JPH06140286A - Electrical double layer capacitor - Google Patents

Electrical double layer capacitor

Info

Publication number
JPH06140286A
JPH06140286A JP28724792A JP28724792A JPH06140286A JP H06140286 A JPH06140286 A JP H06140286A JP 28724792 A JP28724792 A JP 28724792A JP 28724792 A JP28724792 A JP 28724792A JP H06140286 A JPH06140286 A JP H06140286A
Authority
JP
Japan
Prior art keywords
double layer
layer capacitor
electric double
electrolyte
conductive glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28724792A
Other languages
Japanese (ja)
Inventor
Ichiro Tanahashi
一郎 棚橋
Tsuneo Mitsuyu
常男 三露
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28724792A priority Critical patent/JPH06140286A/en
Publication of JPH06140286A publication Critical patent/JPH06140286A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Glass Compositions (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PURPOSE:To offer an electrical double layer capacitor high in decomposition voltage, low in internal resistance, high in reliability, and free from electrolyte leakage. CONSTITUTION:Mixtures 1 and 2 which are composed of phenol activated carbon particles and super ionic conduction glass and made to serve as polarizable electrodes are arranged confronting each other through the intermediary of electrolyte of super-ionic conduction glass 5 of Li3.6P0.4Si0.6O4 produced through a melting.quenching method, and a casing composed of an upper member 6 (sealing plate) and a lower member 7 (case) is sealed up by caulking through the intermediary of a polypropylene packing 8 for the formation of a coin-type electric double-layer capacitor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、全固体の小型大容量の
電気二重層キャパシタに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an all-solid-state small-sized large-capacity electric double layer capacitor.

【0002】[0002]

【従来の技術】近年、半導体メモリーバックアップ用の
小型電源として電気二重層キャパシタが広く使用される
ようになってきた。そして、電解液の漏液がなく、自己
放電の小さなより信頼性の高いキャパシタの開発が望ま
れている。
2. Description of the Related Art In recent years, electric double layer capacitors have been widely used as a small power source for backing up a semiconductor memory. Further, there is a demand for the development of a more reliable capacitor with less self-discharge and no electrolyte leakage.

【0003】この分野における従来の技術としては、
(A)電解質に、金属イオン伝導性を有する多結晶体の
固体電解質を用いるキャパシタとして、例えば特開昭5
3−61053号公報に示されたものがある。
As a conventional technique in this field,
(A) A capacitor using a polycrystalline solid electrolyte having metal ion conductivity as the electrolyte is disclosed in, for example, Japanese Patent Laid-Open Publication No.
There is one disclosed in Japanese Patent Laid-Open No. 3-61053.

【0004】このキャパシタは、電解質に銅イオン伝導
性を有する固体電解質を用いたものである。また、
(B)電解液に、電気化学的に安定な電解質を溶解した
有機溶媒を用い、活性炭粉末を分極性電極に用いたもの
として、例えば特開昭49−68254号公報に示され
たものがある。
This capacitor uses a solid electrolyte having copper ion conductivity as an electrolyte. Also,
(B) An example in which an organic solvent in which an electrochemically stable electrolyte is dissolved is used as an electrolytic solution and activated carbon powder is used as a polarizable electrode is disclosed in, for example, JP-A-49-68254. .

【0005】このキャパシタは、テトラアルキルアンモ
ニウムの過塩素酸塩を炭酸プロピレン等の有機溶媒に溶
解した有機電解液を用いたものである。
This capacitor uses an organic electrolytic solution in which a peralkyl salt of tetraalkylammonium is dissolved in an organic solvent such as propylene carbonate.

【0006】[0006]

【発明が解決しようとする課題】上記のような構成の電
気二重層キャパシタでは、前記(A)に記載したような
金属イオン伝導性を有する多結晶体の固体電解質を用い
た場合には、多結晶体の固体電解質の分解電圧が低い
(0.6 V以下)ためキャパシタの耐電圧を高めるこ
とが困難であり、さらに、固体電解質の電気伝導度も十
分大きくないため、内部抵抗の小さな放電特性の優れた
キャパシタを得ることが困難であると言った問題があ
る。
In the electric double layer capacitor having the above-mentioned structure, when the polycrystalline solid electrolyte having metal ion conductivity as described in (A) above is used, the It is difficult to increase the withstand voltage of the capacitor because the decomposition voltage of the solid electrolyte of the crystal is low (0.6 V or less). Furthermore, since the electric conductivity of the solid electrolyte is not sufficiently high, the discharge characteristics with a small internal resistance can be obtained. However, there is a problem that it is difficult to obtain the excellent capacitor.

【0007】また、前記(B)に記載したような有機電
解液を用いた場合には、電解液の漏液を完全に防止する
ことが困難であり、広い温度範囲で信頼性の高いキャパ
シタを作製することが難しいと言った問題がある。
Further, when the organic electrolytic solution as described in the above (B) is used, it is difficult to completely prevent the electrolytic solution from leaking, and a capacitor having a high reliability in a wide temperature range can be obtained. There is a problem that it is difficult to make.

【0008】本発明は、前記課題を解決し従来よりも分
解電圧が高く、内部抵抗の小さなさらに漏液のない信頼
性の高いキャパシタを提供することを目的とする。
An object of the present invention is to solve the above-mentioned problems and to provide a highly reliable capacitor having a higher decomposition voltage than the conventional one, a small internal resistance and further no leakage.

【0009】[0009]

【課題を解決するための手段】本発明は、上記従来技術
の課題を解決するため、本発明の第1の電気二重層キャ
パシタの発明は、電解質に超イオン伝導ガラスを用い、
正極と負極の分極性電極に活性炭を用いたことを特徴と
する。
In order to solve the above-mentioned problems of the prior art, the first invention of the electric double layer capacitor of the present invention uses a super-ion conductive glass as an electrolyte,
It is characterized in that activated carbon is used for the polarizable electrodes of the positive electrode and the negative electrode.

【0010】また、本発明の第2の電気二重層キャパシ
タの発明は、電解質に超イオン伝導ガラスを用い、正極
の分極性電極に活性炭を負極の非分極性電極にリチウム
またはリチウムを吸蔵、放出できる金属を用いたことを
特徴とする。
The second electric double layer capacitor of the present invention uses superionic conductive glass as an electrolyte, and occludes and releases activated carbon as a polarizable electrode of a positive electrode and lithium or lithium as a nonpolarizable electrode of a negative electrode. It is characterized by using a metal that can be used.

