JPH06136541A - Thin film forming device - Google Patents

Thin film forming device

Info

Publication number
JPH06136541A
JPH06136541A JP29144392A JP29144392A JPH06136541A JP H06136541 A JPH06136541 A JP H06136541A JP 29144392 A JP29144392 A JP 29144392A JP 29144392 A JP29144392 A JP 29144392A JP H06136541 A JPH06136541 A JP H06136541A
Authority
JP
Japan
Prior art keywords
electrode
window material
thin film
plasma
microwaves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29144392A
Other languages
Japanese (ja)
Inventor
Takashi Akahori
孝 赤堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP29144392A priority Critical patent/JPH06136541A/en
Publication of JPH06136541A publication Critical patent/JPH06136541A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To prevent the failure of a window material by the heat of a high-frequency electrode by constituting the window for introducing microwaves into a plasma forming chamber of a plasma CVD device by adhesion of the electrode and the window material and cooling the electrode by cooling water. CONSTITUTION:The window material 6 consisting of quartz, glass, etc., for introduction of the microwaves of the plasma forming chamber 1 of the plasma CVD device 3 consisting of the plasma forming chamber and a reaction chamber is constituted by adhering the high-frequency electrode 28. The window material 6 allows the easy passage of the microwaves into the plasma forming chamber 1 and seals the plasma forming chamber 1 by applying a high-frequency voltage to the electrode 28. The adhesion of the thin film forming material to the window material 6 and the hindrance of the passage of the microwaves in the reaction chamber are thereby prevented. A circulating path 25 for cooling water is provided within the high-frequency electrode 28 and the cooling water is circulated therein from a supply port 26 to cool the electrode and a drain port 27 in order to prevent the failure of the window material 6 by the thermal impact generated by the rapid heating up arising from the applying of the high-frequency voltage to the electrode 28 in such a case. The failure of the window material 6 by the thermal impact is thus prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は薄膜形成装置に関し、よ
り詳細にはマイクロ波を透過させると共にプラズマ生成
室を封止する窓材を備えた薄膜形成装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film forming apparatus, and more particularly to a thin film forming apparatus provided with a window member that transmits microwaves and seals a plasma generation chamber.

【0002】[0002]

【従来の技術】大規模集積回路の製造においては、半導
体ウエハ上に微細なパターンを形成する必要があり、こ
のためにプラズマCVD法を用いたウエハ上への薄膜の
形成が盛んに行なわれている。
2. Description of the Related Art In the manufacture of large-scale integrated circuits, it is necessary to form a fine pattern on a semiconductor wafer. For this reason, the formation of a thin film on the wafer by the plasma CVD method is actively carried out. There is.

【0003】図4は従来の薄膜形成装置の一例を示す模
式的断面図であり、この薄膜形成装置は、プラズマ生成
室1と反応室2とからなる装置本体3と、プラズマ生成
室1の周囲に配設されて直流電源(図示せず)が接続さ
れた励磁コイル4と、マイクロ波発振器(図示せず)か
ら発振されたマイクロ波をプラズマ生成室1に導入する
導波管5等とから構成されている。6は石英ガラス等で
形成されたマイクロ波を導入するための窓材、7は該マ
イクロ波導入用の窓材6に高周波(RF)電源を印加す
る高周波発生源、8は試料9が載置される試料台をそれ
ぞれ表している。
FIG. 4 is a schematic cross-sectional view showing an example of a conventional thin film forming apparatus. This thin film forming apparatus comprises an apparatus main body 3 composed of a plasma generating chamber 1 and a reaction chamber 2 and the periphery of the plasma generating chamber 1. An excitation coil 4 connected to a DC power source (not shown) and a waveguide 5 for introducing microwaves oscillated from a microwave oscillator (not shown) into the plasma generation chamber 1 It is configured. 6 is a window material for introducing microwaves made of quartz glass or the like, 7 is a high frequency source for applying a high frequency (RF) power source to the microwave introducing window material 6, and 8 is a sample 9 mounted thereon. Each of the sample stands is shown.

