JPH0613784A - Electromagnetic shielding film - Google Patents

Electromagnetic shielding film

Info

Publication number
JPH0613784A
JPH0613784A JP23153692A JP23153692A JPH0613784A JP H0613784 A JPH0613784 A JP H0613784A JP 23153692 A JP23153692 A JP 23153692A JP 23153692 A JP23153692 A JP 23153692A JP H0613784 A JPH0613784 A JP H0613784A
Authority
JP
Japan
Prior art keywords
film
powder
resin
resin layer
electromagnetic shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23153692A
Other languages
Japanese (ja)
Inventor
Masato Sagawa
眞人 佐川
Hiroshi Watanabe
寛 渡邊
Hiroo Shirai
啓雄 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intermetallics Co Ltd
Original Assignee
Intermetallics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intermetallics Co Ltd filed Critical Intermetallics Co Ltd
Priority to JP23153692A priority Critical patent/JPH0613784A/en
Publication of JPH0613784A publication Critical patent/JPH0613784A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an electromagnetic shielding film small in weight and excellent in shielding properties by a method wherein the shielding film is composed of a compacted layer formed of a skeletal structure made of conductive material powder and resin partially filled into voids inside the skeletal structure and a lower resin layer. CONSTITUTION:Thermosetting or thermoplastic resin and allay powder of Fe, Ni, and Co having electrical conductivity and ferromagnetism are used, uncured resin and other adhesive material are previously attached to the surface of film formed medium such as steel balls 42, and the steel balls 42 where powder 41 adheres are ejected out from a nozzle 45. An uncured resin layer 43 is formed on the inner side of a case 40, and when the steel balls 42 impinge against the resin layer 43, the powder 41 is caught by the resin layer 43 and intruded into it, and then the steel balls 42 are made to impinge successively against the resin layer 43. Therefore, powder is more intruded into the resin layer 43, compressed to be enhanced in density, and comes into area contact with each other for the formation of a film of a skeletal structure, the film is coated with a plating protective film, and thus an electromagnetic shielding film excellent in shielding properties and adhesion can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気機器、電気部品の
外面及び/又は内面の全部または一部を覆うことによ
り、内部の一定の領域もしくは空間を電磁遮蔽する皮膜
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film for electromagnetically shielding a certain area or space inside by covering all or part of the outer surface and / or the inner surface of an electric device or an electric component.

【0002】電磁遮蔽は電磁波の発生源がある空間を電
気伝導体や強磁性体で覆うことにより、静電遮蔽もしく
は強磁性体の電波吸収などの作用を利用して、空間内へ
外部から電磁波が侵入したり、逆に空間内部から発生す
る電磁波が外部へ漏洩するのを防止するものである。強
磁性体が物品の空間を取り囲むように磁気回路を構成
と、空間内部への磁束の侵入が防止される。これは電磁
遮蔽の一つであり特に磁気遮蔽と呼ばれる。
The electromagnetic shield covers the space in which the source of electromagnetic waves is generated with an electric conductor or a ferromagnetic material, and uses the electromagnetic shielding effect of the ferromagnetic material to absorb electromagnetic waves from the outside. To prevent the electromagnetic waves generated from inside the space from leaking to the outside. When the magnetic circuit is configured so that the ferromagnetic material surrounds the space of the article, the magnetic flux is prevented from entering the space. This is one of electromagnetic shields and is called magnetic shield in particular.

【0003】電磁遮蔽は古くから電波障害や妨害電波の
侵入防止などのため、建物やアンテナ・ケーブル等に施
され利用されてきたが、最近電子機器作動中に電子回路
から発生する電磁波妨害(Electro Magnetic Interfere
nce, EMI) が大きな問題になっている。
Electromagnetic shielding has long been applied to buildings, antennas, cables, etc. for the purpose of preventing electromagnetic interference and intrusion of interfering electromagnetic waves. Recently, electromagnetic interference generated from electronic circuits during operation of electronic devices (Electro Magnetic Interfere
(nce, EMI) is a big problem.

【0004】[0004]

【従来の技術】こうした機器類に対する電磁遮蔽方法と
しては次のような技術が公知である。
2. Description of the Related Art The following techniques are known as electromagnetic shielding methods for such devices.

【0005】金属遮蔽板 コンピューターやワープロなどの機器の筐体を金属板に
よって構成し、電磁遮蔽機能を持たせるものである。こ
れは遮蔽性能は最も優れているが、重量がかさむという
欠点があり、近年生産量が伸びているノート・ワープロ
やパソコンなど、小型軽量機器には全く使用されていな
い。
Metal Shielding Plate A casing of equipment such as a computer and a word processor is made of a metal plate and has an electromagnetic shielding function. Although it has the best shielding performance, it has the drawback of being heavy, and has not been used at all in small and lightweight devices such as notebook word processors and personal computers, which have been increasing in production in recent years.

【0006】導電性塗料 Cu,Ni,Agなどの導電性フィラーをアクリルやウ
レタン系樹脂などのビヒクルに分散させ、これをプラス
チック筐体の内面あるいは外面や、基板に塗布して導電
性皮膜を得るものである。後述のめっきに対しては価格
的には安いが均一な皮膜を得るためのスプレーが難しい
こと、また導電性フィラーの量を特に40体積%以上に高
めることができず、シールド性能がめっきなどに比べ劣
るなどの欠点がある。また塗着率が50%程度と悪く、
高価な塗料の多くがムダになるのも問題の一つである。
Conductive paint: A conductive filler such as Cu, Ni, or Ag is dispersed in a vehicle such as acrylic or urethane resin and applied to the inner or outer surface of a plastic housing or the substrate to obtain a conductive film. It is a thing. Although it is cheaper than the plating described below, it is difficult to spray to obtain a uniform film, and the amount of the conductive filler cannot be increased to 40% by volume or more, so the shielding performance is excellent for plating. There are drawbacks such as inferiority. Also, the coating rate is as bad as about 50%,
Another problem is that many expensive paints are wasted.

【0007】無電解めっき CuやNi皮膜を無電解めっき法により筐体表面に形成
させる。Cu,Niなどの皮膜は極めて高いシールド性
能をもつが、浴管理、膜厚やピンホール制御などが難し
くまた、廃液処理にも高いコストがかかる。さらに、め
っき膜の密着力が小さく、はがれやすい。特に、プラス
チックの材質によってはめっき膜の密着力が小さすぎ
て、めっき不可能な場合がある。(例えばポリウレタ
ン、ポリカーボネート等は無電解めっきできず使用でき
るプラスチックの種類が限られる。また、ABS樹脂に
対するブタジエン等はめっきが可能であっても密着力を
上げるために特殊な添加物をプラスチックに添加した
り、エッチングやサンドブラスト等により化学的、物理
的に表面を荒らす必要がある。加えて、筐体の外面にも
めっき膜がつくので、化粧塗装をする必要があるがめっ
き面と相性のよい塗料は非常に限られていて、しかも価
格が高い。内面のみにめっき膜をつければ化粧塗装は不
要であるが、無電解めっきのときに外面をマスキングす
る必要がある。これらすべてがコスト高の原因となって
いる。
Electroless plating A Cu or Ni film is formed on the surface of the housing by an electroless plating method. Films of Cu, Ni, etc. have extremely high shielding performance, but it is difficult to control the bath, control the film thickness and pinholes, and waste liquid treatment requires high costs. Further, the adhesion of the plating film is small and it is easy to peel off. In particular, depending on the material of the plastic, the adhesion of the plated film may be too small to allow plating. (For example, polyurethane, polycarbonate, etc. cannot be electrolessly plated, and the types of plastics that can be used are limited. In addition, even if butadiene etc. for ABS resin can be plated, special additives are added to the plastic to improve adhesion. It is necessary to chemically or physically roughen the surface by etching, sandblasting, etc. In addition, since the plating film is attached to the outer surface of the housing, it is necessary to apply a decorative coating, but it is compatible with the plating surface. The paint is very limited, and the price is high.If the plating film is applied only on the inner surface, no cosmetic coating is required, but the outer surface must be masked during electroless plating. It is the cause.

【0008】蒸着膜 Al蒸着が主に用いられている。乾式法なのでめっきの
ような公害の問題もなく、導電塗料よりは性能がよい
が、蒸着源に対する角度に対する膜厚の依存性が大き
く、かつ深い穴の内面などのつき回りが悪く、膜厚が不
均一であり、また密着力も悪い。基本的にバッチ処理で
あり、一回の処理量が少ないと特にコスト高になるのも
問題点の一つである。
Vapor Deposition Film Al vapor deposition is mainly used. Since it is a dry method, there is no problem of pollution such as plating, and performance is better than conductive paint, but the dependence of the film thickness on the angle with respect to the evaporation source is large, and the inner surface of deep holes etc. does not adhere well, and the film thickness is It is uneven and the adhesion is poor. Basically, it is a batch process, and one of the problems is that the cost is particularly high if the amount of processing at one time is small.

【0009】導電性コンパウンド(プラスチック) Cu繊維、 Alフレーク、ステンレス繊維をフィラーと
し、これをプラスチック中に混合もしくは織り込んで作
った導電性コンパウンドで筐体を構成し、筐体そのもの
に電磁遮蔽性能を持たせるものであり、後で導電性皮膜
を形成させる必要がない利点を持つ。欠点は成形したコ
ンパウンドの表面にフィラーの模様が浮き上がり、外観
が悪く化粧塗装が必要になる点である。
Conductive Compound (Plastic) Cu fiber, Al flakes, and stainless fiber are used as a filler, and the case is made of a conductive compound made by mixing or weaving this into plastic, and the case itself has electromagnetic shielding performance. It has the advantage that it is not necessary to form a conductive film later. The disadvantage is that the pattern of the filler rises on the surface of the molded compound, resulting in poor appearance and requiring decorative coating.

【0010】[0010]

【発明が解決しようとする課題】上述のように従来の電
磁遮蔽膜は、(イ)軽量、(ロ)シールド性能が良好、
(ハ)廃液処理不要、(ニ)皮膜形成の予備処理が簡
単、(ホ)皮膜の付き回り性が良好、(ヘ)外観が良好
などをすべて満足するものがなかった。本発明はこれら
のすべてを満足できる電磁遮蔽膜を提供するものであ
る。
As described above, the conventional electromagnetic shielding film has (a) light weight, (b) good shielding performance,
(C) No need for waste liquid treatment, (d) simple pretreatment for film formation, (e) good coatability of film, (f) good appearance, and so on. The present invention provides an electromagnetic shielding film that can satisfy all of these.

【0011】[0011]

【課題を解決するための手段】本発明の電磁遮蔽膜は、
導電性物質の粉体より構成された骨格構造を持ち、その
空隙の少なくとも一部分に樹脂が充填された粉体圧縮層
とこの粉体圧縮層の下側の樹脂層とからなることを特徴
とする。以下、本発明の構成を説明する。
The electromagnetic shielding film of the present invention comprises:
It has a skeletal structure composed of powder of a conductive substance, and is characterized by comprising a powder compression layer in which at least a part of the voids is filled with resin, and a resin layer below this powder compression layer. . The configuration of the present invention will be described below.