【0011】また、本発明の第3の電気二重層キャパシ
タの発明は、電解質に超イオン伝導ガラスを用い、正極
の分極性電極に活性炭を負極の非分極性電極に銀を用い
たことを特徴とする。
The invention of the third electric double layer capacitor of the present invention is characterized in that a superionic conductive glass is used as an electrolyte, activated carbon is used for the polarizable electrode of the positive electrode and silver is used for the non-polarizable electrode of the negative electrode. And

【0012】前記第1〜第3の発明に於いては、電気二
重層キャパシタに用いる超イオン伝導ガラスのイオン伝
導体がリチウムまたは銀であることが好ましい。また、
前述したいずれかの電気二重層キャパシタの発明に於い
ては、分極性電極がフェノール系、ピッチ系、ポリアク
リロニトリル系の粉末状の活性炭から選ばれた少なくと
も1種であることが好ましい。
In the first to third inventions, it is preferable that the ionic conductor of the super ionic conductive glass used in the electric double layer capacitor is lithium or silver. Also,
In the invention of any one of the electric double layer capacitors described above, the polarizable electrode is preferably at least one selected from phenol-based, pitch-based, and polyacrylonitrile-based powdered activated carbon.

【0013】また、本発明の前記第2の電気二重層キャ
パシタの発明に於いては、リチウムを吸蔵、放出できる
金属が、亜鉛、ビスマス、スズ、鉛、カドミウム、イン
ジウムからなる群から選択された金属単体または前記金
属における組合せ可能な合金であることが好ましい。
In the invention of the second electric double layer capacitor of the present invention, the metal capable of inserting and extracting lithium is selected from the group consisting of zinc, bismuth, tin, lead, cadmium and indium. It is preferable that the metal is a simple substance or an alloy that can be combined with the metal.

【0014】[0014]

【作用】本発明の電気二重層キャパシタは、電解質に超
イオン伝導ガラスを用いた構成からなるので比較的分解
電圧が高く、ガラス化していない結晶よりもイオンが動
きやすいので内部抵抗を小さくすることができ、そして
超イオン伝導ガラスは固体であるから漏液のない信頼性
の高いものとなる。
The electric double layer capacitor of the present invention has a constitution in which superionic conductive glass is used as an electrolyte, so that the decomposition voltage is relatively high and the ions are more likely to move than in non-vitrified crystals, so the internal resistance should be reduced. And since the super-ion conductive glass is a solid, it is liquid-free and highly reliable.

【0015】また、更に第1の発明に於いては、正極と
負極の分極性電極に活性炭を用いているので、電気化学
的反応によらず、腐食反応が生じることがなく、従って
電気化学的反応により劣化するような部分がなく、信頼
性の高い電気二重層キャパシタを提供することができ
る。
Furthermore, in the first aspect of the invention, since activated carbon is used for the polarizable electrodes of the positive electrode and the negative electrode, no corrosion reaction occurs regardless of the electrochemical reaction, and therefore the electrochemical reaction is not performed. It is possible to provide a highly reliable electric double layer capacitor that has no portion that deteriorates due to reaction.

【0016】また、更に第2の発明に於いては、正極の
分極性電極に活性炭を負極の非分極性電極にリチウムま
たはリチウムを吸蔵、放出できる金属を用いているの
で、二重層容量がより大きく(例えば第1の発明に比べ
て2倍程度)、且つ、信頼性を有する電気二重層キャパ
シタを提供することができる。
Further, in the second invention, the active layer is used for the polarizable electrode of the positive electrode and lithium or the metal capable of absorbing and releasing lithium is used for the non-polarizable electrode of the negative electrode, so that the double layer capacity is further improved. It is possible to provide an electric double layer capacitor that is large (for example, about twice as large as that of the first invention) and has reliability.

【0017】また、更に第3の発明に於いては、正極の
分極性電極に活性炭を負極の非分極性電極に銀を用いて
いるので、二重層容量がより大きく(例えば第1の発明
に比べて2倍程度)、且つ、信頼性を有する電気二重層
キャパシタを提供することができる。
Further, in the third invention, since activated carbon is used for the polarizable electrode of the positive electrode and silver is used for the nonpolarizable electrode of the negative electrode, the double layer capacity is larger (for example, in the first invention. It is possible to provide an electric double layer capacitor having about twice the reliability) and reliability.

【0018】また、本発明の電気二重層キャパシタに於
いて、イオン伝導ガラスのイオン伝導体がリチウムまた
は銀である好ましい態様とすることによって、特にリチ
ウムの場合には分解電圧を最も高くでき、内部抵抗を小
さくし、そして漏液をなくすことができ、また、銀を用
いた場合には内部抵抗を特に小さくすることができ、そ
して漏液をなくすことができるので好ましい。
In the electric double layer capacitor of the present invention, when the ionic conductor of the ionic conductive glass is lithium or silver, the decomposition voltage can be maximized especially in the case of lithium, and It is preferable because the resistance can be reduced and the liquid leakage can be eliminated, and in the case of using silver, the internal resistance can be particularly reduced and the liquid leakage can be eliminated.

【0019】また、本発明の電気二重層キャパシタに於
いて、分極性電極がフェノール系、ピッチ系、ポリアク
リロニトリル系の粉末状の活性炭から選ばれた少なくと
も1種である好ましい態様とすることによって、これら
の活性炭は、椰子殻炭に比べて、純度も高く、比表面積
がおよそ2倍以上であるので、さらに、二重層容量を大
きくし、また、信頼性を高めることができ好ましい。
In the electric double layer capacitor of the present invention, the polarizable electrode is preferably at least one selected from phenol-based, pitch-based, and polyacrylonitrile-based powdered activated carbons. These activated carbons have a higher purity and a specific surface area of about 2 times or more as compared with coconut shell charcoal, so that the double layer capacity can be further increased and the reliability can be improved, which is preferable.

【0020】また、本発明の前記第2の発明の電気二重
層キャパシタの発明に於いて、リチウムを吸蔵、放出で
きる金属が亜鉛、ビスマス、スズ、鉛、カドミウム、イ
ンジウムからなる群から選択された金属単体または上記
金属における組合せ可能な合金である好ましい態様とす
ることによって、繰り返し充放電特性の向上などのキャ
パシタの充放電特性を向上させ、さらに、信頼性を高め
ることができ好ましい。
In the invention of the electric double layer capacitor of the second aspect of the present invention, the metal capable of inserting and extracting lithium is selected from the group consisting of zinc, bismuth, tin, lead, cadmium and indium. The preferred embodiment, which is a simple metal or an alloy that can be combined with the above metals, is preferable because the charge / discharge characteristics of the capacitor such as repeated charge / discharge characteristics can be improved and the reliability can be improved.

【0021】[0021]

【実施例】超イオン伝導性をもつ物質には結晶質のもの
とガラス質のものが知られており、本発明で用いる超イ
オン伝導ガラスとしては、高い伝導度を示すイオン伝導
性のガラスであり、特に限定するものではなく、種々の
組成のガラスを用いることができる。これらの超イオン
伝導ガラスについては、例えば、T. Minami, J. Non-Cr
yst. Solids Vol. 56, P15 (1983) などで知られてい
る。
EXAMPLES Crystalline substances and vitreous substances are known as substances having superionic conductivity. The superionic conductive glass used in the present invention is an ion conductive glass exhibiting high conductivity. There is no particular limitation, and glasses having various compositions can be used. For these superion conducting glasses, see, for example, T. Minami, J. Non-Cr.
Known as yst. Solids Vol. 56, P15 (1983).

