JPH0613744B2 - Crystalline Ni-based constituent material for molten carbonate fuel cells with excellent high-temperature corrosion resistance - Google Patents

Crystalline Ni-based constituent material for molten carbonate fuel cells with excellent high-temperature corrosion resistance

Info

Publication number
JPH0613744B2
JPH0613744B2 JP62072807A JP7280787A JPH0613744B2 JP H0613744 B2 JPH0613744 B2 JP H0613744B2 JP 62072807 A JP62072807 A JP 62072807A JP 7280787 A JP7280787 A JP 7280787A JP H0613744 B2 JPH0613744 B2 JP H0613744B2
Authority
JP
Japan
Prior art keywords
corrosion resistance
molten carbonate
crystalline
carbonate fuel
constituent material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62072807A
Other languages
Japanese (ja)
Other versions
JPS63238236A (en
Inventor
昌宏 柳田
皓雄 児玉
義憲 宮崎
和雄 藤原
康司 鳥井
武典 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Kobe Steel Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP62072807A priority Critical patent/JPH0613744B2/en
Publication of JPS63238236A publication Critical patent/JPS63238236A/en
Publication of JPH0613744B2 publication Critical patent/JPH0613744B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は溶融炭酸塩型燃料電池用として利用される高耐
食性結晶質Ni系構成材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a highly corrosion-resistant crystalline Ni-based constituent material used for a molten carbonate fuel cell.

[従来の技術] 溶融炭酸塩型燃料電池は、エネルギー変換効率が高いこ
と、公害発生の恐れがないこと、高価な触媒を必要とし
ないこと等の利点があるところから、次世代電源として
有望視されており、現在は小規模な電池を組んで耐久性
の検討を行うと共に積層技術の開発や、大規模化のため
の検討および電池の電極材料やその他の構成材料の開発
が進められている。
[Prior Art] A molten carbonate fuel cell is promising as a next-generation power source because it has advantages such as high energy conversion efficiency, no risk of pollution, and no need for expensive catalysts. Currently, small-scale batteries are assembled to study the durability, and at the same time, development of stacking technology, study for increasing the scale, and development of battery electrode materials and other constituent materials are underway. .

[発明が解決しようとする問題点] 現状における素材面の問題として、溶融炭酸塩型燃料電
池の構造材料として用いられている電極材料やセパレー
タ材料が腐食し易いという問題がある。中でもカソード
材料として用いられているNiOカソードは電極使用中
に溶解し、アノード近傍でNiとして析出して電極間を
短絡させ、電池寿命を短くしてしまうという大きな問題
があった。
[Problems to be Solved by the Invention] As a material problem at present, there is a problem that an electrode material or a separator material used as a structural material of a molten carbonate fuel cell is easily corroded. In particular, the NiO cathode used as a cathode material has a big problem that it dissolves during use of the electrode and is deposited as Ni in the vicinity of the anode to cause a short circuit between the electrodes, which shortens the battery life.

これらの問題を解決するために種々検討が行なわれてい
る。たとえば、アルミナ酸化被膜の形成による防食:
特開昭58−217677、フェロアロイ電極:特開
昭58−155662、電界質保持体に関するもの:
特開昭56−82583、特開昭58−117656、
リチウム添加金属酸化物粉末電極:特開昭58−16
5253、リチウムコバルトオキサイド微粒子焼結体
を電極とする燃料電池:特開昭60−117566、
高耐食性金属材料と複合酸化物より成る集電体:特開昭
59−230263、電気化学的に活性な金属で被覆
したセラミック粒子からなる電極材料:特開昭57−9
2753等はその一例であるが未だに決定的な解決手段
は提案されておらない。
Various studies have been made to solve these problems. For example, corrosion protection by forming an alumina oxide film:
JP-A-58-217677, Ferroalloy electrode: JP-A-58-155662, relating to electrolyte holder:
JP-A-56-82583, JP-A-58-117656,
Lithium-added metal oxide powder electrode: JP-A-58-16
5253, Fuel cell using lithium cobalt oxide fine particle sintered body as electrode: JP-A-60-117566,
Current collector composed of highly corrosion resistant metal material and complex oxide: JP-A-59-230263, electrode material composed of ceramic particles coated with an electrochemically active metal: JP-A-57-9
2753 and the like are one example, but no definitive solution has been proposed yet.