【0004】プラズマ生成室1は略円筒形状に形成さ
れ、このプラズマ生成室1の上部壁の略中央部にはマイ
クロ波を導入するための開口部10が形成されており、
プラズマ生成室1の下方には、このプラズマ生成室1よ
りも大口径を有する反応室2が一体的に形成されてい
る。また、この反応室2とプラズマ生成室1とは、仕切
板11によって仕切られており、この仕切板11の略中
央部には第2の孔(プラズマ引出窓)12が形成されて
いる。
The plasma generating chamber 1 is formed in a substantially cylindrical shape, and an opening 10 for introducing a microwave is formed in a substantially central portion of an upper wall of the plasma generating chamber 1.
Below the plasma generation chamber 1, a reaction chamber 2 having a larger diameter than the plasma generation chamber 1 is integrally formed. Further, the reaction chamber 2 and the plasma generation chamber 1 are partitioned by a partition plate 11, and a second hole (plasma outlet window) 12 is formed at a substantially central portion of the partition plate 11.

【0005】さらに、反応室2の側壁には第1の導入配
管13が接続され、反応室2の底部には排気系(図示せ
ず)に連通している排気配管14が接続されている。ま
た、プラズマ生成室1の上部壁には第2の導入配管15
が接続されている。
Further, a first introducing pipe 13 is connected to the side wall of the reaction chamber 2, and an exhaust pipe 14 communicating with an exhaust system (not shown) is connected to the bottom of the reaction chamber 2. Further, the second introduction pipe 15 is provided on the upper wall of the plasma generation chamber 1.
Are connected.

【0006】高周波発生源7は高周波発生器16とマッ
チングボックス17とから構成され、マッチングボック
ス17はRFケーブル30を介して窓材6と導波管5と
の間に挟着された平板電極18に接続されている。
The high frequency generator 7 comprises a high frequency generator 16 and a matching box 17, and the matching box 17 is a plate electrode 18 sandwiched between the window member 6 and the waveguide 5 via an RF cable 30. It is connected to the.

【0007】試料台8には試料9にRF高周波を印加す
るためのRF高周波発振器21が、マッチングボックス
20を介して接続されている。このRF高周波発振器2
1により試料9に所定のRF高周波を印加し、試料9に
かかるバイアス電圧により、試料9表面の凹凸面が微細
な場合でも段差被覆性の良好な薄膜を形成することがで
きるようになっている。
An RF high frequency oscillator 21 for applying an RF high frequency to the sample 9 is connected to the sample stage 8 via a matching box 20. This RF high frequency oscillator 2
1, a predetermined RF high frequency is applied to the sample 9, and the bias voltage applied to the sample 9 enables formation of a thin film having good step coverage even when the uneven surface of the sample 9 is minute. .

【0008】励磁コイル4は、直流電力が供給されると
所定の磁場を発生する。これによりマイクロ波発振器か
らプラズマ生成室1に導入されるマイクロ波の角周波数
と電子サイクロトロンの角周波数とが、プラズマ生成室
1において等しくなるような磁場が形成され、電子に共
鳴運動を行なわせることが可能なように構成されていて
いる。
The exciting coil 4 generates a predetermined magnetic field when DC power is supplied. As a result, a magnetic field is formed so that the angular frequency of the microwave introduced from the microwave oscillator into the plasma generation chamber 1 and the angular frequency of the electron cyclotron become equal in the plasma generation chamber 1 to cause the electrons to resonate. Is configured to be possible.

【0009】上記装置を用いて例えばTi薄膜を形成す
るには、まず排気系を操作して装置本体3内を減圧し、
この後、TiCl4 を第1の導入配管13から反応室2
内に供給する。一方、Ar、H2 をプラズマ生成室1内
の第2の導入配管15から供給する。この後装置本体3
内を所定の圧力に設定する。
To form, for example, a Ti thin film using the above apparatus, first, the exhaust system is operated to depressurize the inside of the apparatus main body 3,
After this, TiCl 4 was introduced from the first introduction pipe 13 into the reaction chamber 2
Supply in. On the other hand, Ar and H 2 are supplied from the second introduction pipe 15 in the plasma generation chamber 1. After this, the device body 3
The inside is set to a predetermined pressure.