【0022】特に、超イオン伝導ガラスのイオン伝導体
がリチウムまたは銀であるものが電気伝導度が大きく好
ましい。また、特にイオン伝導体がリチウムの場合には
分解電圧を最も高くでき、また、銀を用いた場合には内
部抵抗を特に小さくすることができるので好ましい。
Particularly, it is preferable that the ionic conductor of the super ionic conductive glass is lithium or silver because of its high electric conductivity. Particularly, when the ionic conductor is lithium, the decomposition voltage can be maximized, and when silver is used, the internal resistance can be particularly reduced, which is preferable.

【0023】このような超イオン伝導ガラスは、種々の
ガラス原料を混合し溶融後、超急冷することにより作製
できる。溶融温度や超急冷速度については、ガラス組成
によって異なるが、例えば溶融温度としては600〜8
00℃、超急冷速度は、10 3 K/sec 以上が適用され
ている。超急冷方法としては特に限定されるものではな
いが、例えば、冷却されているツインローラーの間を通
過させるとか、冷却されている鉄板などの上にて叩きつ
ける方法等が採用されている。
Such super-ion conductive glass has various properties.
Prepared by mixing glass materials, melting, and then ultra-quenching
it can. Regarding the melting temperature and the ultra-quenching rate, the glass composition
Depending on the melting temperature, for example, the melting temperature is 600 to 8
00 ° C, supercooling rate is 10 3K / sec or more is applied
ing. There is no particular limitation on the ultra-quenching method.
However, for example, it may pass between twin rollers that are cooled.
Or hit it on a cooled iron plate.
The method of kicking is adopted.

【0024】超イオン伝導ガラスの具体例としては、例
えば、リチウムイオン伝導ガラスとしては、Li2 O−
2 3 −LiCl系、LiPO3 −LiCl系、Li
PO 3 −LiI系、Li2 S−B2 3 −LiI系、L
3.6 0.4 Si0.6 4 等が室温で10-6 S・cm-1
上の電気伝導度を示し好ましい。
Specific examples of the superionic conductive glass include
For example, as the lithium ion conductive glass, Li2O-
B2O3-LiCl system, LiPO3-LiCl system, Li
PO 3-LiI system, Li2S-B2S3-LiI system, L
i3.6P0.4Si0.6OFour10 at room temperature-6 S ・ cm-1Since
It is preferable because it exhibits the above electrical conductivity.

【0025】銀イオン伝導ガラスとしては、AgI−A
2 O−P2 5 系、AgI−Ag 2 MoO4 系、Ag
I−Ag2 O−B2 3 系、AgI−Ag2 S−B2
3 系等が室温で10-2 S・cm-1以上の電気伝導度を示し
好ましい。
As the silver ion conductive glass, AgI-A
g2OP2OFiveSystem, AgI-Ag 2MoOFourSystem, Ag
I-Ag2OB2O3System, AgI-Ag2S-B2S
3System is 10 at room temperature-2 S ・ cm-1Shows the above electrical conductivity
preferable.

【0026】本発明で用いる超イオン伝導ガラスの形態
としては、微粒子状のものが好ましく、より具体的に
は、0.5〜200 μmの粒径のものが好ましい。ま
た、他の形態としては薄膜状のものが好ましく、より具
体的には超イオン伝導ガラスの粉末をスパッタ法等によ
り薄膜状とした膜厚が0.1 μm〜3 μm程度のものが好
ましい。
The superionic conductive glass used in the present invention is preferably in the form of fine particles, and more specifically in the form of particles having a particle size of 0.5 to 200 μm. In addition, as another form, a thin film is preferable, and more specifically, a thin film of super ionic conductive glass powder formed by a sputtering method or the like having a film thickness of about 0.1 μm to 3 μm is preferable.

【0027】また、本発明で分極性電極として用いる活
性炭は、特に限定するものではなく、各種の活性炭を用
いることができる。本発明で用いる活性炭の形態として
は、微粒子状のものが好ましく、より具体的には、5〜
100 μmの粒径のものが好ましい。また、繊維状の
ものを用いることもできる。
The activated carbon used as the polarizable electrode in the present invention is not particularly limited, and various activated carbons can be used. The form of the activated carbon used in the present invention is preferably in the form of fine particles, more specifically 5 to
A particle size of 100 μm is preferred. Moreover, a fibrous material can also be used.

【0028】特にフェノール系、ピッチ系、ポリアクリ
ロニトリル(PAN)系の粉末状あるいは繊維状の活性
炭はやし殻炭に比べ比表面積を2倍以上の2000 m
2 -1に高められ、さらに細孔径も2〜4 nmの範囲
に制御することが可能で、二重層容量を高められ好まし
い。
Particularly, phenol type, pitch type, polyacrylic type
Ronitrile (PAN) based powdery or fibrous activity
Charcoal has a specific surface area more than twice that of palm shell coal, 2000 m
2g -1And the pore size is in the range of 2-4 nm
Can be controlled to increase the double-layer capacity.
Yes.

【0029】また、負極の非分極性電極にはリチウムま
たはリチウムを吸蔵、放出できる金属、または銀を用い
ることが好ましく、特に、リチウムを吸蔵、放出できる
金属が亜鉛、ビスマス、スズ、鉛、カドニウム、インジ
ウムの群から選択された金属単体または上記金属におけ
る組合せ可能な種々の合金である好ましい態様とするこ
とによって、キャパシタの充放電特性を向上させること
ができ、好ましい。
For the non-polarizable electrode of the negative electrode, it is preferable to use lithium or a metal capable of occluding and releasing lithium, or silver, and particularly, a metal capable of occluding and releasing lithium is zinc, bismuth, tin, lead or cadmium. The preferred embodiment is a simple metal selected from the group consisting of indium and various alloys that can be combined with the above metals, and this is preferable because the charge and discharge characteristics of the capacitor can be improved.

【0030】以下本発明の具体的実施例について説明す
る。 実施例1 溶融・超急冷法により、Li3.6 0.4 Si0.6 4
成の超イオン伝導ガラスを作製した。このガラスの電気
伝導度は、室温で4×10-6 S cm-1 であった。この
ようにして作製したガラスを粉砕し平均粒径30 μm
の微粒子とした。
Specific examples of the present invention will be described below. The Example 1 melting and rapid quenching method to produce a super-ionic conductor glass Li 3.6 P 0.4 Si 0.6 O 4 composition. The electrical conductivity of this glass was 4 × 10 −6 S cm −1 at room temperature. The glass thus produced was crushed to obtain an average particle size of 30 μm.
Of fine particles.