本発明はこれらの事情を憂慮し、溶融炭酸塩型燃料電池
用構造部材、特に電極材料として使用実績のある結晶質
Ni系材料を取り挙げ、その高温耐食性について種々検
討した。その結果、後述するような成分組成を満足し、
更に所望に応じてこの組成の合金を酸化処理するなら
ば、従来のNi系材料が備えている耐食性を更に高める
ことのできる新しいNi系構成材料が得られるという知
見を得て本発明に至った。すなわち本発明の目的とする
ところは溶融炭酸塩環境下で従来以上の耐食性を発揮す
る溶融炭酸塩型燃料電池用結晶質Ni系構成材料の提供
にある。
In view of these circumstances, the present invention has taken various studies on the high temperature corrosion resistance of a structural member for a molten carbonate fuel cell, particularly a crystalline Ni-based material that has been used as an electrode material. As a result, the component composition as described below is satisfied,
Further, the present invention has been achieved by finding that a new Ni-based constituent material capable of further improving the corrosion resistance of the conventional Ni-based material can be obtained by oxidizing the alloy having this composition as desired. . That is, an object of the present invention is to provide a crystalline Ni-based constituent material for a molten carbonate fuel cell, which exhibits corrosion resistance higher than ever before in a molten carbonate environment.

[問題点を解決するための手段] 上記問題点を解決することのできた本発明とは Si:0.4〜5%(重量%の意味、以下同じ) Al:0.1〜10%または20〜40% よりなる群から選択される1種以上の元素、更に場合に
よりCr:0.5〜12%を含有し、残部Niおよび不可
避不純物からなり、且つ酸化処理が施されたものである
ことを要旨とする。
[Means for Solving the Problems] The present invention that was able to solve the above problems is Si: 0.4 to 5% (meaning weight%; the same applies hereinafter) Al: 0.1 to 10% or 20 to 40% The gist is that it contains one or more elements selected from the group consisting of, optionally, Cr: 0.5 to 12%, the balance is Ni and inevitable impurities, and is subjected to an oxidation treatment.

[作用] 前述のように本発明は、従来溶融炭酸塩型燃料電池のカ
ソード電極やアノード電極の構成材料として使用されて
きた結晶質Ni系材料の高温耐食性について検討した結
果なされたもので、次に述べるような成分組成のもの、
さらにはこれを酸化処理したものは電極材料やセパレー
ター材料等溶融炭酸塩型燃料電池用構成材料としての耐
食性が著しく良好なものとなるという知見に基ずいて完
成されたものである。次に各成分の限定範囲およびその
限定理由について述べる。
[Operation] As described above, the present invention has been made as a result of examining the high temperature corrosion resistance of a crystalline Ni-based material that has been conventionally used as a constituent material of a cathode electrode or an anode electrode of a molten carbonate fuel cell. Of the component composition as described in
Further, the product obtained by subjecting this to oxidation treatment has been completed based on the finding that the corrosion resistance as a constituent material for a molten carbonate fuel cell such as an electrode material and a separator material becomes remarkably good. Next, the limiting range of each component and the reason for the limitation will be described.

Si:0.4〜5% Siは脱酸剤として必要であるとともに溶融炭酸塩環境
下、特に気液界面部での材料表層部に形成される酸化被
膜を強固にする作用があり、NiあるいはNiOの耐食
性を向上させる。0.4%未満ではそれらの効果が得られ
ず、また5%を超えると逆に金属間化合物が形成されて
耐食性が低下するのでSi添加範囲を0.4〜5%とし
た。
Si: 0.4 to 5% Si is necessary as a deoxidizing agent, and has the effect of strengthening the oxide film formed on the material surface layer portion in the molten carbonate environment, particularly at the gas-liquid interface portion. Improves corrosion resistance. If it is less than 0.4%, these effects cannot be obtained, and if it exceeds 5%, an intermetallic compound is formed on the contrary and corrosion resistance is deteriorated. Therefore, the Si addition range is set to 0.4 to 5%.