【0012】本発明においては樹脂としてはメラミン樹
脂、エポキシ樹脂、フェノール樹脂、フラン樹脂、ウレ
タン樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、
尿素樹脂などの熱硬化性樹脂、アクリル樹脂、ポリエス
テル、ポリエチレン、ポリエチレンテレフタレート、ポ
リプロピレン、ポリ塩化ビニル、ポリビニルアルコー
ル、ナイロン、ポリスチレン、ポリ酢酸ビニル等の熱可
塑性樹脂、セルロース誘導体などを使用することができ
る。また液状プレポリマもしくはモノマー、一般に粉末
成形に用いられる有機結合剤、例えばパラフィン、樟脳
などを用いることができる。また樹脂としてゼラチン、
ニカワ、ウルシ等天然物を使うことができる。さらに樹
脂に替えてあるいは樹脂と共に水ガラスで代表されるケ
イ酸塩等無機粘着物質を使用することもできる。また皮
膜中での樹脂の役割を防げない程度に、顔料等の物質が
配合されていてもよい。
In the present invention, as the resin, melamine resin, epoxy resin, phenol resin, furan resin, urethane resin, unsaturated polyester resin, polyimide resin,
Thermosetting resin such as urea resin, acrylic resin, polyester, polyethylene, polyethylene terephthalate, polypropylene, polyvinyl chloride, polyvinyl alcohol, nylon, polystyrene, polyvinyl acetate or the like thermoplastic resin, cellulose derivative or the like can be used. . It is also possible to use liquid prepolymers or monomers, organic binders commonly used for powder molding, such as paraffin, camphor and the like. Also, gelatin as resin,
You can use natural products such as glue and sumac. Further, in place of the resin, or together with the resin, an inorganic adhesive substance such as silicate represented by water glass can be used. Further, substances such as pigments may be blended to such an extent that the role of the resin in the film cannot be prevented.

【0013】樹脂は樹脂層の構成物質であるともに粉体
圧縮層の骨格の間隙の一部に含浸されるか又は充填され
る。次に粉体物質は粉体圧縮層の構成物質であり、電磁
遮蔽に必要な導電性あるいは導電性と強磁性を備えてい
るものであれば何でもよく、ほとんどの金属又は合金粉
末を使用することができる。一例をあげれば、Al,C
u,Mg,Fe,Cr,Co,Ni,Zn,Pb,S
n,Rh,Zr,Pd,Pt,Ag,Au,Mo,Wな
どの粉末及びそれらを主成分とする合金粉末である。F
e,Ni,Co系の合金粉末は導電性と強磁性を兼ね備
えており、磁気遮蔽性も良好である。特にパーマロイに
代表されるFe−Ni合金、センダストなどは高透磁率
であり、低周波電磁波の遮断に有効である。これらの粉
末により構成される皮膜を防護皮膜なしで用いる場合
は、Agその他貴金属類など耐食性が優れている金属を
使用することが望ましい。この場合、一例を挙げればC
u粉体の表面をAgで被覆(コーティング)したCu−
Ag粉体などを使用することが更に望ましい。また金属
や合金粉体を使用する場合、好ましくは水素還元法など
による表面酸化皮膜除去処理、カップリング剤や各種有
機、無機物質などによる表面被覆処理を処した後の粉体
物質を使用することが望ましい。さらに粉体圧縮層を作
成する工程を不活性ガス(窒素ガスなど)雰囲気化で行
うことも望ましい。
The resin is a constituent material of the resin layer and is impregnated or filled in a part of the gap of the skeleton of the powder compression layer. Next, the powder material is a constituent material of the powder compression layer, and may be any material having conductivity or conductivity and ferromagnetism necessary for electromagnetic shielding, and most metal or alloy powders should be used. You can For example, Al, C
u, Mg, Fe, Cr, Co, Ni, Zn, Pb, S
Powders of n, Rh, Zr, Pd, Pt, Ag, Au, Mo, W and the like and alloy powders containing them as the main component are included. F
The e, Ni, Co-based alloy powder has both conductivity and ferromagnetism, and has a good magnetic shielding property. In particular, Fe-Ni alloys represented by Permalloy, Sendust, and the like have high magnetic permeability and are effective in blocking low-frequency electromagnetic waves. When using a film made of these powders without a protective film, it is desirable to use a metal having excellent corrosion resistance such as Ag and other noble metals. In this case, C
Cu-where the surface of u powder is coated with Ag
It is more desirable to use Ag powder or the like. When using a metal or alloy powder, it is preferable to use the powder substance after the surface oxide film removal treatment by the hydrogen reduction method or the like, and the surface coating treatment with the coupling agent or various organic or inorganic substances. Is desirable. Furthermore, it is also desirable to carry out the step of forming the powder compression layer in an atmosphere of an inert gas (such as nitrogen gas).

【0014】これらの粉末は複数種を複合して用いるこ
とができる。また二種以上の材料で粒子が構成されてい
る複合粉末を用いることができる。さらに粉体物質は美
観向上やその他の性能の付与あるいは低コスト化の為に
その40体積%以下を非導電性の粉体を使用することが
できる。金属合金粉末は結晶質のものでも非結晶質のも
のでもどちらでもよい。特に低周波の電磁波を遮断する
には、透磁率の高い材質が有効であり、Fe−Ni合金
などのアモルファス磁性粉末は非常に優れた性能を発揮
することができる。
These powders can be used in combination of plural kinds. Further, a composite powder in which particles are composed of two or more kinds of materials can be used. Further, as the powder substance, non-conductive powder can be used in an amount of 40% by volume or less in order to improve aesthetics, impart other properties, and reduce cost. The metal alloy powder may be crystalline or amorphous. In particular, a material having a high magnetic permeability is effective for blocking low-frequency electromagnetic waves, and an amorphous magnetic powder such as an Fe—Ni alloy can exhibit extremely excellent performance.

【0015】粉体物質の粒度は、被処理部材の大きさ、
皮膜の厚さ及び粉体物質の材質により変わる。導電性セ
ラミックス粉体など硬質で変形しにくい粉体の場合は粒
度が小さいことが望ましく、延性に富む金属粉などの場
合はこれより大きくてよいが、一般には 0.01 〜 500μ
m の範囲内が好ましい。より好ましくは 0.01 〜300μm
である。さらに望ましくは 0.01 〜 100μm の範囲内
である。
The particle size of the powder substance depends on the size of the member to be treated,
It depends on the thickness of the coating and the material of the powder material. In the case of powder that is hard and difficult to deform such as conductive ceramic powder, it is desirable that the particle size be small, and in the case of metal powder that is rich in ductility, it may be larger than this, but generally 0.01 to 500 μ
The range of m is preferable. More preferably 0.01-300 μm
Is. More preferably, it is within the range of 0.01 to 100 μm.

【0016】本発明に係る皮膜の構成物質の説明につづ
いて皮膜構造を説明する。粉体圧縮層では粉体の粒子が
面接触して三次元的につながった、粉末冶金法における
圧粉体のように骨格(skeleton−スケルトン)を作って
いる。骨格では粉体粒子の延性が低いときは粉体は製造
時の粒子形状をほぼ保ったまま圧縮されており、一方延
性が高いときは粉体は片状に変形して小片が積み重ねら
れるように圧縮されている。粒子又は小片の間隙には微
小の空隙が存在する。この空隙は粒子の体積割合に比べ
て非常に少なく、また樹脂が空隙に充填され空間がなく
なっているかもしくは含浸され非含浸部は空間となって
いる。空間が残ることはあるが、その体積は骨格に比べ
て極めて少なく、強度等に及ぼす影響は実用上は少な
い。このため本発明の皮膜中に存在する粉体圧縮層は従
来の導電塗料などによる樹脂塗膜では実現できなかった
高い体積割合の粉体を含んでおり、めっき又は蒸着膜と
同等に近い高い電磁遮蔽性能を得ることができる。
The coating structure will be described following the description of the constituent materials of the coating according to the present invention. In the powder compression layer, skeletons are formed like powder compacts in powder metallurgy, in which particles of powder are in surface contact with each other and are three-dimensionally connected. In the skeleton, when the ductility of the powder particles is low, the powder is compressed while maintaining the particle shape at the time of manufacture, while when the ductility is high, the powder is deformed into pieces and small pieces are stacked. It is compressed. There are minute voids in the gaps between particles or particles. The voids are very small compared to the volume ratio of the particles, and the voids are filled with resin so that the voids are lost or impregnated and the non-impregnated portions are voids. Space may remain, but its volume is extremely small compared to the skeleton, and its effect on strength etc. is practically small. Therefore, the powder compression layer present in the film of the present invention contains a high volume ratio of powder which could not be realized by the resin coating film using the conventional conductive paint, etc. The shielding performance can be obtained.

【0017】粉体粒子どうしの接触面は、粉末冶金法の
圧粉体と同様に塑性変形による圧接、摩擦力などにより
結合力が発生しているが、溶融や大きな熱拡散による溶
接接合力は生じていない。ただし、特に軟質もしくは低
融点の金属粉末の場合は若干の熱拡散が起こる。この結
合力が骨格の機械的性質をほぼ定める。従来の導電性樹
脂塗装膜の機械的性質は導電性フィラーが少ない場合ほ
とんど樹脂により定められ、粉体は骨格を作らず分散し
ていることと量が少ないことが原因となって樹脂塗膜の
機械的性質に対する影響は少ない。また、一般の樹脂塗
装膜ではフィラーの体積率が高くなると、フィラーの分
布が不均一で疎密の差が大きくなり、クラスター状の集
合体が形成されることもある。このような集合体は、前
記した骨格構造を作るほどには結合力が強くなく、また
集合体内部には樹脂が充分行きわたらないため、集合体
は極めて脆くくずれやすいものとなる。従ってフィラー
比率が高くなるほど皮膜中のこうした集合体の数が増え
るため、膜の機械的性質、特に耐摩耗性が低下するとい
う欠点がある。また、樹脂の比率が減少するばかりでな
く、その分布も不均一となるため膜の密着力は急速に低
下する。特に筐体内面に皮膜を形成させる場合、フィラ
ー粒子や膜の一部が脱落して回路部に落ちたりすると、
回路短絡などトラブルの原因になる。
The contact surface between the powder particles produces a bonding force due to pressure contact due to plastic deformation, frictional force, etc. as in the case of powder compacting by powder metallurgy. It has not occurred. However, in the case of soft or low-melting metal powder, some heat diffusion occurs. This binding force largely determines the mechanical properties of the skeleton. The mechanical properties of conventional conductive resin coating films are mostly determined by the resin when the amount of conductive filler is small, and the powder is dispersed without forming a skeleton and the amount is small, so Has little effect on mechanical properties. Further, in a general resin coating film, when the volume ratio of the filler is high, the distribution of the filler is non-uniform, the difference in density is large, and a cluster-shaped aggregate may be formed. Such an aggregate is not strong enough to form the above-mentioned skeleton structure, and since the resin does not sufficiently spread inside the aggregate, the aggregate becomes extremely brittle and easily crumbles. Therefore, the higher the filler ratio, the more the number of such aggregates in the coating increases, so that the mechanical properties of the coating, particularly the abrasion resistance, are disadvantageously reduced. Further, not only the ratio of the resin decreases, but also the distribution thereof becomes non-uniform, so that the adhesive force of the film rapidly decreases. Especially when a film is formed on the inner surface of the housing, if part of the filler particles or film falls off and falls into the circuit part,
It may cause a short circuit or other trouble.