【0010】さらに高周波発生源7に通電して窓材6に
電圧を印加し、高周波によるArイオンのスパッタ効果
により、Ti薄膜が窓材6に付着するのを防止する。一
方、マイクロ波発振器から導波管5を介してマイクロ波
をプラズマ生成室1に導入すると共に、励磁コイル4に
直流電源を接続して、プラズマ生成室1内に磁場を生じ
させる。そしてプラズマ生成室1内で高エネルギ電子と
原料ガスとを衝突させ、この原料ガスを分解してイオン
化し、プラズマを生成させる。
Further, the high frequency source 7 is energized to apply a voltage to the window member 6 to prevent the Ti thin film from adhering to the window member 6 due to the Ar ion sputtering effect by the high frequency. On the other hand, a microwave is introduced from the microwave oscillator into the plasma generation chamber 1 via the waveguide 5, and a DC power source is connected to the exciting coil 4 to generate a magnetic field in the plasma generation chamber 1. Then, high energy electrons collide with the raw material gas in the plasma generation chamber 1, and the raw material gas is decomposed and ionized to generate plasma.

【0011】次いで、このプラズマは第2の孔12を通
過し、発散磁界により図中矢印A方向に加速されて反応
室2内に導かれ、試料台8に載置された試料9の表面に
Tiの薄膜を形成する。
Next, this plasma passes through the second hole 12, is accelerated in the direction of the arrow A in the figure by the divergent magnetic field, is guided into the reaction chamber 2, and is deposited on the surface of the sample 9 mounted on the sample table 8. A thin film of Ti is formed.

【0012】[0012]

【発明が解決しようとする課題】上記したように、電極
18を介してマイクロ波導入用の窓材6にRFを印加し
た場合、窓材6がスパッタ効果により急激に加熱され、
該加熱による熱衝撃によって窓材6の破損が発生するこ
とがあるという課題があった。
As described above, when RF is applied to the microwave introducing window member 6 through the electrode 18, the window member 6 is rapidly heated by the sputtering effect,
There is a problem that the window member 6 may be damaged by the thermal shock caused by the heating.

【0013】本発明は上記した課題に鑑み発明されたも
のであって、RF印加による窓材の急激な温度上昇を抑
えることにより、窓材の破損を防止することができる薄
膜形成装置を提供することを目的としている。
The present invention has been invented in view of the above problems, and provides a thin film forming apparatus capable of preventing damage to a window material by suppressing a rapid temperature rise of the window material due to application of RF. Is intended.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る薄膜形成装置は、マイクロ波導入用の開
口部を有し、マイクロ波の導入によりプラズマを生成さ
せるプラズマ生成室と、前記プラズマを利用して試料に
薄膜を形成する反応室とを備えた薄膜形成装置におい
て、前記開口部にマイクロ波を透過させると共に前記プ
ラズマ生成室を封止する窓材が配置される一方、該窓材
にRFを印加するためのRF電極が前記窓材に密接状態
に配設され、前記RF電極の内部には水冷用の水路が形
成されていることを特徴とし、また、マイクロ波導入用
の開口部を有し、マイクロ波の導入によりプラズマを生
成させるプラズマ生成室と、前記プラズマを利用して試
料に薄膜を形成する反応室とを備えた薄膜形成装置にお
いて、前記開口部にマイクロ波を透過させると共に前記
プラズマ生成室を封止する窓材が配置される一方、該窓
材にRFを印加するためのRF電極が前記窓材に密接状
態に配設され、前記RF電極の周辺部材に水冷用のジャ
ケット部が形成されていることを特徴としている。
In order to achieve the above object, a thin film forming apparatus according to the present invention has a plasma generation chamber which has an opening for introducing microwaves and which generates plasma by introducing microwaves. In a thin film forming apparatus comprising a reaction chamber for forming a thin film on a sample using the plasma, a window material that transmits microwaves and seals the plasma generation chamber is arranged in the opening, and An RF electrode for applying RF to the window material is disposed in close contact with the window material, and a water channel for water cooling is formed inside the RF electrode. In a thin film forming apparatus having a plasma generation chamber that has an opening and that generates plasma by introducing microwaves, and a reaction chamber that forms a thin film on a sample by using the plasma, A window member that transmits the microwave and seals the plasma generation chamber is arranged, while an RF electrode for applying RF to the window member is arranged in close contact with the window member, It is characterized in that a jacket portion for water cooling is formed on the peripheral member.