【0031】また、分極性電極には、比表面積が200
0 m2 -1のフェノール系活性炭粒子(平均粒径20
μm)を用いた。分極性電極である活性炭粒子と超イオ
ン伝導ガラスとの接触抵抗を低減するために、予め両者
を50対50の重量比で混合したものを、150 ℃の
温度で熱処理し乾燥した。
The polarizable electrode has a specific surface area of 200
0 m 2 g -1 phenolic activated carbon particles (average particle size 20
μm) was used. In order to reduce the contact resistance between the activated carbon particles that are polarizable electrodes and the superionic conductive glass, a mixture of both in advance at a weight ratio of 50:50 was heat treated at a temperature of 150 ° C. and dried.

【0032】このようにして作製した分極性電極と超イ
オン伝導ガラスとの混合体を用いて、コイン型電気二重
層キャパシタを構成した。その概略断面図を図1に示
す。図1において、1、2は分極性電極である活性炭と
超イオン伝導ガラスとの混合体を、3、4は集電体を示
す。集電体にはステンレス鋼製メッシュを用いた。
A coin-type electric double layer capacitor was constructed by using the mixture of the polarizable electrode thus prepared and the superionic conductive glass. The schematic sectional view is shown in FIG. In FIG. 1, 1 and 2 represent a mixture of activated carbon, which is a polarizable electrode, and superionic conductive glass, and 3 and 4 represent current collectors. A stainless steel mesh was used as the current collector.

【0033】予め、100 Kg cm-2の圧力で仮プ
レス成形した1と3あるいは2と4を重ね、全体を3 t
on cm-2の圧力で本プレスした。作製した混合体の厚
みは約200μmで、直径は8 mmの円盤状とした。
Preliminarily press-formed 1 and 3 or 2 and 4 with a pressure of 100 Kg cm -2 were piled up, and the whole was 3 t.
Main pressing was performed at a pressure of on cm -2 . The prepared mixture had a thickness of about 200 μm and a disk shape with a diameter of 8 mm.

【0034】別途、上記と同様な仮プレスと本プレスを
行なうことにより、約150 μmの厚みを有する超イ
オン伝導ガラス5からなる電解質を作製し、図1に示し
た構成のように超イオン伝導ガラス5の電解質を介して
分極性電極と超イオン伝導ガラスとの混合体1、2とを
相対向させ、ケーシングの上部部材6(封口板)、下部
部材7(ケース)をポリプロピレン製パッキング8を介
してかしめ封口した。上部部材6と下部部材7にはステ
ンレス鋼を用いた。上記、一連の工程は乾燥雰囲気下で
行った。
Separately, a temporary press and a main press similar to the above are carried out to prepare an electrolyte composed of the super-ion conductive glass 5 having a thickness of about 150 μm, and the super-ion conductive glass having the structure shown in FIG. 1 is prepared. Mixtures 1 and 2 of a polarizable electrode and superionic conductive glass are opposed to each other via an electrolyte of glass 5, and an upper member 6 (sealing plate) and a lower member 7 (case) of a casing are packed with polypropylene packing 8. It was caulked and sealed. Stainless steel was used for the upper member 6 and the lower member 7. The above-mentioned series of steps was performed in a dry atmosphere.

【0035】このキャパシタを3.0 Vで充電後、1
0 μAで定電流放電し容量 0.2 F、インピ−ダ
ンス230オ−ムを得た。また70 ℃の雰囲気下で常
時3.0 Vを印加したところ初期容量に対する100
0時間後の容量減少率は12%であった。
After charging this capacitor at 3.0 V, 1
A constant current discharge was carried out at 0 μA to obtain a capacity of 0.2 F and an impedance 230 ohm. Moreover, when 3.0 V was constantly applied in an atmosphere of 70 ° C., the initial capacity was 100%.
The capacity reduction rate after 0 hour was 12%.

【0036】その他のLi2 O−B2 3 −LiCl
系、LiPO3 −LiCl系、LiPO3 −LiI系、
Li2 S−B2 3 −LiI系超イオン伝導ガラスを電
解質に用いてもほぼ上記と同様な特性を示すキャパシタ
を作製することができた。
Other Li 2 O-B 2 O 3 -LiCl
System, LiPO 3 -LiCl system, LiPO 3 -LiI system,
Even if Li 2 S-B 2 S 3 -LiI-based superionic conductive glass was used as the electrolyte, a capacitor having almost the same characteristics as described above could be produced.

【0037】さらに、フェノール系活性炭粒子の替わり
にピッチ系、ポリアクリロニトリル(PAN)系の活性
炭粒子を用いても、ほぼ上記キャパシタと同等な特性を
示した。
Further, even if pitch-based or polyacrylonitrile (PAN) -based activated carbon particles were used in place of the phenol-based activated carbon particles, the same characteristics as those of the above capacitor were exhibited.

【0038】従来のリチウム系多結晶の固体電解質を電
解質に用いた同様な構造のコイン型キャパシタの特性は
容量が0.15 F,インピ−ダンス(1KHz)が6
30オ−ムであった。
The characteristics of a conventional coin-type capacitor having a similar structure using a lithium polycrystal solid electrolyte as an electrolyte have a capacitance of 0.15 F and an impedance (1 KHz) of 6
It was 30 ohms.

【0039】実施例2 実施例1と同様な方法により、溶融・超急冷法により、
Li3.6 0.4 Si0. 6 4 組成の超イオン伝導ガラス
を作製し粉末状とした後、予め、100 Kgcm-2
圧力で仮プレス成形した図1の1と3あるいは2と4の
集電体と反対部分にスパッタ法により、厚み約30 μ
mの超イオン伝導ガラス層を形成した。
Example 2 In the same manner as in Example 1, by the melting / super-quenching method,
After a Li 3.6 P 0.4 Si 0. 6 O 4 to prepare a super-ionic conductor glass compositions powdered, pre, 100 1 and 3 or 2 and 4 of the current of Figure 1 provisionally press-molded at a pressure of kgcm -2 Approximately 30 μ in thickness by sputtering on the part opposite to the electric body
m super-ion conducting glass layer was formed.

【0040】このようにして作製した分極性電極と超イ
オン伝導ガラスとの混合体の片面に超イオン伝導ガラス
層を形成したものを2枚用いて、超イオン伝導ガラス層
を形成した側を対向させて重ね合わせて、図1と同様な
コイン型電気二重層キャパシタを構成した。上記、一連
の工程は乾燥雰囲気下で行った。
Two pieces of the mixture of the polarizable electrode thus prepared and the superion-conducting glass having the superion-conducting glass layer formed on one side thereof were used, and the sides having the superion-conducting glass layer formed were opposed to each other. Then, they were superposed to form a coin-type electric double layer capacitor similar to that shown in FIG. The above-mentioned series of steps was performed in a dry atmosphere.