【0018】これに対して本発明の骨格は粒子分布の疎
密が少ないので、前記集合体のような脆弱部がないた
め、粉体物質の配合比率が高いにも拘らず、膜が均質と
なり、優れた機械的性質を有するものとなり、とりわけ
耐摩耗性や密着性が向上する。骨格中に存在する空隙部
は多くが皮膜表面に開口部をもつ開放気孔であり、皮膜
中の樹脂はこの開放気孔を通じて樹脂層とつながってい
る。その結果、粉体圧縮層では空隙中の樹脂があたかも
長いピン又はボルトのように作用して強力な固定効果を
発揮する。しかも空隙中の樹脂は直線状ではなく曲がり
くねっているので、このことによっても固定効果は高め
られる。従って前記した導電性樹脂皮膜やめっき皮膜に
比べはるかに密着性の高い皮膜が得られ、膜はがれなど
のトラブルもほとんど起こらない。
On the other hand, since the skeleton of the present invention has a less dense and uneven particle distribution, it does not have a fragile portion such as the above-mentioned aggregate, so that the film becomes homogeneous despite the high mixing ratio of the powder substance, It has excellent mechanical properties, and especially improves abrasion resistance and adhesion. Most of the voids existing in the skeleton are open pores having openings on the surface of the coating, and the resin in the coating is connected to the resin layer through the open pores. As a result, in the powder compression layer, the resin in the voids acts like a long pin or bolt and exerts a strong fixing effect. Moreover, since the resin in the voids is not straight but meandering, this also enhances the fixing effect. Therefore, a film having much higher adhesion than the above-mentioned conductive resin film or plating film can be obtained, and problems such as film peeling hardly occur.

【0019】骨格構造の空隙部に含浸もしくは充填され
た樹脂は、樹脂層との密着力を高める役割の他、骨格構
造を補強して、粉体圧縮層の強度を高める役割をもつ。
粉体は骨格構造の結合力により結合されまた骨格構造の
空隙に存在する樹脂によっても結合されるので、フィラ
ーが多い塗膜のように粉体の脱落はほとんど起こらな
い。
The resin impregnated or filled in the voids of the skeleton structure has the role of increasing the adhesion with the resin layer, and also has the role of reinforcing the skeleton structure and increasing the strength of the powder compression layer.
Since the powder is bonded by the bonding force of the skeleton structure and also by the resin existing in the voids of the skeleton structure, the powder hardly drops like a coating film containing a lot of filler.

【0020】本発明のスケルトン構造の空隙は皮膜の外
面に通じる連続孔であるので、樹脂で空隙部を充填する
必要がある時は、皮膜の外部から樹脂を浸透させること
ができる。さらに、この空隙を利用して樹脂層とのアン
カー効果を発揮させて強固な皮膜接着力を作り出すこと
ができる。
Since the voids of the skeleton structure of the present invention are continuous holes leading to the outer surface of the coating, the resin can penetrate from the outside of the coating when it is necessary to fill the voids with the resin. Furthermore, by utilizing this void, an anchor effect with the resin layer can be exerted and a strong film adhesive force can be created.

【0021】粉体圧縮層の厚さは特に限定されず、部品
の大きさや要求される性能によって適宜選択する必要が
あるが、500μmが通常上限となり、これを超える粉
体圧縮層は膜厚増大に伴う利点がなく、コスト高などを
招く。膜厚は100μm以下であることが望ましく、よ
り望ましくは50μm以下である。
The thickness of the powder compression layer is not particularly limited and needs to be appropriately selected depending on the size of parts and required performance, but 500 μm is usually the upper limit, and the thickness of the powder compression layer exceeding this is increased. There is no advantage associated with the above, leading to higher costs. The film thickness is preferably 100 μm or less, more preferably 50 μm or less.

【0022】粉体圧縮層中の粉体物質の体積比率は40
%以下であると骨格中の空隙割合が多くなり、また粉体
粒子の面接触が減小するので、充分な防食性などの性能
が得られなくなる。より望ましい範囲は50%以上であ
り、さらに望ましい範囲は60%以上である。最も望ま
しくは70%以上である。
The volume ratio of the powder substance in the powder compression layer is 40.
If it is less than 100%, the void ratio in the skeleton increases, and the surface contact of the powder particles decreases, so that sufficient performance such as anticorrosion cannot be obtained. A more desirable range is 50% or more, and a still more desirable range is 60% or more. Most preferably, it is 70% or more.

【0023】本発明においては空隙は樹脂を含浸または
充填させる場所としての役割をもつ。したがって骨格の
空隙には多少でも樹脂が存在している必要があり、好ま
しくは完全に樹脂が充填されているのがよい。
In the present invention, the void serves as a place for impregnating or filling the resin. Therefore, it is necessary that some amount of resin is present in the voids of the skeleton, and preferably the resin is completely filled.

【0024】粉体圧縮層と部品の間に介在する樹脂層
は、その上部に粉体物質の量が下部に向かって徐々に少
なくなる遷移層を含むことがあり、また通常の塗装膜の
顔料の量程度に粉体物質を含有することもあるが、樹脂
を主体とし部品の全面もしくはほぼ全面を被覆してお
り、粉体圧縮層を部品表面に接着する役割をもつ。粉体
圧縮層と部材表面の間に介在する樹脂層は部材表面側で
はその微細の凹凸に入り込んで固定効果(anchoring ef
fect)と粘着力により部品との密着力が優れた層を作
る。樹脂層の粉体圧縮層側では粉体物質のスケルトンの
空隙中に樹脂が含浸され樹脂の粘着力と固定効果により
粉体圧縮層が部品に接着される。樹脂層の厚みは通常
0.1〜20μmであり、この下限未満では上記の作用
が十分に発揮されず、一方20μmを超えると皮膜全体
の厚さが増大し、粉体凝集層と同様の問題を生ずる。ま
た0.5μm以下であると充分な付着力が得られなくな
る。より望ましい範囲は1.0μm以上10μm以下で
あり、さらに望ましくは1.0μm以上5μm以下であ
る。
The resin layer interposed between the powder compression layer and the component may include a transition layer in which the amount of the powder substance gradually decreases toward the lower portion in the upper portion thereof, and the pigment in the ordinary coating film is included. Although the powder substance may be contained in an amount of about 1, the resin is mainly used to cover the entire surface or almost the entire surface of the component, and it has a role of adhering the powder compression layer to the surface of the component. On the surface of the member, the resin layer interposed between the powder compression layer and the surface of the member enters into the fine irregularities, and the fixing effect (anchoring ef
fect) and adhesive force to create a layer with excellent adhesion to parts. On the powder compression layer side of the resin layer, the resin is impregnated into the voids of the skeleton of the powder substance, and the powder compression layer is bonded to the component by the adhesive force and the fixing effect of the resin. The thickness of the resin layer is usually 0.1 to 20 μm, and if it is less than this lower limit, the above-mentioned action is not sufficiently exhibited, while if it exceeds 20 μm, the thickness of the entire film increases, and the same problem as the powder agglomerated layer occurs. Cause If it is 0.5 μm or less, sufficient adhesion cannot be obtained. A more desirable range is 1.0 μm or more and 10 μm or less, and further desirably 1.0 μm or more and 5 μm or less.

【0025】上記した膜厚はいずれも平均値でその要件
を満たしていればよく、局所的に望ましい範囲外にある
値をとってもよい。しかしながらそのばらつきの範囲は
粉体凝集層については防食性および寸法精度の点から、
樹脂層については密着力の点からできる限り小さいこと
が望ましい。樹脂層における粉体物質の量が少ないほ
ど、粉体・部材間直接接触が減少するため、より密着力
は向上する。
Each of the above-mentioned film thicknesses has only to satisfy the requirement as an average value, and may take a value that is locally outside the desired range. However, the range of the variation is, for the powder agglomerated layer, from the viewpoint of corrosion resistance and dimensional accuracy,
It is desirable that the resin layer is as small as possible in terms of adhesion. The smaller the amount of the powder substance in the resin layer is, the less the direct contact between the powder and the member is, so that the adhesive force is further improved.

【0026】本発明に係る皮膜を二層以上形成させるこ
とができ、この場合粉体及び/又は樹脂の種類が異なる
二層以上の皮膜を形成してもよい。皮膜の層数が多くな
ると膜厚が大きくなりすぎること、工程が長くなり不経
済なので、全体の層数は三層以下が好ましい。
Two or more layers of the film according to the present invention can be formed, and in this case, two or more layers of different kinds of powder and / or resin may be formed. If the number of layers of the film increases, the film thickness becomes too large, and the process becomes long and uneconomical. Therefore, the total number of layers is preferably 3 or less.

【0027】従来の塗装法では粉体粒子が分散するかあ
るいは粗密の差が大きいクラスターとなるので、本発明
の皮膜は粉体粒子が凝集して結合するが、連続体となら
ない程度に粉体皮膜形成時の成膜力を調節する方法によ
り形成される。その一つの方法としては、本出願人が平
成3年8月9日付特願平3−224782号(以下「先
願」という)で出願した被処理部材、皮膜形成過程の少
なくとも初期において少なくとも部分的に未硬化の状態
にある樹脂(あらかじめ被処理部材に被着されることも
ある)、粉体物質、および前記被処理部材よりも寸法が
実質的に小さくかつ前記粉体物質よりは寸法が実質的に
大きい皮膜形成媒体に容器内にて振動または攪拌を加え
る方法がある。
In the conventional coating method, the powder particles are dispersed or clusters having a large difference in density are formed. Therefore, in the coating film of the present invention, the powder particles are agglomerated and bonded, but the powder is not so continuous. It is formed by a method of adjusting the film forming power during film formation. As one of the methods, the applicant filed in Japanese Patent Application No. 3-224782 (hereinafter, referred to as “prior application”) filed on August 9, 1991, at least partially at least in the initial stage of the film formation process. Uncured resin (which may be pre-deposited on the member to be treated), powder substance, and a dimension substantially smaller than the member to be treated and substantially smaller than the powder substance. There is a method in which vibration or agitation is applied in a container to an extremely large film forming medium.

【0028】部材表面にあらかじめ樹脂皮膜を形成し、
その皮膜が未硬化の状態で上記方法あるいは上記方法に
おいて樹脂を除いた方法を実施してもよい。
A resin film is previously formed on the surface of the member,
You may implement the said method or the method of removing the resin in the said method in the state where the film is uncured.

