで
あって、エキシマレーザのスポットサイズ(直径数m
m)よりもかなり小さくなっているので、レーザ照射範
囲内におけるアモルファスシリコン薄膜15がほぼ均等
に加熱されても、熱伝導率の高い窒化シリコン膜12上
に形成されたアモルファスシリコン薄膜15の温度が熱
伝導率の低い酸化シリコン膜13上に形成されたアモル
ファスシリコン薄膜15の温度に比べて低温となる。こ
のため、図1(B)に示すように、レーザ照射範囲内に
おけるアモルファスシリコン薄膜15の温度分布は高温
と低温が交互に繰り返される温度分布となる。この結
果、高温領域つまり熱伝導率の低い酸化シリコン膜13
上のアモルファスシリコン薄膜15中に存在する結晶核
からの結晶成長速度が低温領域つまり熱伝導率の高い窒
化シリコン膜12上のアモルファスシリコン薄膜15中
に存在する結晶核からの結晶成長速度よりも速くなり、
高温領域から成長した結晶粒が低温領域まで広がること
となる。したがって、グレインサイズの大きなポリシリ
コン薄膜16を得ることができる。
Here, crystallization of the amorphous silicon thin film 15 will be described. Since the thermal conductivity of the silicon nitride film 12 of the base insulating film 14 is higher than that of the silicon oxide film 13, the silicon nitride film 12 is more likely to release heat than the silicon oxide film 13. Moreover, the widths of both the silicon nitride film 12 and the silicon oxide film 13 are several μm, and the spot size of the excimer laser (diameter several m
m) is much smaller than m), the temperature of the amorphous silicon thin film 15 formed on the silicon nitride film 12 having a high thermal conductivity is high even if the amorphous silicon thin film 15 is heated almost uniformly within the laser irradiation range. The temperature is lower than the temperature of the amorphous silicon thin film 15 formed on the silicon oxide film 13 having low thermal conductivity. Therefore, as shown in FIG. 1B, the temperature distribution of the amorphous silicon thin film 15 in the laser irradiation range is a temperature distribution in which high temperature and low temperature are alternately repeated. As a result, in the high temperature region, that is, the silicon oxide film 13 having a low thermal conductivity.
The crystal growth rate from the crystal nuclei present in the upper amorphous silicon thin film 15 is higher than the crystal growth rate from the crystal nuclei present in the amorphous silicon thin film 15 on the silicon nitride film 12 having a high thermal conductivity in a low temperature region. Becomes
The crystal grains grown from the high temperature region will spread to the low temperature region. Therefore, the polysilicon thin film 16 having a large grain size can be obtained.

【0008】[0008]

【発明の効果】以上説明したように、この発明によれ
ば、レーザ照射範囲内における半導体薄膜がほぼ均等に
加熱されても、熱伝導率の高い方の下地絶縁膜上に形成
された半導体薄膜の温度を熱伝導率の低い方の下地絶縁
膜上に形成された半導体薄膜の温度に比べて低温とする
ことができるので、高温領域の半導体薄膜中に存在する
結晶核からの結晶成長速度が低温領域の半導体薄膜中に
存在する結晶核からの結晶成長速度よりも速くなり、高
温領域から成長した結晶粒を低温領域まで広げることが
でき、したがってグレインサイズを大きくすることがで
きる。
As described above, according to the present invention, even if the semiconductor thin film within the laser irradiation range is heated substantially evenly, the semiconductor thin film formed on the underlying insulating film having the higher thermal conductivity. Since the temperature of can be made lower than the temperature of the semiconductor thin film formed on the lower insulating film having lower thermal conductivity, the crystal growth rate from the crystal nuclei existing in the semiconductor thin film in the high temperature region The crystal growth rate from the crystal nuclei existing in the semiconductor thin film in the low temperature region becomes faster, the crystal grains grown from the high temperature region can be spread to the low temperature region, and therefore the grain size can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)はこの発明の一実施例における半導体薄
膜の結晶化方法を説明するために示す断面図、(B)は
レーザ照射範囲内におけるアモルファスシリコン薄膜の
温度分布を示す図。
FIG. 1A is a sectional view for explaining a method of crystallizing a semiconductor thin film according to an embodiment of the present invention, and FIG. 1B is a diagram showing a temperature distribution of an amorphous silicon thin film within a laser irradiation range.

【図2】(A)は従来の半導体薄膜の結晶化方法を説明
するために示す断面図、(B)はレーザ照射範囲内にお
けるアモルファスシリコン薄膜の温度分布を示す図。
2A is a cross-sectional view shown for explaining a conventional method for crystallizing a semiconductor thin film, and FIG. 2B is a view showing a temperature distribution of an amorphous silicon thin film within a laser irradiation range.