【0041】このキャパシタを3.0 Vで充電後、1
0 μAで定電流放電し容量 0.2 F、インピ−ダ
ンス70オ−ムを得た。また70 ℃の雰囲気下で常時
3.0 Vを印加したところ初期容量に対する1000
時間後の容量減少率は18%であった。
After charging this capacitor at 3.0 V, 1
A constant current discharge was performed at 0 μA to obtain a capacity of 0.2 F and an impedance of 70 ohms. Moreover, when 3.0 V was constantly applied in an atmosphere of 70 ° C.
The rate of capacity decrease after 18 hours was 18%.

【0042】従来のリチウム系多結晶の固体電解質を電
解質に用いた同様な構造のコイン型キャパシタの特性は
容量が0.14 F,インピ−ダンス(1KHz)が3
30オ−ムであった。
The characteristics of a conventional coin-type capacitor having the same structure using a lithium polycrystal solid electrolyte as an electrolyte have a capacitance of 0.14 F and an impedance (1 KHz) of 3
It was 30 ohms.

【0043】実施例3 溶融・超急冷法により、Li3.6 0.4 Si0.6 4
成の超イオン伝導ガラスを作製し、このガラスを粉砕し
平均粒径約30 μmの微粒子とした。また、分極性電
極には、比表面積が2000 m2 -1のフェノール系
活性炭粒子(平均粒径20 μm)を用いた。分極性電
極である活性炭粒子と超イオン伝導ガラスとの接触抵抗
を低減するために、予め両者を50対50の重量比で混
合したものを、150 ℃の温度で熱処理し乾燥し正極
とした。
The [0043] Example 3 melting and rapid quenching method, to prepare a super-ionic conductor glass Li 3.6 P 0.4 Si 0.6 O 4 composition, was defined as an average particle diameter of about 30 [mu] m of particle grinding the glass. Further, for the polarizable electrode, phenol-based activated carbon particles (average particle size 20 μm) having a specific surface area of 2000 m 2 g −1 were used. In order to reduce the contact resistance between the activated carbon particles that are polarizable electrodes and the superionic conductive glass, a mixture of both in advance at a weight ratio of 50:50 was heat treated at a temperature of 150 ° C. and dried to obtain a positive electrode.

【0044】また、厚み100 μmのリチウム金属箔
を負極に用いた。このようにして作製した正極と負極と
超イオン伝導ガラスとを用いて、コイン型電気二重層キ
ャパシタを構成した。その概略断面図を図2に示す。図
2において、9は活性炭と超イオン伝導ガラスとの混合
体からなる正極を、3、4は集電体を示し、負極10は
リチウム金属箔により構成されている。集電体にはステ
ンレス鋼製メッシュを用いた。
A lithium metal foil having a thickness of 100 μm was used as the negative electrode. A coin-type electric double layer capacitor was constructed by using the positive electrode, the negative electrode, and the superionic conductive glass thus produced. The schematic sectional view is shown in FIG. In FIG. 2, 9 is a positive electrode made of a mixture of activated carbon and superionic conductive glass, 3 and 4 are current collectors, and a negative electrode 10 is made of a lithium metal foil. A stainless steel mesh was used as the current collector.

【0045】予め、100 Kg cm-2の圧力で仮プ
レス成形した9と3を重ね全体を3ton cm-2の圧力で
本プレスした。作製した混合体の厚みは約200 μm
で、直径は8 mmの円盤状とした。上記と同様な仮プ
レスと本プレスを行なうことにより、約150 μmの
厚みを有する超イオン伝導ガラス5からなる電解質を作
製し、図2に示した構成のように電解質を挟んで正極9
と負極10とを相対向させ、ケーシングの上部部材6
(封口板)、下部部材7(ケース)をポリプロピレン製
パッキング8を介してかしめ封口した。上部部材6と下
部部材7にはステンレス鋼を用いた。上記、一連の工程
は乾燥雰囲気下で行った。
Preliminarily press molded 9 and 3 were superposed at a pressure of 100 Kg cm -2 , and the whole was finally pressed at a pressure of 3 ton cm -2 . The thickness of the prepared mixture is about 200 μm
Then, the disk-like shape having a diameter of 8 mm was used. By performing the same temporary pressing and main pressing as described above, an electrolyte made of superionic conductive glass 5 having a thickness of about 150 μm is produced, and the positive electrode 9 is sandwiched with the electrolyte as shown in FIG.
And the negative electrode 10 face each other, and the upper member 6 of the casing
The (sealing plate) and the lower member 7 (case) were caulked and sealed through a polypropylene packing 8. Stainless steel was used for the upper member 6 and the lower member 7. The above-mentioned series of steps was performed in a dry atmosphere.

【0046】このキャパシタを3.0 Vで充電後、1
0 μAで定電流放電し容量 0.39 F、インピ−
ダンス110オ−ムを得た。また70 ℃の雰囲気下で
常時3.0 Vを印加したところ初期容量に対する10
00時間後の容量減少率は8%であった。
After charging this capacitor at 3.0 V, 1
Constant current discharge at 0 μA, capacity 0.39 F, impedance
I got a dance 110 ohm. Moreover, when 3.0 V was constantly applied in an atmosphere of 70 ° C., the initial capacity was 10
The capacity reduction rate after 00 hours was 8%.

【0047】従来のリチウム系多結晶の固体電解質を電
解質にもちいた同様な構造のコイン型キャパシタの特性
は容量が0.34 F,インピ−ダンス(1KHz)が
530オ−ムであった。
The characteristics of a conventional coin-type capacitor having a similar structure using a lithium polycrystal solid electrolyte as an electrolyte were a capacitance of 0.34 F and an impedance (1 KHz) of 530 ohms.

【0048】実施例4 実施例3の厚み100 μmのリチウム金属箔負極10
の替わりにPb(80%)−Cd(20%)からなる合
金(100 mg)にリチウム金属(10 mg)を電
気化学的に合金化した負極を用いキャパシタを構成し
た。その他の構成は図2と同様である。
Example 4 A 100 μm thick lithium metal foil negative electrode 10 of Example 3
Instead of the above, a negative electrode in which lithium metal (10 mg) was electrochemically alloyed with an alloy (100 mg) made of Pb (80%)-Cd (20%) was used to form a capacitor. Other configurations are the same as those in FIG.

【0049】このキャパシタを3.0 Vで充電後、1
0 μAで定電流放電し容量 0.37 F、インピ−
ダンス180オ−ムを得た。また70 ℃の雰囲気下で
常時3.0 Vを印加したところ初期容量に対する10
00時間後の容量減少率は11%であった。さらにこの
キャパシタを2 Vから3 Vの電圧範囲で1000回
充放電を繰り返したところ容量は初期値に比べ2%低下
した。
After charging this capacitor at 3.0 V, 1
Constant current discharge at 0 μA, capacity 0.37 F, impedance
Got a dance 180 ohm. Moreover, when 3.0 V was constantly applied in an atmosphere of 70 ° C., the initial capacity was 10
The capacity reduction rate after 00 hours was 11%. Further, when this capacitor was repeatedly charged and discharged 1000 times in the voltage range of 2 V to 3 V, the capacity was reduced by 2% from the initial value.

【0050】従来のリチウム系多結晶の固体電解質を電
解質にもちいた同様な構造のコイン型キャパシタの特性
は容量が0.32 F,インピ−ダンス(1KHz)が
330オ−ムであった。さらにこのキャパシタを2 V
から3 Vの電圧範囲で1000回充放電を繰り返して
たところ容量は初期値に比べ23%低下した。
The characteristics of a conventional coin-type capacitor having a similar structure using a lithium polycrystal solid electrolyte as an electrolyte were a capacitance of 0.32 F and an impedance (1 KHz) of 330 ohms. Furthermore, this capacitor is 2 V
After repeating charge and discharge 1000 times in the voltage range of 3 to 3 V, the capacity decreased by 23% from the initial value.

【0051】実施例5 溶融・超急冷法により、90AgI−10Ag3 BO3 組成
からなる超イオン伝導ガラスを作製した。このガラスの
電気伝導度は、室温で8×10-2 S cm-1 であった。
このようにして作製したガラスを粉砕し平均粒径約30
μmの微粒子とした。また、分極性電極には、比表面
積が2000 m2 -1のフェノール系活性炭粒子(平
均粒径20 μm)を用いた。分極性電極である活性炭
粒子と超イオン伝導ガラスとの接触抵抗を低減するため
に、予め両者を50対50の重量比で混合したものを、
90 ℃の温度で熱処理し乾燥した。
[0051] The Example 5 melt-rapid quenching method to produce a super-ionic conductor glass consisting 90AgI-10Ag 3 BO 3 composition. The electrical conductivity of this glass was 8 × 10 -2 S cm -1 at room temperature.
The glass thus produced is crushed to obtain an average particle size of about 30.
The fine particles were μm. Further, for the polarizable electrode, phenol-based activated carbon particles (average particle size 20 μm) having a specific surface area of 2000 m 2 g −1 were used. In order to reduce the contact resistance between the activated carbon particles that are polarizable electrodes and the superionic conductive glass, a mixture of both in a weight ratio of 50:50 in advance is used.
It was heat-treated at a temperature of 90 ° C. and dried.

【0052】このようにして作製した分極性電極と超イ
オン伝導ガラスとの混合体1、2を用いて、実施例1の
図1と同様な構成のコイン型電気二重層キャパシタを作
製した。集電体3、4にはステンレス鋼製メッシュを用
いた。
Using the mixture 1 and 2 of the polarizable electrode and the superionic conductive glass thus produced, a coin type electric double layer capacitor having the same configuration as that of FIG. 1 of Example 1 was produced. A stainless steel mesh was used for the current collectors 3 and 4.

【0053】予め、100 Kg cm-2の圧力で仮プ
レス成形した1と3あるいは2と4を重ね全体を3 ton
cm-2の圧力で本プレスした。作製した混合体の厚み
は約200 μmで、直径は8 mmの円盤状とした。
上記と同様な仮プレスと本プレスを行なうことにより、
約150 μmの厚みを有する超イオン伝導ガラス5か
らなる電解質を作製し、図1に示した構成のように超イ
オン伝導ガラス5の電解質を挟んで分極性電極を相対向
させ、ケーシングの上部部材6(封口板)、下部部材7
(ケース)をポリプロピレン製パッキング8を介してか
しめ封口した。上部部材6と下部部材7にはステンレス
鋼を用いた。
Preliminarily press-molded at a pressure of 100 Kg cm -2 , 1 and 3 or 2 and 4 were superposed and the whole was 3 ton.
Main pressing was performed at a pressure of cm -2 . The prepared mixture had a thickness of about 200 μm and a disk shape with a diameter of 8 mm.
By performing the same temporary press and main press as above,
An electrolyte made of super-ion conductive glass 5 having a thickness of about 150 μm was prepared, and polarizable electrodes were opposed to each other with the electrolyte of super-ionic conductive glass 5 sandwiched between them as shown in FIG. 6 (sealing plate), lower member 7
The (case) was caulked and sealed through a polypropylene packing 8. Stainless steel was used for the upper member 6 and the lower member 7.

【0054】このキャパシタを0.6 Vで充電後、1
0 μAで定電流放電し容量 0.1 F、インピ−ダ
ンス250オ−ムを得た。また70 ℃の雰囲気下で常
時0.6 Vを印加したところ初期容量に対する100
0時間後の容量減少率は5%であった。
After charging this capacitor at 0.6 V, 1
A constant current discharge was performed at 0 μA to obtain a capacity of 0.1 F and an impedance of 250 ohms. When 0.6 V was constantly applied in an atmosphere of 70 ° C., the initial capacity was 100%.
The capacity reduction rate after 0 hour was 5%.

【0055】その他のAgI−Ag2 O−P2 5 系、
AgI−Ag2 MoO4 系、AgI−Ag2 S−B2
3 系超イオン伝導ガラスを電解質に用いてもほぼ上記と
同様な特性を示すキャパシタを作製することができた。
Other AgI-Ag 2 O-P 2 O 5 system,
AgI-Ag 2 MoO 4 system, AgI-Ag 2 S-B 2 S
It was possible to fabricate a capacitor with almost the same characteristics as described above, even if the superconducting glass of 3 system was used as the electrolyte.

【0056】従来の銀系多結晶の固体電解質を電解質に
用いた同様な構造のコイン型キャパシタの特性は容量が
0.08 F,インピ−ダンス(1KHz)が950オ
−ムであった。
The characteristics of the conventional coin-type capacitor having the same structure using a silver-based polycrystalline solid electrolyte as the electrolyte were 0.08 F in capacitance and 950 ohm in impedance (1 KHz).

【0057】実施例6 溶融・超急冷法により、90AgI−10Ag3 BO3 組成
の超イオン伝導ガラスを作製し、このガラスを粉砕し平
均粒径30 μmの微粒子とした。また、分極性電極に
は、比表面積が2000 m2 -1のフェノール系活性
炭粒子(平均粒径20 μm)を用いた。分極性電極で
ある活性炭粒子と超イオン伝導ガラスとの接触抵抗を低
減するために、予め両者を50対50の重量比で混合し
たものを、150 ℃の温度で熱処理し乾燥し正極とし
た。
The [0057] Example 6 melt-rapid quenching method, to prepare a super-ionic conductor glass 90AgI-10Ag 3 BO 3 composition, was defined as an average particle size 30 [mu] m of particle grinding the glass. Further, for the polarizable electrode, phenol-based activated carbon particles (average particle size 20 μm) having a specific surface area of 2000 m 2 g −1 were used. In order to reduce the contact resistance between the activated carbon particles that are polarizable electrodes and the superionic conductive glass, a mixture of both in advance at a weight ratio of 50:50 was heat treated at a temperature of 150 ° C. and dried to obtain a positive electrode.