【0015】[0015]

【作用】上記構成によれば、前記開口部にマイクロ波を
透過させると共に前記プラズマ生成室を封止する窓材が
配置される一方、該窓材にRFを印加するためのRF電
極が前記窓材に密接状態に配設され、前記RF電極の内
部には水冷用の水路が形成されているので、RFの印加
により前記RF電極及び前記窓材が加熱されても、前記
RF電極が前記水路を流れる冷却水により冷却され、該
RF電極に密接状態にある前記窓材も冷却されることと
なり、前記窓材の急激な温度上昇による破損を防止する
ことが可能となる。
According to the above construction, a window member for transmitting microwaves and sealing the plasma generation chamber is arranged in the opening, while an RF electrode for applying RF to the window member is provided in the window member. Since the water channel for water cooling is formed inside the RF electrode in close contact with the material, even if the RF electrode and the window material are heated by the application of RF, the RF electrode is connected to the water channel. The window material in close contact with the RF electrode is also cooled by the cooling water flowing through the window material, and it is possible to prevent damage to the window material due to a rapid temperature rise.

【0016】また、前記開口部にマイクロ波を透過させ
ると共に前記プラズマ生成室を封止する窓材が配置され
る一方、該窓材にRFを印加するためのRF電極が前記
窓材に密接状態に配設され、前記RF電極の周辺部材に
水冷用のジャケット部が形成されている場合には、RF
の印加により前記RF電極及び前記窓材が加熱されて
も、前記RF電極が前記水冷用のジャケット部が形成さ
れた周辺の部材を介して冷却され、前記RF電極は通常
熱伝導率が良いことから、前記RF電極に密接状態にあ
る前記窓材も冷却されることとなり、前記窓材の急激な
温度上昇による破損を防止することが可能となる。
Further, a window material that transmits microwaves and seals the plasma generation chamber is arranged in the opening, while an RF electrode for applying RF to the window material is in close contact with the window material. If a jacket for water cooling is formed on the peripheral member of the RF electrode, the RF
Even if the RF electrode and the window member are heated by the application of, the RF electrode is cooled through a peripheral member having the jacket portion for water cooling, and the RF electrode usually has good thermal conductivity. Therefore, the window material that is in close contact with the RF electrode is also cooled, and it is possible to prevent the window material from being damaged due to a rapid temperature rise.

【0017】[0017]

【実施例及び比較例】以下、本発明に係る薄膜形成装置
の実施例及び比較例について説明する。なお、従来例と
同一機能を有する構成部品については同一の符合を付す
こととする [実施例1]実施例1に係る薄膜形成装置は、図4に示
した従来の薄膜形成装置と略同様の構造をしており、相
違する点は、図1に示したようにRF電極28の内部に
水冷用の水路25が形成されている点である。図1は実
施例1に係る薄膜形成装置におけるRF電極28周辺部
を示す概略側断面図であり、図中1はプラズマ生成室を
示しており、プラズマ生成室1の上部中央にはマイクロ
波を導入するための開口部10が形成され、開口部10
の上方にはこの開口部10を封止する窓材6が配置され
ている。窓材6の上面にはRF電極28が窓材6に密接
状態に配設されており、RF電極28の内部には水冷用
の水路25が形成され、供水管26及び配水管27が接
続されている。また供水管26及び配水管の一部はテフ
ロンチューブ等の絶縁性の耐熱チューブで構成されてい
る水路25の水の流れは図中の矢印に従って流れてお
り、プラズマ照射により加熱された窓材6を冷却するよ
うになっている。
EXAMPLES AND COMPARATIVE EXAMPLES Examples and comparative examples of the thin film forming apparatus according to the present invention will be described below. It should be noted that components having the same functions as those of the conventional example are denoted by the same reference numerals. [Example 1] A thin film forming apparatus according to Example 1 is substantially the same as the conventional thin film forming apparatus shown in FIG. The structure is different, and the difference is that a water channel 25 for water cooling is formed inside the RF electrode 28 as shown in FIG. FIG. 1 is a schematic side cross-sectional view showing the periphery of the RF electrode 28 in the thin film forming apparatus according to the first embodiment. In FIG. 1, reference numeral 1 denotes a plasma generation chamber, and a microwave is provided in the upper center of the plasma generation chamber 1. The opening 10 for introducing is formed, and the opening 10
A window member 6 that seals the opening 10 is arranged above. An RF electrode 28 is arranged on the upper surface of the window member 6 in close contact with the window member 6, a water channel 25 for water cooling is formed inside the RF electrode 28, and a water supply pipe 26 and a water distribution pipe 27 are connected. ing. The water supply pipe 26 and a part of the water distribution pipe are made of an insulating heat-resistant tube such as a Teflon tube. The water flow in the water passage 25 follows the arrow in the figure, and the window member 6 heated by plasma irradiation is used. Is designed to be cooled.