【符号の説明】[Explanation of symbols]

11 ガラス基板 12 窒化シリコン膜 13 酸化シリコン膜 14 下地絶縁膜 15 アモルファスシリコン薄膜 16 ポリシリコン薄膜 11 glass substrate 12 silicon nitride film 13 silicon oxide film 14 base insulating film 15 amorphous silicon thin film 16 polysilicon thin film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 熱伝導率の異なる2種類の膜をストライ
プ状又はモザイク状に交互に配列してなる下地絶縁膜上
に半導体薄膜を形成し、レーザを照射することにより、
前記半導体薄膜を結晶化することを特徴とする半導体薄
膜の結晶化方法。
1. A semiconductor thin film is formed on a base insulating film formed by alternately arranging two kinds of films having different thermal conductivities in a stripe shape or a mosaic shape, and by irradiating a laser,
A method for crystallizing a semiconductor thin film, which comprises crystallizing the semiconductor thin film.
【請求項2】 前記下地絶縁膜のうち熱伝導率の高い方
の膜は窒化シリコン膜からなることを特徴とする請求項
1記載の半導体薄膜の結晶化方法。
2. The method of crystallizing a semiconductor thin film according to claim 1, wherein a film having a higher thermal conductivity of the base insulating film is a silicon nitride film.
【請求項3】 前記下地絶縁膜のうち熱伝導率の低い方
の膜は酸化シリコン膜からなることを特徴とする請求項
2記載の半導体薄膜の結晶化方法。
3. The method of crystallizing a semiconductor thin film according to claim 2, wherein a film having a lower thermal conductivity of the base insulating film is a silicon oxide film.
JP30795892A 1992-10-23 1992-10-23 Method of crystallizing semiconductor film Pending JPH06140324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30795892A JPH06140324A (en) 1992-10-23 1992-10-23 Method of crystallizing semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30795892A JPH06140324A (en) 1992-10-23 1992-10-23 Method of crystallizing semiconductor film

Publications (1)

Publication Number Publication Date
JPH06140324A true JPH06140324A (en) 1994-05-20

Family

ID=17975222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30795892A Pending JPH06140324A (en) 1992-10-23 1992-10-23 Method of crystallizing semiconductor film

Country Status (1)

Country Link
JP (1) JPH06140324A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5783257A (en) * 1994-06-17 1998-07-21 Tokyo Electron Limited Method for forming doped polysilicon films
US5930609A (en) * 1996-03-22 1999-07-27 U.S. Philips Corporation Electronic device manufacture
US6528397B1 (en) 1997-12-17 2003-03-04 Matsushita Electric Industrial Co., Ltd. Semiconductor thin film, method of producing the same, apparatus for producing the same, semiconductor device and method of producing the same
US6815269B2 (en) 2002-05-08 2004-11-09 Nec Lcd Technologies, Ltd. Thin-film transistor and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5783257A (en) * 1994-06-17 1998-07-21 Tokyo Electron Limited Method for forming doped polysilicon films
US5930609A (en) * 1996-03-22 1999-07-27 U.S. Philips Corporation Electronic device manufacture
US6528397B1 (en) 1997-12-17 2003-03-04 Matsushita Electric Industrial Co., Ltd. Semiconductor thin film, method of producing the same, apparatus for producing the same, semiconductor device and method of producing the same
US6806498B2 (en) 1997-12-17 2004-10-19 Matsushita Electric Industrial Co., Ltd. Semiconductor thin film, method and apparatus for producing the same, and semiconductor device and method of producing the same
US6815269B2 (en) 2002-05-08 2004-11-09 Nec Lcd Technologies, Ltd. Thin-film transistor and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US5683935A (en) Method of growing semiconductor crystal
TWI294648B (en) Method for manufacturing polysilicon film
JP4211967B2 (en) Method for crystallizing silicon using mask
JP3586558B2 (en) Method for reforming thin film and apparatus used for implementing the method
JP3156776B2 (en) Laser irradiation method
US6235614B1 (en) Methods of crystallizing amorphous silicon layer and fabricating thin film transistor using the same
JPH084067B2 (en) Method for manufacturing semiconductor device
KR100611764B1 (en) fabrication method of Thin Film Transitor
US4773964A (en) Process for the production of an oriented monocrystalline silicon film with localized defects on an insulating support
JP4237278B2 (en) Formation method of silicon single crystal using nucleation site
JP4203141B2 (en) Method for crystallizing amorphous silicon layer and method for producing thin film transistor using the same
US4661167A (en) Method for manufacturing a monocrystalline semiconductor device
US5821135A (en) Methods for and applications of making buried structures in semiconductor thin films
JPH06140321A (en) Method of crystallizing of semiconductor film
JPH06140324A (en) Method of crystallizing semiconductor film
US4678538A (en) Process for the production of an insulating support on an oriented monocrystalline silicon film with localized defects
JPS62160712A (en) Manufacture of semiconductor device
JP2006013425A (en) Thin film transistor and its manufacturing method
JP3955959B2 (en) Laser irradiation apparatus and laser irradiation method
JPS61251115A (en) Growth of semiconductor single crystal on insulating film
JPH06140323A (en) Method of crystallizing semiconductor film
JP2003309068A (en) Semiconductor film and forming method therefor, and semiconductor device and manufacturing method therefor
JPS5979531A (en) Forming method of thin-film
JP2001176796A (en) Forming method of semiconductor film, and semiconductor device
JPH01147826A (en) Manufacture of multilayer semiconductor substrate