【0058】また、厚み100 μmの銀箔を負極に用
いた。このようにして作製した正極と負極と超イオン伝
導ガラスとを用いて、実施例3の図2と同様なコイン型
電気二重層キャパシタを構成した。
A silver foil having a thickness of 100 μm was used as the negative electrode. A coin-type electric double layer capacitor similar to that of FIG. 2 of Example 3 was constructed by using the positive electrode, the negative electrode, and the superionic conductive glass thus produced.

【0059】予め、100 Kg cm-2の圧力で仮プ
レス成形した9と3を重ね全体を3ton cm-2の圧力で
本プレスした。作製した混合体の厚みは約200 μm
で、直径は8 mmの円盤状とした。上記と同様な仮プ
レスと本プレスを行なうことにより、約150 μmの
厚みを有する超イオン伝導ガラス5からなる電解質を作
製し、図2に示した構成のように電解質を挟んで正極と
負極とを相対向させ、ケーシングの上部部材6(封口
板)、下部部材7(ケース)をポリプロピレン製パッキ
ング8を介してかしめ封口した。上部部材6と下部部材
7にはステンレス鋼を用いた。
Preliminarily press-molded under pressure of 100 Kg cm -2 , 9 and 3 were superposed and the whole was subjected to main press under a pressure of 3 ton cm -2 . The thickness of the prepared mixture is about 200 μm
Then, the disk-like shape having a diameter of 8 mm was used. By performing the same temporary pressing and main pressing as described above, an electrolyte made of superionic conductive glass 5 having a thickness of about 150 μm is produced, and a positive electrode and a negative electrode are sandwiched with the electrolyte as shown in FIG. Were opposed to each other, and the upper member 6 (sealing plate) and the lower member 7 (case) of the casing were caulked and sealed with a polypropylene packing 8. Stainless steel was used for the upper member 6 and the lower member 7.

【0060】このキャパシタを0.6 Vで充電後、1
0 μAで定電流放電し容量 0.18 F、インピ−
ダンス210オ−ムを得た。また70 ℃の雰囲気下で
常時0.6 Vを印加したところ初期容量に対する10
00時間後の容量減少率は9%であった。
After charging this capacitor at 0.6 V, 1
Constant current discharge at 0 μA, capacity 0.18 F, impedance
Got a dance 210 ohm. Moreover, when 0.6 V was constantly applied in an atmosphere of 70 ° C.
The capacity reduction rate after 00 hours was 9%.

【0061】また、このキャパシタを0.3 Vから
0.6 Vの電圧範囲で1000回充放電を繰り返して
たところ容量は初期値に比べ12%低下した。従来のリ
チウム系多結晶の固体電解質を電解質にもちいた同様な
構造のコイン型キャパシタの特性は容量が0.15
F,インピ−ダンス(1KHz)が490オ−ムであっ
た。
When the capacitor was repeatedly charged and discharged 1000 times in the voltage range of 0.3 V to 0.6 V, the capacity was reduced by 12% from the initial value. A conventional coin-type capacitor having a similar structure using a lithium-based polycrystalline solid electrolyte as an electrolyte has a capacitance of 0.15.
F, impedance (1 KHz) was 490 ohms.

【0062】[0062]

【発明の効果】本発明は、分解電圧が高く、内部抵抗の
小さなそして漏液のない信頼性の高い電気二重層キャパ
シタを提供できる。
INDUSTRIAL APPLICABILITY The present invention can provide a highly reliable electric double layer capacitor having a high decomposition voltage, a small internal resistance and no leakage.

【0063】また、正極と負極の分極性電極に活性炭を
用いる第1の発明の電気二重層キャパシタによれば、よ
り信頼性の高い電気二重層キャパシタを提供することが
できる。
Further, according to the electric double layer capacitor of the first invention in which activated carbon is used for the polarizable electrodes of the positive electrode and the negative electrode, it is possible to provide a more reliable electric double layer capacitor.

【0064】また、本発明の第2の発明の電気二重層キ
ャパシタによれば、二重層容量がより大きく、且つ、信
頼性を有する電気二重層キャパシタを提供することがで
きる。
Further, according to the electric double layer capacitor of the second aspect of the present invention, it is possible to provide an electric double layer capacitor having a larger double layer capacitance and reliability.

【0065】また、本発明の第3の発明の電気二重層キ
ャパシタによれば、二重層容量がより大きく、且つ、信
頼性を有する電気二重層キャパシタを提供することがで
きる。
Further, according to the electric double layer capacitor of the third aspect of the present invention, it is possible to provide an electric double layer capacitor having a larger double layer capacitance and reliability.

【0066】また、本発明の電気二重層キャパシタに於
いて、イオン伝導ガラスのイオン伝導体がリチウムまた
は銀である好ましい態様とすることによって、特にリチ
ウムの場合には分解電圧が最も高く、内部抵抗が小さ
く、漏液のない、より信頼性の高い電気二重層キャパシ
タを提供することができ、また、銀を用いた場合には内
部抵抗が特に小さく、漏液のない、より信頼性の高い電
気二重層キャパシタを提供できる。
In the electric double layer capacitor of the present invention, by adopting a preferred embodiment in which the ion conductor of the ion conductive glass is lithium or silver, the decomposition voltage is highest and the internal resistance is particularly high in the case of lithium. It is possible to provide a more reliable electric double layer capacitor with less leakage, and when the silver is used, the internal resistance is particularly small and there is no leakage, which is a more reliable electric capacitor. A double layer capacitor can be provided.

【0067】また、本発明の電気二重層キャパシタに於
いて、分極性電極がフェノール系、ピッチ系、ポリアク
リロニトリル系の粉末状の活性炭から選ばれた少なくと
も1種である好ましい態様とすることによって、二重層
容量が大きく、また、信頼性の高い電気二重層キャパシ
タを提供することができる。
In the electric double layer capacitor of the present invention, the polarizable electrode is preferably at least one selected from phenol-based, pitch-based, and polyacrylonitrile-based powdered activated carbons. An electric double layer capacitor having a large double layer capacitance and high reliability can be provided.

【0068】また、本発明の前記第2の発明の電気二重
層キャパシタの発明に於いて、リチウムを吸蔵、放出で
きる金属が亜鉛、ビスマス、スズ、鉛、カドミウム、イ
ンジウムからなる群から選択された金属単体または上記
金属における組合せ可能な合金である好ましい態様とす
ることによって、キャパシタの充放電特性が向上し、さ
らに、信頼性の高い電気二重層キャパシタを提供するこ
とができる。
In the invention of the electric double layer capacitor of the second aspect of the present invention, the metal capable of inserting and extracting lithium is selected from the group consisting of zinc, bismuth, tin, lead, cadmium and indium. By adopting a preferred embodiment of a single metal or an alloy that can be combined with the above metals, the charge / discharge characteristics of the capacitor can be improved, and an electric double layer capacitor with high reliability can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の超イオン伝導ガラスを用い
たコイン型電気二重層キャパシタの概略断面図。
FIG. 1 is a schematic cross-sectional view of a coin type electric double layer capacitor using a super ionic conductive glass according to an example of the present invention.