Al:0.1〜10%または20〜40% Alは脱酸剤として必要であるとともに材料表面にアル
ミナ系酸化被膜を形成することによってNiの耐食性を
向上させる働きがある。0.1%未満では脱酸効果が不十
分であるとともに酸化被膜を十分に形成し難く、0.1〜
10%ではAlがNiに固溶した安定なα相を形成し、
また20〜40%でもAl:Niが1:1となるβ′相
を形成し、いずれもアルミナ系酸化被膜が効率良く形成
される。ところが10%を超え20%未満ではNi
lなる金属間化合物を、また40%を超える範囲ではN
Al、更にはNiAlなる金属間化合物を形成し
組織が不安定となって耐食性が逆に低下するのでAlの
添加量は0.1〜10%または20〜40%とした。
Al: 0.1 to 10% or 20 to 40% Al is necessary as a deoxidizing agent and has a function of improving the corrosion resistance of Ni by forming an alumina-based oxide film on the material surface. If it is less than 0.1%, the deoxidizing effect is insufficient and it is difficult to form an oxide film sufficiently.
At 10%, Al forms a stable α phase with Ni as a solid solution,
Further, even if it is 20 to 40%, a β'phase in which Al: Ni becomes 1: 1 is formed, and an alumina oxide film is efficiently formed in both cases. However, if it exceeds 10% and is less than 20%, Ni 3 A
l intermetallic compound, and N in the range exceeding 40%
The amount of Al added was set to 0.1 to 10% or 20 to 40%, because an intermetallic compound such as i 2 Al and NiAl 3 is formed and the structure becomes unstable and corrosion resistance decreases.

上記2種の元素は単独及び複合添加の如何を問わず夫々
の作用を発揮するものであるが、複合添加の方がより一
層の耐食性が得られる。尚残余成分はNiもしくはNi
−Crおよび不可避不純物によって構成される。ここで
Crを含む場合はCrの添加範囲を0.5〜12%とす
る。この範囲内においては、Crは材料表面に酸化クロ
ムの被膜を形成してNiの耐食性を向上させる働きを示
す。Cr添加量が0.5%未満であると上記効果が不十分
となり、一方12%を超えると電気抵抗が大きくなり、
燃料電池用材料として不都合となる。
The above-mentioned two kinds of elements exert their respective functions regardless of whether they are added singly or in combination. However, the addition of composites provides more corrosion resistance. The remaining component is Ni or Ni
-Cr and inevitable impurities. When Cr is included, the Cr addition range is 0.5 to 12%. Within this range, Cr has a function of forming a chromium oxide film on the material surface to improve the corrosion resistance of Ni. If the Cr addition amount is less than 0.5%, the above effect becomes insufficient, while if it exceeds 12%, the electric resistance increases.
It is inconvenient as a material for fuel cells.

さらに上記成分からなる材料を任意の手段で酸化するこ
とによってその耐食性を一段と向上させることができ
る。酸化処理の手段については一切制限を受けないが、
たとえば大気酸化処理や溶融炭酸塩雰囲気でのin−s
itu酸化処理などが簡便である。尚酸化処理条件は溶
融炭酸塩環境下よりも厳しい条件であることが好まし
い。いずれの酸化処理方法においても腐食が生じる前に
前述の酸化被膜層がより強固に構成されるので、耐食性
が一層改善された良好な材料となる。
Furthermore, the corrosion resistance can be further improved by oxidizing the material comprising the above components by any means. There is no restriction on the means of oxidation treatment,
For example, in-s under atmospheric oxidation treatment or molten carbonate atmosphere
Itu oxidation treatment is simple. It is preferable that the oxidation treatment conditions are more severe than those in the molten carbonate environment. In any of the oxidation treatment methods, since the above-mentioned oxide film layer is more strongly constituted before corrosion occurs, a good material with further improved corrosion resistance is obtained.

[実施例] 第1表に示す成分組成の合金からなる3×4×25mmの
非酸化処理材および酸化処理材(1000℃×大気中2
時間)を作製した。非酸化処理材は金属光沢を有してい
たが、酸化処理材は表面の金属光沢がややかすんだ状態
になった。これらを650℃,62mol%LiCO
+38mol%KCO浴中にO−CO混合ガス雰
囲気下、半分浸漬し、浸漬界面部分の1カ月後の腐食率
を調べた。
[Example] A non-oxidation treated material and an oxidation treated material (1000 ° C x 2
Time). The non-oxidized material had a metallic luster, but the oxidized material had a slightly hazy surface metallic luster. These are treated at 650 ° C. and 62 mol% Li 2 CO 3
+ 38mol% K 2 CO 3 baths O 2 -CO 2 mixed gas atmosphere during and immersed half was investigated corrosion rate after 1 month of immersion interface portion.

腐食率の測定方法は下記の通りであり、結果は第1表に
示す。
The method of measuring the corrosion rate is as follows, and the results are shown in Table 1.