【0018】[実施例2]また、実施例2に係る薄膜形
成装置は、上記実施例1の場合と同様に図4に示した従
来の薄膜形成装置と略同様の構造をしており、相違する
点は、図2に示したようにRF平板電極18の周辺部材
に水冷用ジャケット部32が形成されている点である。
図2は本実施例2に係る薄膜形成装置におけるRF平板
電極18周辺部を示す概略側断面図であり、図中1はプ
ラズマ生成室を示しており、プラズマ生成室1の上部中
央にはマイクロ波を導入するための開口部10が形成さ
れ、開口部10の上方にはこの開口部10を封止する窓
材6が配置されている。窓材6の上面にはRF平板電極
18が窓材6に密接状態に配設されており、RF平板電
極18の上面の端部から側面にかけてのフランジ部40
内に断面形状が逆L字状の水冷用ジャケット部32が形
成されている。
[Embodiment 2] The thin film forming apparatus according to the second embodiment has a structure similar to that of the conventional thin film forming apparatus shown in FIG. The point to do is that the water cooling jacket portion 32 is formed in the peripheral member of the RF flat plate electrode 18 as shown in FIG.
FIG. 2 is a schematic side cross-sectional view showing the periphery of the RF flat plate electrode 18 in the thin film forming apparatus according to the second embodiment. In the figure, 1 indicates a plasma generation chamber, and the plasma generation chamber 1 has a micro-center in the upper center. An opening 10 for introducing a wave is formed, and a window member 6 that seals the opening 10 is arranged above the opening 10. An RF flat plate electrode 18 is disposed on the upper surface of the window member 6 in close contact with the window member 6, and a flange portion 40 extending from the end of the upper surface of the RF flat plate electrode 18 to the side surface thereof.
A water cooling jacket portion 32 having an inverted L-shaped cross section is formed therein.

【0019】水冷用ジャケット部32の内部には水路3
1が形成され、この水路31には供水管36及び配水管
37が接続されている。また供水管36及び配水管の一
部はテフロンチューブ等の絶縁性の耐熱チューブで構成
されている水路31の水の流れは図中の矢印に従って流
れており、プラズマ照射により加熱された窓材6を冷却
するようになっている。
A water channel 3 is provided inside the water cooling jacket portion 32.
1, a water supply pipe 36 and a water distribution pipe 37 are connected to the water passage 31. The water supply pipe 36 and a part of the water distribution pipe are made of an insulating heat-resistant tube such as a Teflon tube. The water flow in the water passage 31 follows the arrow in the figure, and the window member 6 heated by plasma irradiation is used. Is designed to be cooled.

【0020】実施例1、2及び比較例として従来のよう
に窓材6とRF電極18を単に接触させたものを用い
て、マイクロ波放電を行ない、さらに窓材6にはRF印
加を行ない、この時の窓材6の温度上昇を測定した。窓
材6の温度は感熱シート(サーモラベル)を窓材6に貼
り、その色の変化で測定した。またこの際の周波数2.
45GHzのマイクロ波パワーは2KW、周波数13.
56MHzのRFパワーは500W、導入ガスはアルゴ
ン50sccmであり、冷却水の温度は20℃であっ
た。上記条件での測定結果を図3に示す。
As Examples 1 and 2, and Comparative Examples, microwave discharge was performed by using the window member 6 and the RF electrode 18 which were simply in contact with each other as in the conventional case, and RF was applied to the window member 6. The temperature rise of the window material 6 at this time was measured. The temperature of the window member 6 was measured by attaching a heat-sensitive sheet (thermo label) to the window member 6 and changing the color thereof. In addition, the frequency 2.
The microwave power of 45 GHz is 2 kW and the frequency is 13.
The RF power at 56 MHz was 500 W, the introduced gas was 50 sccm of argon, and the temperature of the cooling water was 20 ° C. The measurement results under the above conditions are shown in FIG.

【0021】図3は実施例1、2及び比較例に係る薄膜
形成装置における窓材6の温度とRF印加時間との関係
を示しており、比較例のものは実施例1、2のものに比
べ、RF印加による窓材6の温度上昇率が高い。また、
実施例1は実施例2の場合に比べ、RF印加による窓材
6の温度上昇率が低いことがわかる。つまり、実施例1
のものは実施例2のものよりも窓材6を冷却する効果が
大きいといえる。
FIG. 3 shows the relationship between the temperature of the window member 6 and the RF application time in the thin film forming apparatus according to the first and second embodiments and the comparative example. In comparison, the temperature increase rate of the window member 6 due to RF application is high. Also,
It can be seen that the temperature rise rate of the window material 6 due to RF application is lower in Example 1 than in Example 2. That is, Example 1
It can be said that the one having a larger effect of cooling the window member 6 is larger than that of the second embodiment.

【0022】上記実施例1にあっては、マイクロ波の導
入及びRF印加によりたとえ窓材6にプラズマが照射さ
れて加熱されても、RF電極28が水路25を流れる冷
却水により効率的に冷却され、RF電極28に密接状態
にある窓材6も効率的に冷却することができ、窓材6の
急激な温度上昇による破損を防止することができる。
In the first embodiment, the RF electrode 28 is efficiently cooled by the cooling water flowing through the water passage 25 even if the window material 6 is heated by being irradiated with plasma by the introduction of microwaves and the application of RF. Therefore, the window member 6 in close contact with the RF electrode 28 can also be efficiently cooled, and damage to the window member 6 due to a rapid temperature rise can be prevented.

【0023】上記実施例2にあっても、たとえ窓材6に
プラズマが照射されて加熱されても、RF電極18がフ
ランジ部40に形成された水冷用ジャケット部32によ
り冷却され、RF電極18に密接状態にある窓材6も効
果的に冷却することができ、窓材6の急激な温度上昇に
よる破損を防止することができる。
In the second embodiment as well, even if the window member 6 is heated by being irradiated with plasma, the RF electrode 18 is cooled by the water cooling jacket portion 32 formed on the flange portion 40, and the RF electrode 18 is cooled. It is possible to effectively cool the window member 6 that is in close contact with the window member 6, and it is possible to prevent damage to the window member 6 due to a rapid temperature rise.

【0024】[0024]

【発明の効果】以上の説明により明らかなように本発明
に係る薄膜形成装置によれば、マイクロ波導入用の開口
部を有し、マイクロ波の導入によりプラズマを生成させ
るプラズマ生成室と、前記プラズマを利用して試料に薄
膜を形成する反応室とを備えた薄膜形成装置において、
前記開口部にマイクロ波を透過させると共に前記プラズ
マ生成室を封止する窓材が配置される一方、該窓材にR
Fを印加するためのRF電極が前記窓材に密接状態に配
設され、前記RF電極の内部には水冷用の水路が形成さ
れているので、マイクロ波の導入及びRFの印加によ
り、たとえ前記窓材にプラズマが照射されて加熱されて
も、前記RF電極が前記水路を流れ冷却水により効率的
に冷却され、該RF電極に密接状態にある前記窓材も効
果的に冷却することができ、前記窓材の急激な温度上昇
による破損を防止することができる。
As is clear from the above description, according to the thin film forming apparatus of the present invention, there is provided a plasma generating chamber having an opening for introducing microwaves, for generating plasma by introducing microwaves, In a thin film forming apparatus provided with a reaction chamber for forming a thin film on a sample using plasma,
A window member that transmits microwaves and seals the plasma generation chamber is arranged in the opening, while R is provided in the window member.
An RF electrode for applying F is disposed in close contact with the window member, and a water channel for water cooling is formed inside the RF electrode. Therefore, by introducing microwaves and applying RF, Even if the window material is irradiated with plasma and heated, the RF electrode flows through the water passages and is efficiently cooled by cooling water, and the window material in close contact with the RF electrode can also be effectively cooled. It is possible to prevent the window material from being damaged due to a rapid temperature rise.

【0025】また、マイクロ波導入用の開口部を有し、
マイクロ波の導入によりプラズマを生成させるプラズマ
生成室と、前記プラズマを利用して試料に薄膜を形成す
る反応室とを備えた薄膜形成装置において、前記開口部
にマイクロ波を透過させると共に前記プラズマ生成室を
封止する窓材が配置される一方、該窓材にRFを印加す
るためのRF電極が前記窓材に密接状態に配設され、前
記RF電極の周辺部材に水冷用のジャケット部が形成さ
れているので、たとえ前記窓材にプラズマが照射されて
加熱されても、前記RF電極が前記水冷用ジャケット部
により冷却され、前記RF電極に密接状態にある前記窓
材も効果的に冷却することができ、前記窓材の急激な温
度上昇による破損を防止することができる。
Further, it has an opening for introducing microwaves,
In a thin film forming apparatus including a plasma generation chamber that generates plasma by introducing microwaves and a reaction chamber that forms a thin film on a sample using the plasma, the microwave is transmitted through the opening and the plasma generation is performed. While a window material for sealing the chamber is arranged, an RF electrode for applying an RF to the window material is arranged in close contact with the window material, and a water cooling jacket portion is provided in a peripheral member of the RF electrode. Since it is formed, even if the window material is irradiated with plasma and heated, the RF electrode is cooled by the water-cooling jacket portion, and the window material in close contact with the RF electrode is also effectively cooled. Therefore, it is possible to prevent the window member from being damaged due to a rapid temperature rise.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る薄膜形成装置の実施例1における
RF電極周辺部を示す概略側断面図である。
FIG. 1 is a schematic side sectional view showing an RF electrode peripheral part in a first embodiment of a thin film forming apparatus according to the present invention.

【図2】本発明に係る薄膜形成装置の実施例2における
RF電極周辺部を示す概略側断面図である。
FIG. 2 is a schematic side sectional view showing an RF electrode peripheral portion in a second embodiment of the thin film forming apparatus according to the present invention.

【図3】実施例1、2及び比較例に係る薄膜形成装置に
おける窓材の温度とRF印加時間との関係を示すグラフ
である。
FIG. 3 is a graph showing the relationship between the window material temperature and the RF application time in the thin film forming apparatuses according to Examples 1 and 2 and Comparative Example.

【図4】従来の薄膜形成装置の一例を示す模式的断面図
である。
FIG. 4 is a schematic cross-sectional view showing an example of a conventional thin film forming apparatus.

【符合の説明】[Explanation of sign]

6 窓材 10 開口部 25、31 水路 18、28 RF電極 6 Window Material 10 Opening 25, 31 Water Channel 18, 28 RF Electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 マイクロ波導入用の開口部を有し、マイ
クロ波の導入によりプラズマを生成させるプラズマ生成
室と、前記プラズマを利用して試料に薄膜を形成する反
応室とを備えた薄膜形成装置において、前記開口部にマ
イクロ波を透過させると共に前記プラズマ生成室を封止
する窓材が配置される一方、該窓材にRFを印加するた
めのRF電極が前記窓材に密接状態に配設され、前記R
F電極の内部には水冷用の水路が形成されていることを
特徴とする薄膜形成装置。
1. A thin film formation having a plasma generation chamber having an opening for introducing microwaves and generating plasma by the introduction of microwaves, and a reaction chamber for forming a thin film on a sample using the plasma. In the apparatus, a window material that transmits microwaves and seals the plasma generation chamber is arranged in the opening, while an RF electrode for applying RF to the window material is arranged in close contact with the window material. Is installed
A thin film forming apparatus characterized in that a water channel for water cooling is formed inside the F electrode.
【請求項2】 マイクロ波導入用の開口部を有し、マイ
クロ波の導入によりプラズマを生成させるプラズマ生成
室と、前記プラズマを利用して試料に薄膜を形成する反
応室とを備えた薄膜形成装置において、前記開口部にマ
イクロ波を透過させると共に前記プラズマ生成室を封止
する窓材が配置される一方、該窓材にRFを印加するた
めのRF電極が前記窓材に密接状態に配設され、前記R
F電極の周辺部材に水冷用のジャケット部が形成されて
いることを特徴とする薄膜形成装置。
2. A thin film formation having a plasma generation chamber having an opening for introducing microwaves and for generating plasma by the introduction of microwaves, and a reaction chamber for forming a thin film on a sample using the plasma. In the apparatus, a window material that transmits microwaves and seals the plasma generation chamber is arranged in the opening, while an RF electrode for applying RF to the window material is arranged in close contact with the window material. Is installed
A thin film forming apparatus, wherein a jacket portion for water cooling is formed on a peripheral member of the F electrode.
JP29144392A 1992-10-29 1992-10-29 Thin film forming device Pending JPH06136541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29144392A JPH06136541A (en) 1992-10-29 1992-10-29 Thin film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29144392A JPH06136541A (en) 1992-10-29 1992-10-29 Thin film forming device

Publications (1)

Publication Number Publication Date
JPH06136541A true JPH06136541A (en) 1994-05-17

Family

ID=17768939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29144392A Pending JPH06136541A (en) 1992-10-29 1992-10-29 Thin film forming device

Country Status (1)

Country Link
JP (1) JPH06136541A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1096554A1 (en) * 1998-06-04 2001-05-02 Tokyo Electron Limited Plasma processing apparatus
US6502529B2 (en) * 1999-05-27 2003-01-07 Applied Materials Inc. Chamber having improved gas energizer and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1096554A1 (en) * 1998-06-04 2001-05-02 Tokyo Electron Limited Plasma processing apparatus
US6347602B2 (en) * 1998-06-04 2002-02-19 Tokyo Electron Limited Plasma processing apparatus
EP1096554A4 (en) * 1998-06-04 2004-09-29 Tokyo Electron Ltd Plasma processing apparatus
US6502529B2 (en) * 1999-05-27 2003-01-07 Applied Materials Inc. Chamber having improved gas energizer and method

Similar Documents

Publication Publication Date Title
EP0874386B1 (en) Apparatus and process for remote microwave plasma generation
US6422172B1 (en) Plasma processing apparatus and plasma processing method
US6783628B2 (en) Plasma processing apparatus
JP4230556B2 (en) Remote microwave plasma source module
US5011705A (en) Plasma processing method
EP2276328B1 (en) Microwave plasma processing device
JP2000124190A (en) Device and method for plasma treating method
JP2002134417A (en) Plasma processing system
JP5438260B2 (en) Plasma processing equipment
EP0841838B1 (en) Plasma treatment apparatus and plasma treatment method
JP2002231637A (en) Plasma processor
US20030010453A1 (en) Plasma processing apparatus and plasma processing method
KR100218836B1 (en) Plasma processing system
US6092486A (en) Plasma processing apparatus and plasma processing method
JPH10134995A (en) Plasma processing device and processing method for plasma
JP3323928B2 (en) Plasma processing equipment
JP2000164570A (en) Plasma processing apparatus
JP2000173985A (en) Device and method for plasma treatment
JP2821138B2 (en) Thin film forming method and apparatus
JPH06136541A (en) Thin film forming device
JP3077516B2 (en) Plasma processing equipment
JPH11195500A (en) Surface treatment device
JPH0955299A (en) Plasma treating device
JPH0476495B2 (en)
JP3662101B2 (en) Plasma processing equipment