【図2】本発明の他の一実施例の超イオン伝導ガラスを
用いたコイン型電気二重層キャパシタの概略断面図。
FIG. 2 is a schematic cross-sectional view of a coin type electric double layer capacitor using a super ionic conductive glass of another example of the present invention.

【符号の説明】[Explanation of symbols]

1、2 分極性電極と超イオン伝導ガラスの混合体 3、4 集電体 5 超イオン伝導ガラス 6 上部部材(封口板) 7 下部部材(ケース) 8 パッキング 9 正極 10 負極 1, 2 Mixture of polarizable electrode and super ionic conductive glass 3, 4 Current collector 5 Super ionic conductive glass 6 Upper member (sealing plate) 7 Lower member (case) 8 Packing 9 Positive electrode 10 Negative electrode

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電解質に超イオン伝導ガラスを用い、正
極と負極の分極性電極に活性炭を用いたことを特徴とす
る電気二重層キャパシタ。
1. An electric double layer capacitor comprising a superionic conductive glass as an electrolyte and activated carbon as polarizable electrodes of a positive electrode and a negative electrode.
【請求項2】 電解質に超イオン伝導ガラスを用い、正
極の分極性電極に活性炭を負極の非分極性電極にリチウ
ムまたはリチウムを吸蔵、放出できる金属を用いたこと
を特徴とする電気二重層キャパシタ。
2. An electric double layer capacitor characterized in that a superionic conductive glass is used as an electrolyte, activated carbon is used as a positive electrode of a polarizable electrode, and lithium or a metal capable of absorbing and releasing lithium is used as a non-polarizable electrode of a negative electrode. .
【請求項3】 電解質に超イオン伝導ガラスを用い、正
極の分極性電極に活性炭を負極の非分極性電極に銀を用
いたことを特徴とする電気二重層キャパシタ。
3. An electric double layer capacitor characterized in that a superionic conductive glass is used as an electrolyte, activated carbon is used as a polarizable electrode of a positive electrode, and silver is used as a nonpolarizable electrode of a negative electrode.
【請求項4】 超イオン伝導ガラスのイオン伝導体がリ
チウムまたは銀である請求項1〜3のいずれかに記載の
電気二重層キャパシタ。
4. The electric double layer capacitor according to claim 1, wherein the ionic conductor of the super ionic conductive glass is lithium or silver.
【請求項5】 分極性電極がフェノール系、ピッチ系、
ポリアクリロニトリル系の粉末状の活性炭から選ばれた
少なくとも1種である請求項1〜4のいずれかに記載の
電気二重層キャパシタ。
5. The polarizable electrode is a phenol type, a pitch type,
The electric double layer capacitor according to claim 1, wherein the electric double layer capacitor is at least one selected from polyacrylonitrile-based powdered activated carbon.
【請求項6】 リチウムを吸蔵、放出できる金属が、亜
鉛、ビスマス、スズ、鉛、カドミウム、インジウムから
なる群から選択された金属単体または前記金属における
組合せ可能な合金である請求項2に記載の電気二重層キ
ャパシタ。
6. The metal capable of inserting and extracting lithium is a single metal selected from the group consisting of zinc, bismuth, tin, lead, cadmium, and indium, or an alloy capable of combining the metals. Electric double layer capacitor.
JP28724792A 1992-10-26 1992-10-26 Electrical double layer capacitor Pending JPH06140286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28724792A JPH06140286A (en) 1992-10-26 1992-10-26 Electrical double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28724792A JPH06140286A (en) 1992-10-26 1992-10-26 Electrical double layer capacitor

Publications (1)

Publication Number Publication Date
JPH06140286A true JPH06140286A (en) 1994-05-20

Family

ID=17714937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28724792A Pending JPH06140286A (en) 1992-10-26 1992-10-26 Electrical double layer capacitor

Country Status (1)

Country Link
JP (1) JPH06140286A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5917309A (en) * 1997-02-19 1999-06-29 Toyota Jidosha Kabushiki Kaisha Charger for electrically charging a capacitor
JP2008130844A (en) * 2006-11-21 2008-06-05 Matsushita Electric Ind Co Ltd Whole solid-type electric double layer condenser
JP2013225534A (en) * 2012-04-19 2013-10-31 Shoei Chem Ind Co Capacitor and dielectric layer thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5917309A (en) * 1997-02-19 1999-06-29 Toyota Jidosha Kabushiki Kaisha Charger for electrically charging a capacitor
JP2008130844A (en) * 2006-11-21 2008-06-05 Matsushita Electric Ind Co Ltd Whole solid-type electric double layer condenser
JP2013225534A (en) * 2012-04-19 2013-10-31 Shoei Chem Ind Co Capacitor and dielectric layer thereof

Similar Documents

Publication Publication Date Title
JP7038761B2 (en) Electrolyte and method of manufacturing electrolyte
US4731705A (en) Cell for electric double layer capacitors and process for manufacturing such a cell
JPS618849A (en) Method of producing alloyed negative pole and device using same electrode
KR20150016210A (en) High Capacity Solid State Composite Cathode, Solid State Composite Separator, Solid-State Rechargeable Lithium Battery and Methods of Making Same
JPH11297578A (en) Electric double-layer capacitor
CN105280883A (en) Metal lithium polar plate
JP6592030B2 (en) Sodium secondary battery and manufacturing method thereof
JP5860997B2 (en) Bismuth-tin binary negative electrode for magnesium ion rechargeable battery
CN115702512A (en) Performance improvement of zinc-manganese dioxide cells by interlayers
JP2001325950A (en) Nonaqueous electrolyte secondary cell and negative electrode of the same
Wu et al. Agglomeration and the surface passivating film of Ag nano-brush electrode in lithium batteries
US4362793A (en) Galvanic cell with solid electrolyte
JPH06140286A (en) Electrical double layer capacitor
JP2022514452A (en) Improved anode materials and anodes for rechargeable batteries, how they are manufactured, and electrochemical cells made from them.
JPH06302472A (en) Electric double layer capacitor and its manufacture
JP2003168425A (en) NEGATIVE ELECTRODE MATERIAL FOR Li SECONDARY BATTERY
JP2002279995A (en) Battery
JP3115448B2 (en) Lithium solid electrolyte battery
JP3405419B2 (en) Non-aqueous electrolyte secondary battery
JP3384570B2 (en) Manufacturing method of non-aqueous secondary battery
EP0149421A2 (en) Solid state alkali metal-halogen cell
JP3418431B2 (en) Electric double layer capacitor and method of manufacturing the same
JP2001250540A (en) Negative electrode material for nonaqueous electrolyte secondary battery
JP4626966B2 (en) ELECTRODE FOR LITHIUM SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME
CN104272516B (en) Indium-tin binary anode for rechargeable Magnesium ion battery