腐食率の測定方法:1カ月経過後の試験片を洗浄し、試
験前に対する重量減少を求めた。単位面積当たりの重量
減少を試験材の密度で割ることにより、1月当りの腐食
率を算出する。腐食の進行は放物線則に従うことから、
上記で算出された値を基にして年当りの腐食率に換算し
第1表を作った。
Method of measuring corrosion rate: After one month, the test piece was washed to determine the weight loss before the test. The corrosion rate per month is calculated by dividing the weight loss per unit area by the density of the test material. Since the progress of corrosion follows the parabolic law,
Based on the value calculated above, the corrosion rate per year was converted and Table 1 was prepared.

尚ステンレス鋼材は腐食の進行により、一般に表面が厚
い黒褐色皮膜に覆われるが、本発明材では腐食試験後も
全面的または相当広範囲に金属光沢を残しており、肉眼
的にも腐食の進行が遅いことを確認することができた。
Incidentally, the stainless steel material is generally covered with a thick blackish brown film due to the progress of corrosion, but in the material of the present invention, the metallic luster is left on the whole surface or in a considerably wide area even after the corrosion test, and the corrosion progress is slow visually. I was able to confirm that.

第1表に示されるように本発明例は未酸化処理材と比較
して優れた腐食率を示している。また未酸化処理材であ
っても本発明の成分組成を満たすものは、成分組成を満
たさないものよりは優れた腐食率を示している。
As shown in Table 1, the examples of the present invention show an excellent corrosion rate as compared with the unoxidized material. Further, even non-oxidized materials that satisfy the component composition of the present invention show a higher corrosion rate than those that do not satisfy the component composition.

[発明の効果] 以上のように本発明の成分組成であり、且つ酸化処理の
施された溶融炭酸塩型燃料電池用結晶質Ni系構成材料
は溶融炭酸塩環境下で耐食性に優れたものである。
[Effects of the Invention] As described above, the crystalline Ni-based constituent material for a molten carbonate fuel cell, which has the component composition of the present invention and is subjected to an oxidation treatment, has excellent corrosion resistance in a molten carbonate environment. is there.

フロントページの続き (72)発明者 中山 武典 兵庫県神戸市東灘区魚崎中町1−3−1− 604 審判の合議体 審判長 松浦 弘三 審判官 中嶋 清 審判官 須磨 光夫 (56)参考文献 特開 昭61−238447(JP,A)Front Page Continuation (72) Inventor Takenori Nakayama 1-3-1-1, Uozaki-Nakamachi, Higashinada-ku, Kobe-shi, Hyogo Prefecture Judgment panel Judge Kozo Matsuura Judge Nakajima Kiyo Suma Mitsuo Suma (56) References Sho 61-238447 (JP, A)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】Si:0.4〜5%(重量%の意味、以下同
じ) Al:0.1〜10% よりなる群から選択される1種以上の元素を含有し、残
部Niおよび不可避不純物からなり、且つ酸化処理が施
されたものであることを特徴とする高温耐食性に優れた
溶融炭酸塩型燃料電池用結晶質Ni系構成材料。
1. Si: 0.4 to 5% (meaning% by weight; the same applies hereinafter) Al: 0.1 to 10% containing at least one element selected from the group consisting of balance Ni and inevitable impurities, A crystalline Ni-based constituent material for a molten carbonate fuel cell, which is excellent in high temperature corrosion resistance, characterized by being subjected to an oxidation treatment.
【請求項2】Si:0.4〜5%(重量%の意味、以下同
じ) Al:20〜40% よりなる群から選択される1種以上の元素を含有し、残
部Niおよび不可避不純物からなり、且つ酸化処理が施
されたものであることを特徴とする高温耐食性に優れた
溶融炭酸塩型燃料電池用結晶質Ni系構成材料。
2. Si: 0.4 to 5% (meaning weight%; the same applies hereinafter) Al: 20 to 40%, containing at least one element selected from the group consisting of balance Ni and unavoidable impurities, A crystalline Ni-based constituent material for a molten carbonate fuel cell, which is excellent in high temperature corrosion resistance, characterized by being subjected to an oxidation treatment.
【請求項3】Si:0.4〜5% Al:0.1〜10% よりなる群から選択される1種以上の元素およびCr:
0.5〜12%を含有し、残部Niおよび不可避不純物か
らなり、且つ酸化処理が施されたものであることを特徴
とする高温耐食性に優れた溶融炭酸塩型燃料電池用結晶
質Ni系構成材料。
3. One or more elements selected from the group consisting of Si: 0.4 to 5% Al: 0.1 to 10% and Cr:
A crystalline Ni-based constituent material for a molten carbonate fuel cell excellent in high-temperature corrosion resistance, characterized in that it contains 0.5 to 12%, is composed of the balance Ni and unavoidable impurities, and is subjected to an oxidation treatment.
【請求項4】Si:0.4〜5% Al:20〜40% よりなる群から選択される1種以上の元素およびCr:
0.5〜12%を含有し、残部Niおよび不可避不純物か
らなり、且つ酸化処理が施されたものであることを特徴
とする高温耐食性に優れた溶融炭酸塩型燃料電池用結晶
質Ni系構成材料。
4. One or more elements selected from the group consisting of Si: 0.4 to 5% Al: 20 to 40% and Cr:
A crystalline Ni-based constituent material for a molten carbonate fuel cell excellent in high-temperature corrosion resistance, characterized in that it contains 0.5 to 12%, is composed of the balance Ni and unavoidable impurities, and is subjected to an oxidation treatment.
JP62072807A 1987-03-25 1987-03-25 Crystalline Ni-based constituent material for molten carbonate fuel cells with excellent high-temperature corrosion resistance Expired - Fee Related JPH0613744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62072807A JPH0613744B2 (en) 1987-03-25 1987-03-25 Crystalline Ni-based constituent material for molten carbonate fuel cells with excellent high-temperature corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62072807A JPH0613744B2 (en) 1987-03-25 1987-03-25 Crystalline Ni-based constituent material for molten carbonate fuel cells with excellent high-temperature corrosion resistance