【0029】樹脂、粉体物質及び被処理部材を皮膜形成
媒体とともに容器内で振動又は攪拌すると、被処理部材
表面にまず樹脂の層が形成される。この樹脂層の厚み
は、粉体物質、樹脂、皮膜形成媒体、被処理部品の投入
順序や混合の仕方によって変わり、例えば、樹脂と粉体
物質の投入が同時に行われる場合は、部材表面と樹脂及
び部材表面と粉体粒子の接触が同時に起こるために、部
材表面に形成される樹脂単独の層は非常に薄くなるか、
光学顕微鏡では検出困難になることがある。樹脂皮膜形
成に続いて、粉体物質が樹脂層の粘着力により樹脂層に
捕捉・固定される。同様に樹脂層が被処理部材表面で硬
化する時に粉体物質を捕捉して硬化する。振動又は攪拌
を受けている皮膜形成媒体は、同様に振動又は攪拌を受
けている粉体物質に打撃力を与え、粉体圧縮層が作られ
る。
When the resin, the powder substance and the member to be treated are vibrated or stirred together with the film forming medium in the container, a layer of resin is first formed on the surface of the member to be treated. The thickness of this resin layer varies depending on the order of addition of the powder substance, the resin, the film forming medium, and the parts to be treated and the mixing method.For example, when the resin and the powder substance are simultaneously injected, the material surface and the resin And because the contact between the surface of the member and the powder particles occurs at the same time, the layer of the resin alone formed on the surface of the member becomes very thin, or
It may be difficult to detect with an optical microscope. Following formation of the resin film, the powder substance is captured and fixed to the resin layer by the adhesive force of the resin layer. Similarly, when the resin layer is cured on the surface of the member to be treated, the powder substance is captured and cured. The film-forming medium which is being vibrated or agitated similarly imparts a striking force to the powder substance which is also vibrated or agitated to form a powder compression layer.

【0030】皮膜形成媒体は打撃力を発生して皮膜の形
成の媒介をするが、それ自身は実質的に皮膜の成分にな
らない。被処理部材より大きい皮膜形成媒体は前者の表
面上で均一な打撃力を発生することができず、また粉末
よりも小さいと皮膜形成媒体が皮膜中に捕捉されてしま
う。ただし、極端に多くない範囲、例えば体積比で70
%以下の範囲であれば、被処理部材よりも大きな媒体が
含まれていてもよい。また、打撃力をある程度集中させ
る方が粉体の圧入がよく進行するため、例えば球状の媒
体を使用する場合はその直径が0.5mm以上、より望
ましくは1mm以上が望ましく、他の形状の場合もこれ
に準ずる。また被処理部材よりも小さいときは、媒体の
一つ一つを同体積の球で置き換えたとき、その直径が被
処理部材のさしわたしのうち最大のものよりも小さいこ
とを言う。また粉末に対しては、平均寸法で要件を充た
していれば、所望の打撃力をつくり出すことができる。
すなわち、皮膜形成媒体となる粒子の一部が粉体物質よ
り細かくとも、平均寸法で前者が後者より大きければ所
望の打撃力を作りだすことができる。ただし、これら粉
体物質より細かい媒体は皮膜中にとりこまれる恐れがあ
り、できるだけ含まれないことが望ましい。
The film-forming medium generates a striking force to mediate the film formation, but does not itself substantially become a component of the film. A film-forming medium larger than the member to be treated cannot generate a uniform striking force on the former surface, and if it is smaller than the powder, the film-forming medium is trapped in the film. However, the range is not extremely large, for example, 70 by volume ratio.
A medium larger than the member to be processed may be contained within the range of not more than%. Further, since it is better to concentrate the impact force to a certain extent so that the powder press-fitting proceeds better, for example, when using a spherical medium, the diameter is preferably 0.5 mm or more, more preferably 1 mm or more, and in the case of other shapes. The same applies to this. Also, when it is smaller than the member to be processed, it means that when each of the media is replaced with a sphere of the same volume, the diameter is smaller than the largest one of the sizes I of the member to be processed. Further, for powder, if the average size meets the requirements, a desired impact force can be created.
That is, even if some of the particles forming the film-forming medium are finer than the powder substance, if the former is larger than the latter in average size, a desired striking force can be produced. However, media smaller than these powder substances may be trapped in the coating film, and it is desirable that the media should not be included as much as possible.

【0031】皮膜形成媒体の材質は次の要件を満たして
いる必要がある。 塑性変形により皮膜形成前後に皮膜形成媒体を観察し
て肉眼で認められるような大きな形状変化がなく、か
つ、皮膜形成過程において弾性変形が極端に大きくなら
ないこと。したがって軟質ゴムなどはこの要件を満たさ
ない。 割れ、欠け、急激な摩耗などがないこと(長期的使用
による若干の摩耗はあってもよい)。 これらの要件を満たさない材質の皮膜形成媒体が被処理
材との衝突により塑性変形を起こしたりあるいは軟質ゴ
ムのように極端に大きな弾性変形を起こしたりすると、
後者に与える打撃が不足して所望の皮膜形成が起こらな
くなる。また、割れ、欠け、急激な摩耗が起こると、媒
体の耐用寿命が短くなり、不経済である。
The material of the film-forming medium must meet the following requirements. The plastic deformation does not cause a large change in shape that can be visually observed by observing the film forming medium before and after film formation, and the elastic deformation does not become extremely large during the film formation process. Therefore, soft rubber does not meet this requirement. No cracks, chips, or sudden wear (may be slightly worn over long-term use). When a film-forming medium of a material that does not meet these requirements causes plastic deformation due to collision with a material to be treated or causes extremely large elastic deformation like soft rubber,
The latter will not be sufficiently hit and the desired film formation will not occur. Further, if cracking, chipping or sudden wear occurs, the useful life of the medium is shortened, which is uneconomical.

【0032】粉体物質は皮膜中に取り込まれるために
は、皮膜形成媒体よりは小さくなければならない。粉体
物質の粒度は、被処理部品の大きさ、皮膜の厚さ及び粉
体物質の材質により変わる。一般には0.01〜500
μmの範囲内である。望ましくは0.01〜300μ
m、より望ましくは0.01〜100μmの範囲内であ
る。一般に、粉体は粒度が小さいほど樹脂により捕捉さ
れやすい。また粒度が小さい粒子は、樹脂皮膜上に分散
している粉体物質の粒子の間に打撃により押し込まれ易
く、塑性変形による粉体同志あるいは被処理材料との圧
着や結合が起こり易い。したがって粉体物質の粒度が小
さいほど、打撃力が小さくて済み、また皮膜の表面粗さ
も小さくなる。
The powdered material must be smaller than the film-forming medium in order to be incorporated into the film. The particle size of the powder substance depends on the size of the part to be treated, the thickness of the coating and the material of the powder substance. Generally 0.01-500
It is in the range of μm. Desirably 0.01-300μ
m, more preferably 0.01 to 100 μm. Generally, the smaller the particle size of the powder, the easier the powder is to be captured by the resin. Further, the particles having a small particle size are apt to be pushed between the particles of the powder substance dispersed on the resin film by hitting, and are likely to be pressed and bonded to each other or to the material to be treated due to plastic deformation. Therefore, the smaller the particle size of the powder substance, the smaller the impact force, and the smaller the surface roughness of the coating.

【0033】皮膜形成媒体は鉄、炭素鋼、その他合金
鋼、銅および銅合金、アルミおよびアルミニウム合金、
その他各種金属、合金製、あるいはAl23 ,SiO
2 ,TiO2 ,ZrO2 ,SiC等のセラミックス製、
ガラスさらに硬質プラスチック等を用いることができ
る。また皮膜成形に充分な打撃力が加えられるのであれ
ば、硬質のゴムも使用することができる。これら媒体の
サイズ、材質は部品の形状およびサイズ、使用する粉体
の材質に応じて適宜選択する必要がある。また複数のサ
イズ及び材質の媒体を混合して使用することもできる。
また場合によっては金属、樹脂などによる表面処理、表
面被覆を施して使うこともできる。また複数の上記材料
によって構成された複合媒体を用いてもよい。また、打
撃力の緩和および平均化を行い、皮膜の均質性、膜厚の
ばらつきを抑えるため、木粉や軟質ゴム、軟質プラスチ
ック等軟質の媒体を前記媒体に対し体積比の50%以下
の範囲で適宜混合することがある。これらは単独では打
撃力をほとんど生じないので、必ず前記皮膜形成媒体と
併用される。
The film forming medium includes iron, carbon steel, other alloy steels, copper and copper alloys, aluminum and aluminum alloys,
Other various metals, alloys, Al 2 O 3 , SiO
Made of ceramics such as 2 , TiO 2 , ZrO 2 , SiC,
Glass or hard plastic can be used. Hard rubber can also be used as long as a sufficient striking force is applied to the film formation. The size and material of these media must be appropriately selected according to the shape and size of the parts and the material of the powder used. It is also possible to mix and use media of a plurality of sizes and materials.
Further, in some cases, it may be used after being subjected to surface treatment or surface coating with metal, resin or the like. Also, a composite medium composed of a plurality of the above materials may be used. In addition, softening medium such as wood powder, soft rubber, and soft plastic is used in the range of 50% or less of the volume ratio in order to alleviate and average the striking force and suppress the film uniformity and the variation in film thickness. May be mixed appropriately. These alone produce almost no striking force, so they are always used in combination with the film-forming medium.

【0034】皮膜形成媒体の形状は、球状が好ましい
が、楕円形、立方体、三角柱、円柱、円錐、三角錐、四
角錐、菱面体、不定形体、その他各種形状を使用するこ
とができる。皮膜形成混合物の各成分(要素)の割合は
各成分の所望の作用を発揮するように、いずれかの要素
に偏らず全体がバランスするように定める。粉体および
樹脂の量は、部品に付与する皮膜の厚みと、部品の表面
積の合計によって定まる。ただし、樹脂と粉体の比率
は、樹脂の硬化後の体積に換算して樹脂分を0.5%以
上に設定することが望ましい。これ以下であると、粉体
の部品への付着が不充分となる。また、媒体と部品の混
合比率は、部品の形状によって異なるが、少なくとも見
掛け容積比で媒体を20%以上配合しないと、部品表面
への均一かつ充分な打撃が行われず良好な皮膜を得るこ
とが難しい。
The shape of the film-forming medium is preferably spherical, but an ellipse, a cube, a triangular prism, a cylinder, a cone, a triangular pyramid, a quadrangular pyramid, a rhombohedron, an irregular shape, and various other shapes can be used. The proportion of each component (element) of the film-forming mixture is determined so that the desired action of each component is exerted and the whole is balanced without being biased to any element. The amount of powder and resin is determined by the total thickness of the coating applied to the part and the surface area of the part. However, it is desirable that the ratio of the resin and the powder is set to 0.5% or more in terms of the volume of the resin after the resin is cured. If it is less than this, the adhesion of the powder to the parts becomes insufficient. The mixing ratio of the medium and the component varies depending on the shape of the component, but unless the medium is blended in an amount of 20% or more in terms of the apparent volume ratio, the component surface may not be hit uniformly and sufficiently to obtain a good film. difficult.

【0035】容器内での振動又は攪拌は物品もしくは部
材が比較的小さい場合は以下述べるような種々の方法で
実施することができる。容器2内に設けられ回転軸4に
固着されたアーム3(図1参照)、回転軸4に固着され
た羽根5(図2参照)、または図示されてはいないがイ
ンペラ、ブレードなどの撹拌機により為される。なお、
図中10は皮膜形成混合物である。また、図3に示すよ
うにドラム又はポット状容器自体をローラー6上で回転
してもよい。さらに図4に示すように、回転軸に固着さ
れたドラム状容器2を回転してもよい。容器は上部が解
放されていても、また密閉されていてもどちらでもよ
い。加えて図5に示すように容器2を揺すってもよい。
揺動中に撹拌を行ってもよい。また図6に示す回転軸4
に対称的に固着されたアーム7の先端に取りつけられた
容器2内に粉末混合物10を入れて遠心力で粉末混合物
を混合してもよい。このとき容器2を自転させることが
好ましい。容器の動作が同じであれば、回転の機構はこ
れに限らず、例えばディスク状のホルダーを使ってもよ
い。
Vibration or agitation in the container can be carried out by various methods as described below when the article or member is relatively small. An arm 3 (see FIG. 1) provided in the container 2 and fixed to the rotating shaft 4, a blade 5 (see FIG. 2) fixed to the rotating shaft 4, or a stirrer (not shown) such as an impeller or a blade. Done by. In addition,
In the figure, 10 is a film-forming mixture. Further, as shown in FIG. 3, the drum or the pot-shaped container itself may be rotated on the roller 6. Further, as shown in FIG. 4, the drum-shaped container 2 fixed to the rotary shaft may be rotated. The container may be open at the top or sealed. In addition, the container 2 may be shaken as shown in FIG.
Stirring may be performed during rocking. Further, the rotary shaft 4 shown in FIG.
Alternatively, the powder mixture 10 may be placed in the container 2 attached to the tip of the arm 7 that is symmetrically fixed to the container 7, and the powder mixture may be mixed by centrifugal force. At this time, it is preferable to rotate the container 2 by itself. If the operation of the container is the same, the rotation mechanism is not limited to this, and for example, a disc-shaped holder may be used.

【0036】あるいは容器2内又は容器外に設けられた
加振器8により皮膜形成混合物に振動を加えてもよい
(図7参照)。以下振動を加える方法に例を取って皮膜
形成混合物に加える力(加振力)の大きさを説明する。
加振力を容器及び皮膜形成混合物の重力(以下「振動重
力」という)で平均した値(以下、「加振比」−無次元
数−という)が皮膜形成媒体が被処理部品に加える衝撃
力の指標になる。具体例として、2.8リットルの容器
の重量−1kgf,スチールボール(皮膜形成媒体)の
重量−10kgf、被処理部品の重量−1kgfである
場合は、振動重力は12kgfとなる。このとき40H
z周期の好ましい加振力は20〜50kgfである。し
たがって加振比は1.67(=20/12)〜4.17
(50/12)となる。
Alternatively, the film-forming mixture may be vibrated by a shaker 8 provided inside or outside the container 2 (see FIG. 7). The magnitude of the force (excitation force) applied to the film-forming mixture will be described below by taking an example of a method of applying vibration.
The value obtained by averaging the vibration force with the gravity of the container and the film-forming mixture (hereinafter referred to as "vibration gravity") (hereinafter referred to as "vibration ratio" -dimensionless number) is the impact force that the film-forming medium exerts on the component to be processed. Will be an index of. As a specific example, when the weight of a 2.8-liter container is −1 kgf, the weight of a steel ball (film forming medium) is −10 kgf, and the weight of a component to be processed is −1 kgf, the oscillating gravity is 12 kgf. 40H at this time
A preferable exciting force in the z cycle is 20 to 50 kgf. Therefore, the vibration ratio is 1.67 (= 20/12) to 4.17.
(50/12).

【0037】より大きい容器を使用する場合、具体例と
して20リットルの容器の重量−4.5kgf,スチー
ルボール(皮膜形成媒体)の重量−70kgf、被処理
部品の重量−5.5kgfである場合は、振動重力は8
0kgfとなる。このとき25Hz周期の好ましい加振
力は150kgfである。したがって被加振力は150
/80=1.88である。加振比の上限は電磁遮蔽を施
す物品もしくは部材が破壊もしくは損傷しない程度に定
める必要がある。例えばプラスチック筐体などの場合は
5以下に設定することが望ましい。また、加振比の下限
は1以上、特に1.5以上であることが好ましい。加振
比がこの下限より小さいと皮膜成長速度が遅くなる。振
動の周波数は特に限定されないが、2Hz〜200Hz
の範囲であることが好ましい。この時の振幅が0.5〜
10mmで上記被加振力の範囲に入る。
When a larger container is used, as a specific example, the weight of a container of 20 liters-4.5 kgf, the weight of steel balls (film forming medium) -70 kgf, and the weight of parts to be treated-5.5 kgf are used. , Vibrating gravity is 8
It becomes 0 kgf. At this time, the preferable excitation force in the 25 Hz cycle is 150 kgf. Therefore, the excited force is 150
/80=1.88. The upper limit of the vibration ratio must be set to the extent that the article or member to be electromagnetically shielded is not destroyed or damaged. For example, in the case of a plastic housing, it is desirable to set it to 5 or less. Further, the lower limit of the vibration ratio is preferably 1 or more, and particularly preferably 1.5 or more. If the vibration ratio is smaller than this lower limit, the film growth rate becomes slow. The frequency of vibration is not particularly limited, but 2 Hz to 200 Hz
It is preferably in the range of. The amplitude at this time is 0.5-
When it is 10 mm, it falls within the range of the force to be excited.

【0038】続いて、撹拌方式の場合は、回転により発
生する遠心力が皮膜形成混合物と容器の合計重量に対し
て上記加振比の範囲に入っていることが望ましい。しか
し回転数が大き過ぎかつ/または容器中における皮膜形
成混合物の体積割合が大きすぎると、皮膜形成混合物が
容器壁に押し付けられて混合が十分に起こらない。した
がって回転数は150rpm以下かつ/又は前記の体積
割合は80%以下の条件を満たすことが好ましい。
Subsequently, in the case of the stirring system, it is desirable that the centrifugal force generated by the rotation is within the above-mentioned vibration ratio with respect to the total weight of the film-forming mixture and the container. However, if the number of revolutions is too high and / or the volume ratio of the film-forming mixture in the container is too large, the film-forming mixture is pressed against the container wall and the mixing does not occur sufficiently. Therefore, it is preferable that the rotation speed is 150 rpm or less and / or the volume ratio is 80% or less.

【0039】一方、比較的大きな部材や板材の被覆を行
う場合には、図8に示すように容器1を間仕切り板30
で仕切って、仕切られた区画31のそれぞれに部品33
を投入し、容器を振動させてもよい。また図9に示すよ
うに部品33を釣具36で容器1内に釣り下げてもよ
い。
On the other hand, in the case of covering a relatively large member or plate material, as shown in FIG.
And a part 33 in each of the divided compartments 31.
May be charged and the container may be vibrated. Further, as shown in FIG. 9, the component 33 may be hung in the container 1 with the fishing tackle 36.

【0040】図8で間仕切り板30の代りに金網を用い
ると、皮膜形成媒体が金網の網目を通り抜けて槽内を自
由に行き来できるため、粉体が均一に行きわたり均一で
良好な皮膜を得ることができる。また、図10に示すよ
うに部材33を容器1内に固定して、容器を加振し及び
/又は部材33を加振器8に接続して部材33を加振さ
せてもよい。図11に示すように部材33を釣り下げて
部材33の片面にのみ媒体が接触するようにして、容器
を振動させると部材の片面のみを被覆することができ
る。
When a wire net is used instead of the partition plate 30 in FIG. 8, the film-forming medium can pass through the mesh of the wire net and freely come and go in the tank, so that the powder is evenly distributed and a uniform and good film is obtained. be able to. Alternatively, as shown in FIG. 10, the member 33 may be fixed in the container 1 to vibrate the container and / or the member 33 may be connected to the vibrator 8 to vibrate the member 33. As shown in FIG. 11, when the member 33 is hung down so that the medium contacts only one surface of the member 33 and the container is vibrated, only one surface of the member can be covered.

【0041】部材がプラスチック筐体である場合には、
樹脂の代りに溶剤を塗布し、部材のプラスチックを溶か
し出して樹脂層としてもよい。この方法によれば、樹脂
又は溶剤の塗布された部分にのみ皮膜が形成されるため
例えば筐体内面にのみ皮膜を形成させるなどが極めて容
易に行える。物品に上記の方法によって電磁遮蔽膜を形
成させる場合、所望の表面全体を一回では被覆できない
場合がある。このような場合、物品を一度いくつかの部
材に分割し、それぞれ必要な部分に膜を形成させた後、
組み立てる方法が有効である。また電波暗室など大きな
空間を電磁遮蔽したい場合は上記の方法により片面もし
くは両面に電磁遮蔽膜を形成させた板で部屋を囲うこと
により遮蔽を行うことができる。
When the member is a plastic housing,
A solvent may be applied instead of the resin, and the plastic of the member may be melted out to form a resin layer. According to this method, the film is formed only on the portion to which the resin or the solvent is applied, so that it is extremely easy to form the film only on the inner surface of the housing. When an electromagnetic shielding film is formed on an article by the above method, it may not be possible to cover the entire desired surface in one shot. In such a case, the article is divided into several parts once, and after forming a film on each required part,
The method of assembling is effective. When it is desired to electromagnetically shield a large space such as an anechoic chamber, the room can be shielded by surrounding the room with a plate having an electromagnetic shielding film formed on one or both sides by the above method.

【0042】単純な板やあるいは細長い線材に皮膜を形
成させるには、図12に示すように容器1の底に穴28
をあけ、ここへ板などの部材3を通し、皮膜形成媒体7
を容器1へ入れる。容器に振動を加えながら、樹脂、粉
体を少しずつ連続的に投入し部材33をパッキング39
に対して滑らせながら下へ引き抜いてゆく。容器1に入
る前に、部材33の表面にあらかじめ樹脂層をつけこれ
を容器1内に引きこみ、容器1内へは粉体のみを投入し
てもよい。図12のように板状の部材を容器の片側に寄
せ、板の片面のみに膜を形成させることができる。図1
3のように部材33を水平に引き抜き両面に皮膜を形成
するようにしてもよい。
To form a film on a simple plate or an elongated wire, a hole 28 is formed in the bottom of the container 1 as shown in FIG.
And the member 3 such as a plate is passed therethrough to form the film forming medium 7
Into container 1. While vibrating the container, resin and powder are continuously added little by little and the member 33 is packed 39
Slide it down and pull it down. Before entering the container 1, a resin layer may be provided on the surface of the member 33 in advance and the resin layer may be drawn into the container 1, and only the powder may be put into the container 1. As shown in FIG. 12, a plate-shaped member can be moved to one side of the container to form a film on only one side of the plate. Figure 1
Alternatively, the member 33 may be horizontally pulled out to form a film on both surfaces.

【0043】筐体の隅部などには図1〜13を参照して
説明した方法によっては皮膜を形成することが困難な場
合がある。この場合は図14に示すように、鋼球42な
どの皮膜形成媒体の表面に未硬化の樹脂、その他の接着
性材料を予め付着させ、そこに粉体41を付着させ、そ
してノズル45からこの鋼球42を噴出させる。筐体4
0は予め未硬化の樹脂層43を形成しておく。鋼球42
が樹脂層43に衝突すると、粉体41は樹脂層43に捕
捉されかつ押し込まれる。粉体41が離れた鋼球42は
落下し、次々に鋼球42の衝突が起こるから、粉体は樹
脂層43内にますます押し込まれ、圧縮され、密度が高
まり、面接触しそして骨格構造を作る。上記方法とは別
に、粉体41と鋼球42を別々に同一箇所に向かって噴
射してもよい。鋼球42の噴射はガス流を利用してもよ
く機械的に噴射してもよい。また特に隅部に粉体圧縮層
を形成せしめるために隅部に面取り(コーナー取り)を
施すことが望ましい。面取りはその曲率半径Rで一般に
表わされるが好ましくはR=0.1〜5mmより好まし
くはR=0.25〜3mmさらに好ましくはR=0.5
〜2mmのコーナー取りをすることが好ましい。
In some cases, it may be difficult to form a film on the corners of the housing by the method described with reference to FIGS. In this case, as shown in FIG. 14, uncured resin or other adhesive material is previously attached to the surface of the film forming medium such as the steel ball 42, the powder 41 is attached thereto, and the nozzle 45 The steel ball 42 is ejected. Case 4
For 0, the uncured resin layer 43 is formed in advance. Steel ball 42
When the powder collides with the resin layer 43, the powder 41 is captured and pushed into the resin layer 43. The steel balls 42 separated from the powder 41 fall, and the steel balls 42 collide one after another, so that the powder is further pushed into the resin layer 43, compressed, becomes denser, comes into surface contact, and has a skeletal structure. make. Apart from the above method, the powder 41 and the steel balls 42 may be separately sprayed toward the same location. The steel balls 42 may be jetted using a gas flow or mechanically. Further, in particular, it is desirable to chamfer (corner) the corners in order to form the powder compression layer at the corners. The chamfer is generally expressed by its radius of curvature R, but preferably R = 0.1-5 mm, more preferably R = 0.25-3 mm, further preferably R = 0.5.
It is preferable to remove a corner of ˜2 mm.

【0044】皮膜の全体の強度及び耐食性を向上させる
ため及び粉体や皮膜の一部の脱落防止のために、本発明
の電磁遮蔽膜をめっき保護膜で覆うことが可能である。
このとき電磁遮蔽膜の少なくとも最上層部を金属や合金
の粉体圧縮層で構成することにより、該めっき皮膜を電
解めっき法により形成させることができる。一方、従来
プラスチック筐体表面等へのめっきによる遮蔽膜は、す
べて無電解めっきにより作られてたが、本発明によれ
ば、電解めっきによりこれを作製することができる。
The electromagnetic shielding film of the present invention can be covered with a plating protective film in order to improve the strength and corrosion resistance of the entire film and to prevent the powder and a part of the film from falling off.
At this time, by forming at least the uppermost layer of the electromagnetic shielding film with a powder compression layer of metal or alloy, the plating film can be formed by the electrolytic plating method. On the other hand, conventionally, the shielding film formed by plating on the surface of the plastic casing or the like has been made by electroless plating, but according to the present invention, this can be made by electrolytic plating.

【0045】保護皮膜は皮膜の樹脂と同種または異種の
樹脂を膜とすることができる。樹脂塗装膜の膜厚は0.
5μm以上300μm以下であることが望ましい。また
塗装膜の代わりにビニ−ルなどの被覆を行うこともでき
る。
The protective film may be made of the same or different resin as the resin of the film. The thickness of the resin coating film is 0.
The thickness is preferably 5 μm or more and 300 μm or less. Further, a coating such as vinyl can be applied instead of the coating film.

【0046】樹脂保護皮膜を設けた電磁遮蔽膜を電気的
接地するためには保護皮膜に露出孔を開ける必要が出て
くる。これを避けるためには、保護皮膜の樹脂を導電塗
料あるいは導電性有機材料とすることができる。これに
使用できる材料としては、導電性ポリアニリン、ドーピ
ング型ポリアセチレン、Ni、Cu、Ag、Cu−Ag
(AgメッキCu粉)、Ni−Ag(AgメッキNi
粉)などの導電体粉体を含む導電塗料などがある。
In order to electrically ground the electromagnetic shielding film provided with the resin protective film, it becomes necessary to form an exposed hole in the protective film. In order to avoid this, the resin of the protective film can be a conductive paint or a conductive organic material. Materials that can be used for this include conductive polyaniline, doped polyacetylene, Ni, Cu, Ag, and Cu-Ag.
(Ag plated Cu powder), Ni-Ag (Ag plated Ni
There are conductive paints containing conductive powder such as powder.

【0047】[0047]

【作用】本発明の電磁遮蔽膜の性質について上記をまと
めて説明する。 (イ)軽量性:皮膜であるために重量が少ない。 (ロ)シールド性能:骨格構造であるため金属などの含
有量が従来の導電性塗料よりも高くできるのでシールド
性能が優れている。 (ハ)廃液処理:骨格構造はドライプロセスによるため
に廃液処理が不要である。 (ニ)予備処理:樹脂層の形成を予備処理として行うこ
とがあるが、無電解めっきの予備処理と比べて簡単であ
る。 (ホ)皮膜のつき回り性:骨格構造は三次元的に成長す
るので、PVDのように特定方向に皮膜成長が起こらな
い。したがってつき回り性が良好である。 (ヘ)外観:樹脂の塗装膜と外観は同等であり、良好で
ある。 以下実施例により本発明を詳しく説明する。
The action of the electromagnetic shielding film of the present invention will be summarized below. (A) Lightness: The weight is small because it is a film. (B) Shielding performance: Since it has a skeletal structure, the content of metals and the like can be higher than that of conventional conductive paints, so shielding performance is excellent. (C) Waste liquid treatment: Since the skeletal structure is a dry process, waste liquid treatment is unnecessary. (D) Pretreatment: The resin layer may be formed as a pretreatment, but it is easier than the pretreatment of electroless plating. (E) Film throwing power: Since the skeletal structure grows three-dimensionally, film growth does not occur in a specific direction unlike PVD. Therefore, throwing power is good. (F) Appearance: The appearance is similar to that of the resin coating film and is good. The present invention is described in detail below with reference to examples.

【0048】[0048]

【実施例】実施例1 容積2.8リットル、深さ150mmの円形のポット中
に表面にニッケルめっきを処した直径1mmのスチール
ボールを10kg投入し、その上からエポキシ樹脂10
%(樹脂97%、硬化剤3%)を溶かしたMEK溶液3
0ccを振りかけた。容器に10分間振動(振動数36
00cpm、振幅0.5〜2mm)を加え、スチールボ
ール表面にまんべんなく樹脂を行き渡らせた。その後、
粒径0.1〜1μmのAg粉末を25g投入し、同じ振
動を10分間加えた。
Example 1 Into a circular pot having a volume of 2.8 liters and a depth of 150 mm, 10 kg of a steel ball having a diameter of 1 mm, the surface of which was nickel-plated, was placed, and the epoxy resin 10 was placed thereon.
% (Resin 97%, curing agent 3%) MEK solution 3
Sprinkled with 0 cc. Vibrate in the container for 10 minutes (frequency 36
(00 cpm, amplitude 0.5 to 2 mm) was added to spread the resin evenly on the surface of the steel ball. afterwards,
25 g of Ag powder having a particle size of 0.1 to 1 μm was added, and the same vibration was applied for 10 minutes.

【0049】次に幅70mm,奥行き49mm,深さ1
0mmの上部開放筐体状部材(PC/ABSアロイ製樹
脂)の表面にエポキシ樹脂(エポキシ樹脂94%、硬化
剤6%をMEKで10%濃度に希釈したもの)をスプレ
ー塗布し、部材内表面に樹脂層を作成した後、ポットに
投入し、同じ振動を20分間加え、部材内表面にAg皮
膜を形成した。その後部材を取り出し、別に用意したポ
ット(中には表面にNiめっきした直径2mmの鋼球を
10kg入れてある)中に入れ、10分間、5,000
cpm,振幅0.2〜1mmの振動を加え、表面に付着
した余分なAg粉末を取り除くとともに、より高密度か
つ均一な膜を作る処理を行った。その後部材を取り出
し、60℃で2時間硬化処理をした。その結果、部材の
内面には平均膜厚14μmの均一な膜が形成できた。各
面内の表面抵抗値は、0.1Ω/□以下であったが、各
面間の抵抗値は0.2Ω/□〜0.5Ω/□であった。
Next, width 70 mm, depth 49 mm, depth 1
Epoxy resin (94% epoxy resin, 6% hardener diluted with MEK to 10% concentration) is spray-coated on the surface of 0 mm upper open housing-like member (resin made of PC / ABS alloy), and the inner surface of the member After the resin layer was prepared, the mixture was put into a pot and the same vibration was applied for 20 minutes to form an Ag film on the inner surface of the member. After that, the member was taken out and put in a separately prepared pot (in which 10 kg of Ni-plated steel balls having a diameter of 2 mm were put), 5,000 minutes for 10 minutes.
A vibration having a cpm and an amplitude of 0.2 to 1 mm was applied to remove excess Ag powder adhering to the surface, and at the same time, a treatment for forming a more dense and uniform film was performed. After that, the member was taken out and cured at 60 ° C. for 2 hours. As a result, a uniform film having an average film thickness of 14 μm could be formed on the inner surface of the member. The surface resistance value in each surface was 0.1Ω / □ or less, but the resistance value between the surfaces was 0.2Ω / □ to 0.5Ω / □.

【0050】本実施例で作成した皮膜の電子顕微鏡写真
を図16(倍率2000倍)に示す。部材の表面に厚さ
約1μmの樹脂層があり、その上にスケルトン構造を持
った約14μmのAg層が存在する。Ag層中のAgの
体積比率は60%以上であった。また、倍率を10,0
00倍に拡大したところ、スケルトン層下部の樹脂層か
らスケルトン構造の空隙に向かって樹脂が含浸されてい
ることが確認できた。
An electron micrograph of the film formed in this example is shown in FIG. 16 (magnification: 2000). A resin layer having a thickness of about 1 μm is provided on the surface of the member, and an Ag layer having a skeleton structure and having a thickness of about 14 μm is present thereon. The volume ratio of Ag in the Ag layer was 60% or more. Also, the magnification is 10,0
When magnified 00 times, it was confirmed that the resin was impregnated from the resin layer below the skeleton layer toward the voids of the skeleton structure.

【0051】また、比較例として、同じ部材(何も処理
していないもの)内面にスプレー塗装でNi系(Ni粉
−1液型アクリル系樹脂−シンナー30%)導電塗料を
14μ塗装した結果、各面内、面間の抵抗値は1.2Ω
/□〜3.0Ω/□であり、0.5Ω/□以上の抵抗値
であるためにEMIシールドには不向きであることがわ
かった。この導電膜中のNiの体積比率は25%以下で
あった。また、Ni導電膜の膜厚を50μmにしたとこ
ろ、各面内、面間の抵抗値は0.3Ω/□〜0.5Ω/
□になった。
In addition, as a comparative example, as a result of applying 14 μm of Ni-based (Ni powder-1 liquid type acrylic resin-30% thinner) conductive paint onto the inner surface of the same member (not treated) by spray coating, In-plane and inter-plane resistance value is 1.2Ω
/ □ to 3.0Ω / □, and the resistance value of 0.5Ω / □ or more was found to be unsuitable for an EMI shield. The volume ratio of Ni in this conductive film was 25% or less. When the film thickness of the Ni conductive film was set to 50 μm, the resistance value in each surface and between the surfaces was 0.3Ω / □ to 0.5Ω /
It became □.

【0052】実施例2 図15に示した部材50内面の各面の境界部にR=0.
5mmのR取りを施したPPE(ポリフェニレンエーテ
ル)製部材を利用し、実施例1と同じ本発明による処理
を行ったところ、平均膜厚4μの均一なAg皮膜が形成
でき、各面内および面間の表面抵抗値は0.1Ω/□以
下であった。なお51はキーボードのキーなどが入る孔
である。
Example 2 At the boundary between the inner surfaces of the member 50 shown in FIG. 15, R = 0.
When a 5 mm rounded PPE (polyphenylene ether) member was used and the same treatment as in Example 1 was performed, a uniform Ag film having an average film thickness of 4 μ was formed. The surface resistance was 0.1 Ω / □ or less. Reference numeral 51 is a hole into which a keyboard key or the like is inserted.

【0053】実施例3 実施例1で作成した部材をエポキシ樹脂溶液(エポキシ
樹脂92%、硬化剤8%をアセトンで5%濃度に希釈し
たもの)中に漬けた後取り出し、60℃で4時間乾燥・
硬化させた。その結果、実施例1で作成した膜の上に平
均5μのエポキシ樹脂皮膜がAg皮膜の上に作成でき
た。その後、テープ剥離試験を行ったところ、実施例1
で作成した部材の皮膜からはわずかに剥離が認められた
ものの、本実施例部材の皮膜表面からは剥離が全く認め
られなかった。
Example 3 The member prepared in Example 1 was dipped in an epoxy resin solution (92% epoxy resin, 8% hardener diluted with acetone to 5% concentration) and taken out, and then at 60 ° C. for 4 hours. Dry
Cured. As a result, an epoxy resin film having an average thickness of 5 μm could be formed on the film formed in Example 1 on the Ag film. After that, when a tape peeling test was conducted, Example 1
Although slight peeling was observed from the film of the member prepared in 1., no peeling was observed from the film surface of the member of this example.

【0054】また同じく実施例1で作成した部材内面に
エポキシ樹脂溶液(エポキシ樹脂96%、硬化剤4%を
トルエンで3%濃度に希釈したもの)をスプレー塗装し
80℃で1時間乾燥させたところ、平均膜厚が3μの均
一なエポキシ樹脂皮膜がAg皮膜の上に作成できた。ま
たこの部材の皮膜表面からもテープ試験による剥離が全
く認められなかった。
Similarly, an epoxy resin solution (96% epoxy resin and 4% hardener diluted with toluene to 3% concentration) was spray-coated on the inner surface of the member prepared in Example 1 and dried at 80 ° C. for 1 hour. However, a uniform epoxy resin film having an average film thickness of 3μ could be formed on the Ag film. Further, no peeling by the tape test was observed from the film surface of this member.

【0055】実施例4 実施例1で作成した部材内面にCu系導電性塗料(住友
スリーエム社製 電磁ガードスプレー)をスプレーコー
ティングした。その後乾燥させた結果、平均膜厚8μm
のCu系導電性膜がAg皮膜の上に得られた。部材内面
の面内および面間の抵抗を測定したところ、いずれも
0.1Ω/□以下であった。またテープ剥離試験による
剥離も全く認められなかった。
Example 4 A Cu type conductive paint (electromagnetic guard spray manufactured by Sumitomo 3M Ltd.) was spray coated on the inner surface of the member prepared in Example 1. After drying, the average film thickness was 8 μm
The Cu-based conductive film of was obtained on the Ag film. When the in-plane resistance and inter-plane resistance of the inner surface of the member were measured, both were 0.1 Ω / □ or less. No peeling was observed by the tape peeling test.

【0056】また、実施例1で作成した部材内表面に可
溶性ポリアニリン系導電性高分子をスプレー塗装後、6
0℃で5分間乾燥した。その結果、平均膜厚5μの導電
性ポリアニンフィルムがAg皮膜の上に形成できた。部
材内面の面内および面間の抵抗値を測定したところ、い
ずれも0.1Ω/□以下であった。さらにこの部材の皮
膜表面からもテープ試験による剥離が全く認められなか
った。
After the spray coating of the soluble polyaniline-based conductive polymer on the inner surface of the member prepared in Example 1, 6
It was dried at 0 ° C. for 5 minutes. As a result, a conductive polyanine film having an average film thickness of 5 μ could be formed on the Ag film. When the in-plane resistance value and the inter-surface resistance value of the inner surface of the member were measured, both were 0.1 Ω / □ or less. Further, no peeling by the tape test was observed from the film surface of this member.

【0057】実施例5 容積2.8リットル、深さ150mmの円形のポット中
に表面にクロムめっきを処した直径3mmのスチールボ
ールを10kg投入し、その上にエポキシ樹脂15%
(樹脂97%、硬化剤3%)を溶かしたMEK溶液20
ccをスチールボール表面に振りかけた。容器に5分間
振動(振動数3600cpm、振幅0.5〜3mm)を
加え、スチールボール表面にまんべんなく樹脂を行き渡
らせた。その後、平均粒径3.5μのAg−Cu粉末
(Cu粉末の表面にAgメッキしたもの)を30g投入
し、同じ振動を1時間加えた。
Example 5 Into a circular pot having a volume of 2.8 liters and a depth of 150 mm, 10 kg of a steel ball having a diameter of 3 mm, the surface of which was subjected to chrome plating, was put, and 15% of an epoxy resin was placed thereon.
MEK solution 20 in which (97% resin, 3% curing agent) is dissolved
cc was sprinkled on the surface of the steel ball. Vibration (frequency 3600 cpm, amplitude 0.5 to 3 mm) was applied to the container for 5 minutes to spread the resin evenly on the surface of the steel ball. Then, 30 g of Ag-Cu powder having an average particle size of 3.5 μ (Ag-plated Cu powder on the surface) was charged, and the same vibration was applied for 1 hour.

【0058】次に図15に示した寸法の部材(ABS製
樹脂、外面にはマスキングが処してない、各面の境界部
にはR=1.5mmの面取りが施してある)の内表面に
エポキシ樹脂(エポキシ樹脂94%、硬化剤6%をME
Kで10%濃度に希釈したもの)をスプレー塗布し、部
材内表面に樹脂層を形成した後、ポットに投入し、同じ
振動を20分間加えた。その後部材を取り出し、別に用
意したポット(中には表面にNiめっきした直径0.5
mmの鋼球を10kg入れてある)に入れ、10分間、
5,400cpm,振幅0.1〜2mmの振動を加え、
表面に付着した余分なAg−Cu粉末を取り除くととも
に、より高密度かつ均一な膜を作る処理を行った。 そ
の後部材を取り出し、60℃で2時間硬化処理をした。
その結果、部材の内面には平均膜厚8μの均一な膜が形
成できた。各面内の表面抵抗値は、0.1Ω/□以下で
あり、各面間の抵抗値は0.1Ω/□以下〜0.2Ω/
□であった。
Next, on the inner surface of the member having the dimensions shown in FIG. 15 (ABS resin, the outer surface is not masked, and the boundary between the surfaces is chamfered with R = 1.5 mm). Epoxy resin (Epoxy resin 94%, hardener 6% ME
After diluting to 10% concentration with K) was spray-coated to form a resin layer on the inner surface of the member, the resin was put into a pot and the same vibration was applied for 20 minutes. After that, the member was taken out, and a pot prepared separately (the inside of which had a Ni-plated diameter of 0.5
mm steel ball has been put in 10kg), 10 minutes,
Add vibration of 5,400 cpm and amplitude of 0.1-2 mm,
Excessive Ag—Cu powder adhering to the surface was removed, and a treatment for forming a more dense and uniform film was performed. After that, the member was taken out and cured at 60 ° C. for 2 hours.
As a result, a uniform film having an average film thickness of 8 μ could be formed on the inner surface of the member. The surface resistance value in each surface is 0.1Ω / □ or less, and the resistance value between each surface is 0.1Ω / □ or less to 0.2Ω / □.
It was □.

【0059】実施例6 容積2.8リットル、深さ150mmの円形のポット中
に表面にニッケルめっきを処した直径1〜3mmのスチ
ールボールを10kg投入し、その上にエポキシ樹脂1
5%(樹脂97%、硬化剤3%)を溶かしたMEK溶液
20ccをスチールボール表面に振りかけた。容器に1
0分間振動(振動数3600cpm、振幅0.2〜1m
m)を加え、スチールボール表面にまんべんなく樹脂を
行き渡らせた。その後、平均粒径5μmのCu粉末を2
0g投入し、同じ振動を1時間加えた。
Example 6 Into a circular pot having a volume of 2.8 liters and a depth of 150 mm, 10 kg of a steel ball having a diameter of 1 to 3 mm, the surface of which was nickel-plated, was placed, and epoxy resin 1 was placed thereon.
20 cc of MEK solution in which 5% (resin 97%, curing agent 3%) was dissolved was sprinkled on the surface of the steel ball. 1 in a container
Vibration for 0 minutes (frequency 3600 cpm, amplitude 0.2-1 m
m) was added to evenly spread the resin on the surface of the steel ball. After that, 2 Cu powders with an average particle size of 5 μm
0 g was added and the same vibration was applied for 1 hour.

【0060】次に実施例1の部材の内表面にエポキシ樹
脂(エポキシ樹脂94%、硬化剤6%をMEKで10%
濃度に希釈したもの)をスプレー塗布し、部材内表面に
樹脂層を形成した後、ポットに投入し、同じ振動を20
分間加えた。20分後部材を取り出し、60℃で2時間
硬化処理をした。次に別に用意したポット(中には表面
にNiめっきした直径1mmの鋼球を10kg入れてあ
る)中に入れ、10分間、3,600cpm,振幅0.
5〜1mmの振動を加え、表面に付着した余分なCu粉
末を取り除くとともに、より高密度かつ均一な膜を作る
処理を行った。その結果、平均膜厚4μのCu膜が得ら
れ、各面内の抵抗値は1Ω/□〜20Ω/□であった。
Next, an epoxy resin (94% epoxy resin, 6% hardener, 10% MEK) was applied to the inner surface of the member of Example 1.
(Diluted to a concentration) is applied by spraying to form a resin layer on the inner surface of the member, then put into a pot, and the same vibration is applied for 20
Added for minutes. After 20 minutes, the member was taken out and cured at 60 ° C. for 2 hours. Next, it was put into a separately prepared pot (10 kg of a steel ball having a diameter of 1 mm and having a surface plated with Ni was placed therein) for 10 minutes at 3,600 cpm and an amplitude of 0.
Excessive Cu powder adhering to the surface was removed by applying vibration of 5 to 1 mm, and a treatment for forming a more dense and uniform film was performed. As a result, a Cu film having an average film thickness of 4 μ was obtained, and the resistance value in each plane was 1 Ω / □ to 20 Ω / □.

【0061】実施例7 振動を加える工程を不活性ガス(純度98%の窒素ガ
ス)雰囲気中で処理した他は、実施例6と同一の処理を
行った。その結果、平均膜厚8μのCu膜が得られ、各
面内の抵抗値は0.2Ω/□〜0.1Ω/□以下であっ
た。
Example 7 The same process as in Example 6 was performed except that the step of applying vibration was performed in an inert gas (98% pure nitrogen gas) atmosphere. As a result, a Cu film having an average film thickness of 8 μ was obtained, and the resistance value in each plane was 0.2 Ω / □ to 0.1 Ω / □ or less.

【0062】実施例8 Cu粉末を水素還元処理(400℃〜600℃の高純度
水素ガス雰囲気中で6時間流気還元したもの)直後の粉
末を利用し、他は実施例6と同一の工程で成膜処理し
た。その結果、平均膜厚10μのCu膜が得られ、各面
内の抵抗値は0.5〜0.2Ω/□であった。
Example 8 The same process as in Example 6 was used except that the powder immediately after the Cu powder was subjected to a hydrogen reduction treatment (which was subjected to a gas stream reduction in a high-purity hydrogen gas atmosphere at 400 ° C. to 600 ° C. for 6 hours) was used. The film formation process was performed. As a result, a Cu film having an average film thickness of 10 μm was obtained, and the in-plane resistance value was 0.5 to 0.2 Ω / □.

【0063】実施例9 容積2.8リットル、深さ150mmの円形のポット中
に表面にニッケルめっきした直径0.5mmのセラミッ
クボールを2kg投入し、その上にエポキシ樹脂10%
(樹脂97%、硬化剤3%)を溶かしたMEK溶液30
ccを振りかけた。容器に10分間振動(振動数360
0cpm、振幅0.5〜2mm)を加え、セラミックボ
ール表面にまんべんなく樹脂を行き渡らせた。その後、
平均粒径1μmのAg−Ni粉末(Ni粉の表面にAg
メッキ処理を処したもの)を25g投入し、同じ振動を
20分間加えた。その後、上記処理後のAg−Ni粉末
が表面についたセラミックボールをショットブラスティ
ング装置に投入し、圧力4kg/cm2 距離10〜60
cmの条件で図17に示した大きさの部材50(ABS
製樹脂、外面にはマスキングが処してない。内面にはエ
ポキシ樹脂がスプレー塗装されている。)に10分間吹
きつけ処理を行った。その後60℃で4時間硬化処理を
行った。その結果、平均膜厚4μm、各面内抵抗値0.
3〜0.1Ω/□以下の均一な導電膜ができた。またそ
の後、さらに部材内表面に平均1μの膜厚の電解Niめ
っき膜を成膜したところ、各面内抵抗が0.1Ω/□以
下になった。なお図17において、52は放熱用スリッ
トである。
Example 9 Into a circular pot having a volume of 2.8 liters and a depth of 150 mm, 2 kg of nickel balls having a diameter of 0.5 mm and having a diameter of 0.5 mm were placed, and 10% of an epoxy resin was placed thereon.
MEK solution 30 in which (97% resin, 3% curing agent) is dissolved
Sprinkled with cc. Vibration in the container for 10 minutes (frequency 360
0 cpm and an amplitude of 0.5 to 2 mm) was applied to evenly spread the resin on the surface of the ceramic ball. afterwards,
Ag-Ni powder with an average particle diameter of 1 μm (Ag-Ni powder on the surface of Ni powder
25 g of the product subjected to the plating treatment) was put in, and the same vibration was applied for 20 minutes. Then, the ceramic balls having the surface of Ag-Ni powder after the above treatment are put into a shot blasting device, and the pressure is 4 kg / cm 2 and the distance is 10 to 60.
member 50 (ABS
No masking is applied to the resin and the outer surface. Epoxy resin is spray-painted on the inner surface. ) Was sprayed for 10 minutes. After that, curing treatment was performed at 60 ° C. for 4 hours. As a result, the average film thickness was 4 μm and the in-plane resistance value was 0.
A uniform conductive film of 3 to 0.1 Ω / □ or less was formed. After that, when an electrolytic Ni plating film having an average thickness of 1 μm was further formed on the inner surface of the member, each in-plane resistance became 0.1 Ω / □ or less. In FIG. 17, reference numeral 52 is a heat radiation slit.

【0064】[0064]

【発明の効果】本発明は以上説明したように、軽量性、
シールド性能、つき回り性が良好であり、かつ皮膜形成
に派生する問題点も少なく容易に皮膜を形成できる。
As described above, the present invention is lightweight,
The shielding performance and throwing power are good, and there are few problems derived from the film formation, and the film can be easily formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】アームを使い皮膜を形成する方法の一例を示す
図である。
FIG. 1 is a diagram showing an example of a method of forming a film using an arm.

【図2】羽根を使い皮膜を形成する方法の一例を示す図
である。
FIG. 2 is a diagram showing an example of a method of forming a film using a blade.

【図3】ドラムを使い皮膜を形成する方法の一例を示す
図である。
FIG. 3 is a diagram showing an example of a method of forming a film using a drum.

【図4】ドラムを使い皮膜を形成する方法の一例を示す
図である。
FIG. 4 is a diagram showing an example of a method of forming a film using a drum.

【図5】容器を揺って皮膜を形成する方法の一例を示す
図である。
FIG. 5 is a diagram showing an example of a method of rocking a container to form a film.

【図6】遠心力で皮膜を形成する方法の一例を示す図で
ある。
FIG. 6 is a diagram showing an example of a method of forming a film by centrifugal force.

【図7】加振器を使って皮膜を形成する方法の一例を示
す図である。
FIG. 7 is a diagram showing an example of a method of forming a film using a vibrator.

【図8】皮膜を形成する方法の一例を示す図である。FIG. 8 is a diagram showing an example of a method for forming a film.

【図9】部品を吊って皮膜を形成する方法の一例を示す
図である。
FIG. 9 is a diagram showing an example of a method of forming a film by suspending parts.

【図10】加振により皮膜を形成する方法の一例を示す
図である。
FIG. 10 is a diagram showing an example of a method of forming a film by vibration.

【図11】部品を吊って皮膜を形成する方法の一例を示
す図である。
FIG. 11 is a diagram showing an example of a method of forming a film by suspending a component.

【図12】板に皮膜を形成する方法の一例を示す図であ
る。
FIG. 12 is a diagram showing an example of a method for forming a film on a plate.

【図13】板に皮膜を形成する方法の一例を示す図であ
る。
FIG. 13 is a diagram showing an example of a method for forming a film on a plate.

【図14】筐体の隅部に皮膜を形成する方法の一例を示
す図である。
FIG. 14 is a diagram showing an example of a method of forming a film on a corner of a housing.

【図15】実施例で使用した筐体の図である。FIG. 15 is a diagram of a housing used in an example.

【図16】皮膜の骨格構造を示す粒子の電子顕微鏡写真
である。
FIG. 16 is an electron micrograph of particles showing a skeletal structure of a film.

【図17】実施例で使用した筐体の図である。FIG. 17 is a diagram of a housing used in the examples.

【符号の説明】[Explanation of symbols]

2 容器 3 アーム 4 回転軸 5 羽根 6 ローラー 8 加振器 10 皮膜形成混合物 2 container 3 arm 4 rotating shaft 5 blade 6 roller 8 vibrator 10 film forming mixture

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年5月27日[Submission date] May 27, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図16[Correction target item name] Fig. 16

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図16】 金属粉末が骨格構造をもつ薄膜の電子顕
微鏡写真である。
FIG. 16 is an electron micrograph of a thin film in which metal powder has a skeleton structure.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 導電性物質の一層以上の皮膜からなる電
磁遮蔽膜において、前記導電性皮膜が、前記導電性物質
の粉体より構成された骨格構造を持ち、その空隙の少な
くとも一部分に樹脂が充填された粉体圧縮層と、前記粉
体圧縮層の下側の樹脂層とからなることを特徴とする電
磁遮蔽膜。
1. An electromagnetic shielding film comprising one or more films of a conductive substance, wherein the conductive film has a skeleton structure composed of powder of the conductive substance, and a resin is present in at least a part of the voids. An electromagnetic shielding film comprising a packed powder compression layer and a resin layer below the powder compression layer.
【請求項2】 前記電磁遮蔽皮膜の表面を防護皮膜で覆
ったことを特徴とする請求項1記載の電磁遮蔽膜。
2. The electromagnetic shielding film according to claim 1, wherein the surface of the electromagnetic shielding film is covered with a protective film.
【請求項3】 前記防護皮膜が導電性樹脂塗装膜または
導電性有機皮膜であることを特徴とする請求項2記載の
電磁遮蔽膜。
3. The electromagnetic shielding film according to claim 2, wherein the protective film is a conductive resin coating film or a conductive organic film.
【請求項4】 前記保護皮膜が金属または合金メッキ層
からなることを特徴とする請求項2記載の電磁遮蔽膜。
4. The electromagnetic shielding film according to claim 2, wherein the protective film comprises a metal or alloy plating layer.
JP23153692A 1991-10-17 1992-08-07 Electromagnetic shielding film Pending JPH0613784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23153692A JPH0613784A (en) 1991-10-17 1992-08-07 Electromagnetic shielding film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29668591 1991-10-17
JP3-296685 1991-10-17
JP23153692A JPH0613784A (en) 1991-10-17 1992-08-07 Electromagnetic shielding film

Publications (1)

Publication Number Publication Date
JPH0613784A true JPH0613784A (en) 1994-01-21

Family

ID=26529939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23153692A Pending JPH0613784A (en) 1991-10-17 1992-08-07 Electromagnetic shielding film

Country Status (1)

Country Link
JP (1) JPH0613784A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021095726A1 (en) * 2019-11-12 2021-05-20 昭和電工マテリアルズ株式会社 Method for dispersing conductive particles, and electrostatic adsorption device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021095726A1 (en) * 2019-11-12 2021-05-20 昭和電工マテリアルズ株式会社 Method for dispersing conductive particles, and electrostatic adsorption device
US11935669B2 (en) 2019-11-12 2024-03-19 Resonac Corporation Method for dispersing conductive particles, and electrostatic adsorption device

Similar Documents

Publication Publication Date Title
US5273782A (en) Coated parts with film having powder-skeleton structure, and method for forming coating
US6149785A (en) Apparatus for coating powders
KR100742108B1 (en) Electromagnetic wave absorber
JP4485508B2 (en) Method for producing conductive particles and anisotropic conductive film using the same
KR20130057459A (en) Silver-coated spherical resin, method for producing same, anisotropically conductive adhesive containing silver-coated spherical resin, anisotropically conductive film containing silver-coated spherical resin, and conductive spacer containing silver-coated spherical resin
KR960009069B1 (en) Metal element provided with a sound and/or vibration-damping coating and process for applying the said coating
JPS61210183A (en) Method for providing metal film to surface of polymer
JPH0613785A (en) Electromagnetic shielding film
WO2003051977A1 (en) Conductive fillers and conductive polymers made therefrom
KR20180107661A (en) Housing for electromagnetic shielding
EP1441047B1 (en) Method for forming electroplated coating on surface of article
JP2991544B2 (en) Film formation method
JPH0613784A (en) Electromagnetic shielding film
WO1999023675A1 (en) HIGH CORROSION-RESISTANT R-Fe-B-BASE BONDED MAGNET AND METHOD OF MANUFACTURING THE SAME
JP2001036277A (en) Electromagnetic wave shielding sheet and manufacture thereof
JPH031137B2 (en)
JP3811272B2 (en) Electromagnetic wave shielding casing and manufacturing method thereof
JPH04350102A (en) Production of metal coated composite powder
JP3698525B2 (en) Compound housing
JP3482225B2 (en) Film formation method
CN209897542U (en) EMC shielding structure on metal composite shell
JPH05237439A (en) Method for forming film
JPS61137397A (en) Manufacture of resin molded part
JPS62186599A (en) Electromagnetic shielding material
JPS6354316B2 (en)