Publications (2)

Publication Number Publication Date
JPS63238236A JPS63238236A (en) 1988-10-04
JPH0613744B2 true JPH0613744B2 (en) 1994-02-23

Family

ID=13500038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62072807A Expired - Fee Related JPH0613744B2 (en) 1987-03-25 1987-03-25 Crystalline Ni-based constituent material for molten carbonate fuel cells with excellent high-temperature corrosion resistance

Country Status (1)

Country Link
JP (1) JPH0613744B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03287736A (en) * 1990-04-04 1991-12-18 Okano Valve Seizo Kk Heat-resistant and corrosion-resistant cr-ni base alloy

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238447A (en) * 1985-04-16 1986-10-23 Nippon Steel Corp Production of porous nickel or nickel alloy foil or thin strip

Also Published As

Publication number Publication date
JPS63238236A (en) 1988-10-04

Similar Documents

Publication Publication Date Title
US7981561B2 (en) Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
US7842434B2 (en) Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
CA2604593C (en) Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
US7407717B2 (en) Protective coating for substrates that are subjected to high temperatures and method for producing said coating
JP5133988B2 (en) Ferritic chromium steel
JP2004520479A (en) High temperature material
US20060285993A1 (en) Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
KR101597721B1 (en) Titanium material for solid polymer fuel cell separators, method for producing same, and solid polymer fuel cell using same
ES2749469T3 (en) Metal sheet for use as a solid polymer fuel cell separator
EP1708297A3 (en) Powdery material, electrode member, method for manufacturing same and secondary cell
JP5573039B2 (en) Stainless steel for polymer electrolyte fuel cell separator and method for producing the same
JPH10280103A (en) Steel for solid electrolytic type fuel battery separator
JP4967831B2 (en) Ferritic stainless steel for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the same
JPH04147570A (en) Material of air electrode for molten carbonate fuel cell
JPH0613744B2 (en) Crystalline Ni-based constituent material for molten carbonate fuel cells with excellent high-temperature corrosion resistance
JPH0766824B2 (en) Materials for molten carbonate fuel cells
KR101242794B1 (en) Bipolar plates for fuel cell having good resistance to chromium poisoning and method for manufacturing the same
Baizeng et al. Surface modification of a MCFC anode by electrodeposition of niobium
JP2932211B2 (en) Corrosion resistant stainless steel for molten carbonate fuel cells
JPH0790440A (en) Metallic material for fused carbonate type fuel cell
JP2020111806A (en) Stainless steel sheet and method for producing the same, separator for fuel battery, fuel battery cell, and fuel battery stack
JP3161269B2 (en) Stainless steel with excellent resistance to molten carbonate corrosion
JPS62234868A (en) Electrode material of high corrosion resistance for fused-carbonate type fuel cell
JPH08188853A (en) Ferritic stainless steel excellent in fused carbonate corrosion resistance
AU2011244954B2 (en) Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees