JPH06136176A - Production of foamable thermoplastic resin particle - Google Patents

Production of foamable thermoplastic resin particle

Info

Publication number
JPH06136176A
JPH06136176A JP4291351A JP29135192A JPH06136176A JP H06136176 A JPH06136176 A JP H06136176A JP 4291351 A JP4291351 A JP 4291351A JP 29135192 A JP29135192 A JP 29135192A JP H06136176 A JPH06136176 A JP H06136176A
Authority
JP
Japan
Prior art keywords
particles
thermoplastic resin
foaming agent
temperature
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4291351A
Other languages
Japanese (ja)
Inventor
Fumihiko Morimoto
文彦 森本
Toshio Kameda
敏夫 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP4291351A priority Critical patent/JPH06136176A/en
Publication of JPH06136176A publication Critical patent/JPH06136176A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • B29B9/065Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion under-water, e.g. underwater pelletizers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/345Extrusion nozzles comprising two or more adjacently arranged ports, for simultaneously extruding multiple strands, e.g. for pelletising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/14Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration
    • B29C48/147Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration after the die nozzle
    • B29C48/1472Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration after the die nozzle at the die nozzle exit zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/385Plasticisers, homogenisers or feeders comprising two or more stages using two or more serially arranged screws in separate barrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

PURPOSE:To easily obtain resin particles which stably gives good prefoamed particles and foamed moldings, by a method wherein melt compound of a thermoplastic resin containing a foaming agent is allowed to flow through a flow path, extruded into a pressurized fluid and cut into particles in a specified manner. CONSTITUTION:A melt compound of a thermoplastic resin containing a foaming agent is introduced into a pelletizing die, allowed to flow through a flow path towards the extrusion hole of the die. It is then allowed to flow into a flow path having a sectional area larger than that of the above-mentioned flow path, passed through the extrusion hole, extruded from the outlet into a pressurized fluid and immediately cut into particles. The particles are then cooled to give the objective particles. The amount of the foaming agent used is usually at most 40 pts.wt. based on 100 pts.wt. thermoplastic resin, preferably 2-10 pts.wt. from the viewpoint of preventing the aggregation of the particles and obtaining a uniform diameter of cell.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発泡性熱可塑性樹脂粒
子の製造法、詳細には熱可塑性樹脂と発泡剤とを用いた
溶融押出法による発泡性熱可塑性樹脂粒子の製造法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing expandable thermoplastic resin particles, and more particularly to a method for producing expandable thermoplastic resin particles by melt extrusion using a thermoplastic resin and a foaming agent.

【0002】[0002]

【従来の技術】従来、発泡性熱可塑性樹脂粒子、例えば
発泡性スチレン系樹脂粒子の製造法としては、スチレン
系樹脂の懸濁重合中あるいは重合後に発泡剤を混合し含
浸させる懸濁重合法が一般的であるが、この製造法では
粒径の均一のものが得られず、ふるい分け等による粒度
調整が不可欠であり、また顔料等の着色剤による着色粒
子の製造も制約が多く、極めて困難である。更に、廃品
の発泡性熱可塑性樹脂粒子への再生が不可能である。
2. Description of the Related Art Conventionally, as a method for producing expandable thermoplastic resin particles, for example, expandable styrene resin particles, there is a suspension polymerization method in which a foaming agent is mixed and impregnated during or after suspension polymerization of the styrene resin. Although it is general, it is not possible to obtain a uniform particle size by this manufacturing method, it is essential to adjust the particle size by sieving, etc., and there are many restrictions on the production of colored particles using a coloring agent such as a pigment, which is extremely difficult. is there. Furthermore, it is impossible to recycle waste products into expandable thermoplastic resin particles.

【0003】発泡性熱可塑性樹脂粒子製造の別法とし
て、スチレン系樹脂等の熱可塑性樹脂と発泡剤とを押出
機中で溶融混練した後、ペレタイズ用ダイス内に導入
し、ダイスの押出孔の出口から加圧水中に押出した後、
切断して粒状化する溶融押出造粒法(特開昭48−20
423号公報、特開平1−110911号公報等)が知
られており、この方法は粒度調整、着色および廃品の再
生が容易であるという利点がある。
As another method for producing expandable thermoplastic resin particles, a thermoplastic resin such as a styrene resin and a foaming agent are melt-kneaded in an extruder and then introduced into a pelletizing die to form an extrusion hole of the die. After extruding into pressurized water from the outlet,
Melt extrusion granulation method of cutting and granulating (JP-A-48-20
No. 423, Japanese Patent Application Laid-Open No. 1-110911, etc.) are known, and this method has an advantage that particle size adjustment, coloring, and recycling of waste products are easy.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
溶融押出造粒法は、押出機による溶融混練押出で受けた
応力が充分に緩和されず、発泡剤含有熱可塑性樹脂の溶
融混練物内に残留したままで造粒されて冷却されるた
め、発泡に際して粒子の均一な発泡が妨げられ、良好な
予備発泡粒子や発泡成形品を安定して得ることができな
いという課題がある。
However, in the above-mentioned melt extrusion granulation method, the stress received in the melt kneading extrusion by the extruder is not sufficiently relaxed and remains in the melt kneaded product of the foaming agent-containing thermoplastic resin. Since it is granulated and cooled as it is, uniform foaming of the particles is hindered during foaming, and there is a problem that good pre-expanded particles and foamed molded articles cannot be stably obtained.

【0005】[0005]

【課題を解決するための手段】本発明者等は、この様な
状況に鑑みて鋭意検討した結果、発泡剤含有熱可塑性樹
脂の溶融混練物を、ペレタイズ用ダイス内に導入してダ
イスの押出孔に向けて流路を流動させ、次いでこの流路
よりも流路よりも流路断面積の大きい流路に流入させる
と、流入時に溶融混練押出で受けた応力が大きく緩和さ
れるため、これを造粒することにより、残留応力が少な
く、均一な発泡ができ、良好な予備発泡粒子や発泡成形
品が安定して得られる発泡性熱可塑性樹脂粒子を容易に
製造できることを見い出し、本発明を完成するに至っ
た。
Means for Solving the Problems As a result of intensive studies in view of such circumstances, the present inventors have introduced a melt-kneaded product of a foaming agent-containing thermoplastic resin into a pelletizing die and extruding the die. If the flow passage is made to flow toward the hole and then flown into a flow passage having a larger flow passage cross-sectional area than this flow passage, the stress received by the melt-kneading extrusion at the time of inflow is greatly relieved. By granulating, it was found that residual stress is small, uniform foaming can be performed, and good pre-expanded particles and expandable thermoplastic resin particles that are stably obtained as foam-molded articles can be easily produced, It came to completion.

【0006】即ち、本発明は、発泡剤含有熱可塑性樹脂
の溶融混練物を、ペレタイズ用ダイス内に導入してダイ
スの押出孔の向けて流路を流動させ、次いでこの流路よ
りも流路断面積の大きい流路に流入させた後、押出孔を
通過させ、その出口から加圧液中に押出し、即時切断し
て粒子とし、次いで冷却することを特徴とする発泡性熱
可塑性樹脂粒子の製造法を提供するものである。
That is, according to the present invention, a melt-kneaded product of a thermoplastic resin containing a foaming agent is introduced into a pelletizing die to flow through a flow passage toward an extrusion hole of the die, and then a flow passage is formed rather than this flow passage. After being flown into a channel having a large cross-sectional area, it passes through an extrusion hole, is extruded into a pressurized liquid from its outlet, is immediately cut into particles, and is then cooled. It provides a manufacturing method.

【0007】本発明で用いる熱可塑性樹脂としては、特
に制限はなく、発泡剤により発泡可能な樹脂であればよ
く、例えばポリスチレン、スチレン−ブタジエン共重合
体(耐衝撃性ポリスチレン)、スチレン−(メタ)アク
リル酸共重合体、スチレン−無水マレイン酸共重合体、
AS樹脂、ABS樹脂等の芳香族ビニル系樹脂、塩化ビ
ニル樹脂、塩化ビニリデン樹脂、塩化ビニル−酢酸ビニ
ル共重合体等の塩化ビニル系樹脂、ポリエチレン、ポリ
プロピレン等のオレフィン系樹脂、ポリ(メタ)アクリ
ル酸メチル、ポリ(メタ)アクリル酸エチル、メタクリ
ル酸メチル−スチレン共重合体等のアクリル系樹脂、ポ
リエチレンテレフタレート、ポリブチレンテレフタレー
ト等のポリエステル系樹脂、ポリカプロラクタム、ヘキ
サメチレンアジボアミド樹脂等のアミド系樹脂、ポリウ
レタン、ポリカーボネート、ポリエーテルイミド、ポリ
フェニレンエーテル等の単独あるいは混合物が挙げら
れ、なかでも芳香族ビニル系樹脂、オレフィン系樹脂が
好ましく、特にスチレン系樹脂が好ましい。
The thermoplastic resin used in the present invention is not particularly limited as long as it is a resin which can be foamed by a foaming agent, and examples thereof include polystyrene, styrene-butadiene copolymer (impact-resistant polystyrene), styrene- (meth). ) Acrylic acid copolymer, styrene-maleic anhydride copolymer,
Aromatic vinyl resin such as AS resin and ABS resin, vinyl chloride resin, vinylidene chloride resin, vinyl chloride resin such as vinyl chloride-vinyl acetate copolymer, olefin resin such as polyethylene and polypropylene, poly (meth) acrylic Acrylic resins such as methyl acidate, ethyl poly (meth) acrylate and methyl methacrylate-styrene copolymer, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, amide resins such as polycaprolactam and hexamethylene adibamide resin Examples thereof include resins, polyurethanes, polycarbonates, polyetherimides, polyphenylene ethers, and the like, which may be used alone or as a mixture. Among them, aromatic vinyl resins and olefin resins are preferable, and styrene resins are particularly preferable.

【0008】本発明で用いる発泡剤としては、例えば脂
肪族炭化水素系発泡剤、ハロゲン化炭化水素系発泡剤等
が挙げられ、通常大気圧下での沸点が95℃以下のもの
を用いる。
Examples of the foaming agent used in the present invention include an aliphatic hydrocarbon-based foaming agent and a halogenated hydrocarbon-based foaming agent, and those having a boiling point of 95 ° C. or less at atmospheric pressure are usually used.

【0009】上記脂肪族炭化水素系発泡剤としては、例
えばエタン、プロパン、プロピレン、ノルマルブタン、
イソブタン、イソブチレン、ノルマルペンタン、イソペ
ンタン、ネオペンタン、シクロペンタン、ヘキサン、石
油エーテル等が挙げられ、またハロゲン化炭化水素系発
泡剤としては、例えば塩化メチル、塩化エチル、ジクロ
ルエタン、クロロホルム、フルオロメタン、ジフルオロ
メタン、トリフルオロメタン、ジフルオロエタン、トリ
フルオロエタン、フルオロクロルメタン、フルオロクロ
ルエタン、ジクロロジフルオロメタン等が挙げられる。
なかでも炭素原子数3〜6の脂肪族炭化水素、特にノル
マルブタン、イソブタン、イソブチレン、ノルマルペン
タン、イソペンタンが好ましい。
Examples of the above-mentioned aliphatic hydrocarbon type foaming agent include ethane, propane, propylene, normal butane,
Examples thereof include isobutane, isobutylene, normal pentane, isopentane, neopentane, cyclopentane, hexane and petroleum ether.Examples of the halogenated hydrocarbon foaming agent include methyl chloride, ethyl chloride, dichloroethane, chloroform, fluoromethane and difluoromethane. , Trifluoromethane, difluoroethane, trifluoroethane, fluorochloromethane, fluorochloroethane, dichlorodifluoromethane and the like.
Among them, aliphatic hydrocarbons having 3 to 6 carbon atoms, particularly normal butane, isobutane, isobutylene, normal pentane and isopentane are preferable.

【0010】発泡剤の使用量は、熱可塑性樹脂100重
量部に対して、通常40重量部以下であり、なかでも粒
子の凝集がなく、均一なセル径が得られる点で2〜10
重量部が好ましい。
The amount of the foaming agent used is usually 40 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin. Above all, particles are not aggregated and a uniform cell diameter can be obtained.
Parts by weight are preferred.

【0011】本発明の製造法において、発泡剤含有熱可
塑性樹脂溶融混練物を得る方法としては、例えば熱可塑
性樹脂と発泡剤とを溶融混練機を用いて熱可塑性樹脂の
溶融温度以上で溶融混練する方法が挙げられ、通常は単
軸押出機、二軸押出機、タンデム型押出機等の押出機を
用い、熱可塑性樹脂と発泡剤とを溶融混練した後、これ
をペレタイズ用ダイス内へ導入する方法を採用する。な
かでも発泡剤の分散が良好な点で二軸押出機やタンデム
型押出機を用いると好ましい。また、発泡剤は熱可塑性
樹脂が半溶融乃至溶融しているところ、例えば押出機の
途中の部分から圧入すると好ましい。
In the production method of the present invention, as a method of obtaining a thermoplastic resin melt-kneaded product containing a foaming agent, for example, the thermoplastic resin and the foaming agent are melt-kneaded at a temperature not lower than the melting temperature of the thermoplastic resin using a melt-kneader. In general, a single screw extruder, a twin screw extruder, a tandem type extruder, and the like are used to melt-knead the thermoplastic resin and the foaming agent, and then introduce this into the pelletizing die. Adopt the method of doing. Among them, it is preferable to use a twin-screw extruder or a tandem type extruder because of good dispersion of the foaming agent. In addition, it is preferable that the foaming agent is press-fitted, for example, from a portion in the middle of the extruder where the thermoplastic resin is semi-molten or molten.

【0012】この様に得られた発泡剤含有熱可塑性樹脂
溶融混練物は、通常溶融混練機の先に取り付けられたペ
レタイズ用ダイスの押出孔の出口から、加圧液中に押出
した後、即時切断して粒子とする。
The thus-obtained foaming agent-containing thermoplastic resin melt-kneaded product is immediately extruded into the pressurized liquid from the outlet of the extrusion hole of the pelletizing die attached to the tip of the melt-kneading machine, and immediately thereafter. Cut into particles.

【0013】ここで用いるペレタイズ用ダイスとして
は、例えば1〜数個の導入路と、複数の押出孔と、これ
らの間にあり、かつその前の流路よりも流路断面積の大
きい流路を有するものが挙げられる。
The pelletizing die used here is, for example, one to several introduction passages, a plurality of extrusion holes, and passages between these passages and having a larger passage cross-sectional area than the passages in front of them. And the like.

【0014】以下に、図面により本発明で用いるペレタ
イズ用ダイスの構造を説明する。図1および図2はそら
ぞれ本発明で用いるペレタイズ用ダイスの構造を概略的
に示す断面図であり、図3は従来のペレタイズ用ダイス
の構造を概略的に示す断面図である。
The structure of the pelletizing die used in the present invention will be described below with reference to the drawings. 1 and 2 are sectional views each schematically showing the structure of a pelletizing die used in the present invention, and FIG. 3 is a sectional view schematically showing the structure of a conventional pelletizing die.

【0015】図1において、それぞれ1はペレタイズ用
ダイス、2は発泡剤含有熱可塑性樹脂溶融混練物の導入
のための流路、3は該流路2より流路断面積の大きい流
路、4は押出孔、5は押出孔の出口、6は押出孔の出口
5を構成する硬化剤層である。また図2において、1、
2、4、5および6は図1と同様で、7は導入路2から
続く複数の流路、8は該流路7より流路断面積の大きい
流路である。さらに図3において、1、2、4、5およ
び6は図1と同様で、7は導入路2から続く複数の流路
である。
In FIG. 1, 1 is a pelletizing die, 2 is a channel for introducing a blowing agent-containing thermoplastic resin melt-kneaded product, 3 is a channel having a channel cross-sectional area larger than that of the channel 2, 4 Is an extrusion hole, 5 is an exit of the extrusion hole, and 6 is a curing agent layer forming the exit 5 of the extrusion hole. In addition, in FIG.
2, 4, 5 and 6 are the same as in FIG. 1, 7 is a plurality of flow passages continuing from the introduction passage 2, and 8 is a flow passage having a larger flow passage cross-sectional area than the flow passage 7. Further, in FIG. 3, 1, 2, 4, 5 and 6 are the same as those in FIG. 1, and 7 is a plurality of flow paths continuing from the introduction path 2.

【0016】本発明で用いるこのようなペレタイズ用ダ
イスにおいて、流路3又は流路8のような流路断面積の
大きい流路の断面積の大きさは、通常流路2又は流路7
のようなその前の流路の流路断面積の2倍以上、好まし
くは2〜10倍であり、また押出孔の大きさは、通常直
径0.3〜3mm、好ましくは0.5〜1mmである。
また、押出孔の長さ(流路断面積の大きい流路の終点か
ら押出孔の出口までの距離)は、20mm以下が好まし
い。
In such a pelletizing die used in the present invention, the size of the cross-sectional area of a flow path having a large cross-sectional area such as the flow path 3 or the flow path 8 is usually the flow path 2 or the flow path 7.
2 times or more, preferably 2 to 10 times, the cross-sectional area of the preceding flow path, and the size of the extrusion hole is usually 0.3 to 3 mm in diameter, preferably 0.5 to 1 mm. Is.
Further, the length of the extrusion hole (the distance from the end point of the flow path having a large cross-sectional area of the flow path to the outlet of the extrusion hole) is preferably 20 mm or less.

【0017】切断装置としては、例えば押出孔の出口か
ら押出された発泡剤含有熱可塑性樹脂の溶融混練物を即
時高温状態で切断するカッターと加圧液とを内部に有す
るカッターチャンバーとが取付けられているものが挙げ
られる。
As the cutting device, for example, a cutter for cutting the melt-kneaded product of the foaming agent-containing thermoplastic resin extruded from the exit of the extrusion hole in a high temperature state immediately and a cutter chamber having a pressurized liquid inside are attached. Some of them are listed.

【0018】加圧液としては、上記粒子の発泡を防止可
能な圧力以上に加圧した水、グリコール、エチレングリ
コール、水とエチレングリコールの混合物等が挙げら
れ、通常加熱加圧された水を用いる。
Examples of the pressurized liquid include water, glycol, ethylene glycol, a mixture of water and ethylene glycol, which is pressurized to a pressure capable of preventing foaming of the particles, and water which is usually heated and pressurized is used. .

【0019】加圧液に加えられる圧力は、通常加圧液の
温度における発泡剤の飽和蒸気圧以上の圧力であり、カ
ッターチャンバーに加圧液を満たした場合で通常5kg
/cm2 以上、好ましくは10〜20kg/cm2 であ
る。
The pressure applied to the pressurized liquid is usually equal to or higher than the saturated vapor pressure of the foaming agent at the temperature of the pressurized liquid, and is usually 5 kg when the cutter chamber is filled with the pressurized liquid.
/ Cm 2 or more, preferably 10 to 20 kg / cm 2 .

【0020】切断装置内の加圧液の温度は、特に限定さ
れず、常温でもよいが、切断して得られた発泡性熱可塑
性樹脂粒子のガラス転移温度(以下、Tgと略す)以
上、特にTgから加圧下での加圧液の沸点未満の間の温
度であると、ペレタイズ用ダイスの流路断面積の大きい
流路内では完全に緩和されずに粒子内に応力が残留した
としても、得られた粒子が急冷されないため、残留応力
を緩和させる時間を得ることができ、好ましい。水を用
いた場合の温度は、通常60〜105℃であり、なかで
もスチレン系樹脂の場合の温度は、80〜95℃が好ま
しい。
The temperature of the pressurized liquid in the cutting device is not particularly limited, and may be room temperature, but it is not lower than the glass transition temperature (hereinafter abbreviated as Tg) of the expandable thermoplastic resin particles obtained by cutting, particularly, At a temperature between Tg and less than the boiling point of the pressurized liquid under pressure, even if stress is not completely relaxed in the flow passage of the pelletizing die having a large flow passage cross-sectional area and remains in the particles, Since the obtained particles are not rapidly cooled, the time for relaxing the residual stress can be obtained, which is preferable. The temperature when water is used is usually 60 to 105 ° C, and the temperature when styrene resin is used is preferably 80 to 95 ° C.

【0021】次いで粒子は、大気圧下でも発泡しなくな
る温度まで冷却してもよいが、直ちに冷却せずに加圧液
の中でTg以上の温度に、通常2分間以上、好ましくは
4〜10分間保持(必要に応じてTg以上の温度内で温
度を上昇又は低下させてもよい。)あるいはTg前後の
温度、好ましくはTg±5度の温度範囲で徐冷して該粒
子内の残留応力の緩和を更に進めた後、冷却、好ましく
は平均毎分5℃以上の速度で急冷すると望ましい。冷却
された粒子は、次いで常圧下で分離、乾燥される。
Next, the particles may be cooled to a temperature at which they do not foam even under atmospheric pressure, but they are not immediately cooled, but in a pressurized liquid, to a temperature of Tg or higher, usually for 2 minutes or longer, preferably 4 to 10 minutes. Residual stress in the particles is maintained for a minute (the temperature may be raised or lowered within a temperature of Tg or higher if necessary) or gradually cooled at a temperature around Tg, preferably within a temperature range of Tg ± 5 degrees. After further promoting the above relaxation, it is desirable to cool, preferably to quench rapidly at an average rate of 5 ° C. per minute or more. The cooled particles are then separated and dried under normal pressure.

【0022】上記造粒後の粒子内の残留応力を緩和する
方法は、特に限定されないが、例えばカッターチャンバ
ーから出た発泡剤含有熱可塑性樹脂粒子を、加圧液と共
に応力緩和用加圧容器にその上部から供給し、Tg+5
℃以上の温度以上に保持したまま、あるいはTg前後の
温度、好ましくはTg±5度の温度範囲で徐冷しつつ加
圧液中をゆっくり落下させて、粒子内の残留応力を緩和
させ、該容器の底部から順次抜き出す方法、カッターチ
ャンバーから出た発泡剤含有熱可塑性樹脂粒子を、加圧
液と共に移送管、例えば螺旋状の移送管に流入させ、こ
の管内をTg+5℃以上の温度以上に保持したまま、あ
るいはTg前後の温度、好ましくはTg±5度の温度範
囲で徐冷しつつ加圧液と共に移送させて、粒子内の残留
応力を緩和させる方法等が挙げられる。
The method for relaxing the residual stress in the particles after granulation is not particularly limited, but for example, the foaming agent-containing thermoplastic resin particles discharged from the cutter chamber are put together with a pressurized liquid into a stress relaxation pressure container. Supply from above, Tg + 5
While being kept at a temperature of not less than ℃ or higher, or slowly cooled in a temperature range around Tg, preferably in a temperature range of Tg ± 5 degrees, the pressurized liquid is slowly dropped to relieve residual stress in the particles. A method of sequentially extracting from the bottom of the container, the blowing agent-containing thermoplastic resin particles discharged from the cutter chamber, together with the pressurized liquid, are allowed to flow into a transfer pipe, for example, a spiral transfer pipe, and the inside of this pipe is maintained at a temperature of Tg + 5 ° C or higher. As it is, or while it is slowly cooled at a temperature around Tg, preferably in a temperature range of Tg ± 5 ° C., it is transferred together with a pressurized liquid to relax the residual stress in the particles.

【0023】また、粒子の冷却方法は、粒子の発泡を防
止しつつ冷却できる方法であればよく、例えば加圧下、
該粒子と加圧液、又は加圧液を分離した粒子に冷却液を
混合して冷却する方法等が挙げられる。
The particles may be cooled by any method capable of cooling while preventing foaming of the particles, for example, under pressure.
Examples thereof include a method in which a cooling liquid is mixed with the particles and the pressurized liquid, or particles obtained by separating the pressurized liquid, and cooled.

【0024】[0024]

【実施例】以下に実施例および比較例を挙げて、本発明
を更に詳細に説明するが、本発明はこれにより限定され
るものではない。尚、例中の部および%は重量基準であ
る。
EXAMPLES The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited thereto. The parts and% in the examples are based on weight.

【0025】実施例1 本実施例では、図4に示した工程の製造装置を用いて発
泡性ポリスチレン粒子を製造した。図4において、11
は第1段押出機11aと第2段11bとからなるタンデ
ム型押出機、12は第1段押出機11aのホッパー、1
3は発泡剤の圧入装置、14はペレタイズ用ダイス、1
5は熱媒ユニット、16はカッター、17はカッターチ
ャンバー、18は加圧ポンプ、19は熱交換器、20は
循環水タンク、21は圧力調整装置、22は応力緩和用
加圧容器、23は冷却用加圧容器、24および25はバ
ルブ、26は冷却装置、27は加圧ポンプ、28はバル
ブ、29は遠心脱水機であり、ペレタイズ用ダイス14
は、図1に示す構造を有している。また、太線(加圧ポ
ンプ18および27からバルブ28の間)は加圧された
部分を示す。
Example 1 In this example, expandable polystyrene particles were manufactured using the manufacturing apparatus of the process shown in FIG. In FIG. 4, 11
Is a tandem type extruder consisting of a first stage extruder 11a and a second stage 11b, 12 is a hopper of the first stage extruder 11a, 1
3 is a foaming agent press-fitting device, 14 is a pelletizing die, 1
5 is a heat medium unit, 16 is a cutter, 17 is a cutter chamber, 18 is a pressure pump, 19 is a heat exchanger, 20 is a circulating water tank, 21 is a pressure adjusting device, 22 is a stress relaxation pressure vessel, and 23 is A cooling pressure vessel, 24 and 25 are valves, 26 is a cooling device, 27 is a pressure pump, 28 is a valve, and 29 is a centrifugal dehydrator.
Has the structure shown in FIG. A thick line (between the pressurizing pumps 18 and 27 and the valve 28) indicates a pressurized portion.

【0026】ポリスチレン100部とタルク0.02部
とからなる混合物を第1段押出機11aと第2段押出機
11bとからなるタンデム型押出機11のホッパー12
より供給して押出し、次いでブタン7部を第一段押出機
11a後半の注入口より供給し、第1段押出機11aお
よび第2段押出機11bでポリスチレンとブタンとを溶
融混練した。この時、樹脂温度は200℃、樹脂圧力は
110kg/cm2を示した。
A hopper 12 of a tandem type extruder 11 comprising a first stage extruder 11a and a second stage extruder 11b, which is a mixture of 100 parts of polystyrene and 0.02 part of talc.
Then, 7 parts of butane was supplied from the injection port in the latter half of the first stage extruder 11a, and polystyrene and butane were melt-kneaded by the first stage extruder 11a and the second stage extruder 11b. At this time, the resin temperature was 200 ° C. and the resin pressure was 110 kg / cm 2 .

【0027】溶融混練した樹脂を、第二段押出機11b
の先に取り付けた、図1に示した構造のペレタイズ用ダ
イス(押出孔の直径:0.7mmφ、押出孔の数:10
0個、流路3/流路2の断面積比:6.76)を通し
て、80℃、15kg/cm2の加熱加圧水で満たされ
たカッターチャンバー17の中に80kg/hrの割合
で押出し、直ちにカッター16で水中カットして、約
0.9mm径の粒子を得た。
The melt-kneaded resin is mixed with the second-stage extruder 11b.
1 for the pelletizing die having the structure shown in FIG. 1 (extrusion hole diameter: 0.7 mmφ, number of extrusion holes: 10)
0 pieces, flow path 3 / flow path 2 cross-sectional area ratio: 6.76), and extruded at a rate of 80 kg / hr into a cutter chamber 17 filled with heated and pressurized water at 80 ° C. and 15 kg / cm 2 , and immediately extruded. It was cut in water with a cutter 16 to obtain particles having a diameter of about 0.9 mm.

【0028】生成した粒子を、6m3/hr の加熱加圧
水が循環し、80℃、15Kg/cm2 に保持された5
00Lの応力緩和用加圧容器22中に移送し、5分間滞
留させてさせた。その後、冷却用加圧容器23に移送
し、80℃から25℃まで5.5分間で急速に冷却し
た。冷却後、粒子を系外へ取り出した後、遠心脱水機2
9で脱水し、乾燥して、発泡性ポリスチレン粒子を得
た。
The produced particles were kept at 80 ° C. and 15 Kg / cm 2 by circulating 6 m 3 / hr of heated and pressurized water.
It was transferred into a 00 L pressure relaxation container 22 and allowed to stay for 5 minutes. Then, it transferred to the cooling pressurizing container 23 and rapidly cooled from 80 ° C. to 25 ° C. in 5.5 minutes. After cooling, the particles were taken out of the system, and then the centrifugal dehydrator 2
It was dehydrated with 9 and dried to obtain expandable polystyrene particles.

【0029】得られた発泡性ポリスチレン粒子は、残留
応力が少なく、良好な発泡粒子を容易に製造できるもの
であった。その性状を表1に示す。尚、発泡性ポリスチ
レン粒子の性状は以下の方法で測定又は評価した。 ・発泡性粒子の平均粒子径:100個の発泡性粒子の粒
子径をダイヤルゲージで測定し、その平均値を求めた。 ・発泡性粒子の残留応力 :発泡性粒子の表面を50倍
の超音波顕微鏡写真にとり、その表面の縞模様の程度か
ら目視にて残留応力の多少を判定評価した。 ・発泡性粒子のTg :示差熱分析装置(DSC)
にて測定した。 ・発泡倍率(1/嵩密度):ゲージ圧1kg/cm2
スチームで30秒間加熱して発泡させた発泡粒子の嵩密
度を求め、その逆数として算出した。 ・発泡粒子のセル径 :上記と同様に発泡させた発
泡粒子10個の切断面を50倍の実体顕微鏡写真にと
り、そのセルの径を測定し、範囲を求めた。 ・発泡粒子セルの均一性 :上記と同様にして50倍の
実体顕微鏡写真にとり、セルの均一性を目視にて判定評
価した。
The expandable polystyrene particles obtained had a small residual stress and could easily produce good expanded particles. The properties are shown in Table 1. The properties of the expandable polystyrene particles were measured or evaluated by the following methods. -Average particle size of expandable particles: The particle size of 100 expandable particles was measured with a dial gauge, and the average value was obtained. -Residual stress of expandable particles: The surface of expandable particles was photographed with a 50 times ultrasonic microscope, and the residual stress was visually evaluated based on the degree of the striped pattern on the surface. -Tg of expandable particles: differential thermal analyzer (DSC)
It was measured at. -Expansion ratio (1 / bulk density): The bulk density of foamed particles foamed by heating for 30 seconds with steam having a gauge pressure of 1 kg / cm 2 was calculated and calculated as the reciprocal thereof. -Cell diameter of foamed particles: The cut surface of 10 foamed particles that had been foamed in the same manner as above was taken on a stereomicrograph of 50 times, the diameter of the cell was measured, and the range was determined. -Uniformity of foamed particle cell: The cell homogeneity was visually judged and evaluated by taking a 50 times stereoscopic micrograph in the same manner as above.

【0030】実施例2 溶融混練した樹脂を加熱加圧水の中に押出し、直ちに水
中カットして得た生成した粒子を、応力緩和用加圧容器
22中に滞留させずに、直接冷却用加圧容器23に移送
し、80℃から25℃まで7分間かけて冷却した以外は
実施例1と同様にして、発泡性ポリスチレン粒子を得
た。
Example 2 The melt-kneaded resin was extruded into hot-pressurized water and immediately cut in water, and the particles produced were not retained in the stress-relaxing pressurizing container 22, but directly in the pressurizing container for cooling. Expandable polystyrene particles were obtained in the same manner as in Example 1 except that the mixture was transferred to 23 and cooled from 80 ° C to 25 ° C over 7 minutes.

【0031】得られた発泡性ポリスチレン粒子は、残留
応力が少なく、良好な発泡粒子を容易に製造できるもの
であった。その性状を表1に示す。 実施例3 溶融混練した樹脂を70℃の加熱加圧水の中に押出し、
直ちに水中カットして得た生成した粒子を、底部から冷
却水を導入した応力緩和用加圧容器22中に移送し、7
0℃から55℃まで7.5分間かけて徐冷しつつ粒子の
残留応力をを緩和させた後、冷却用加圧容器23に移送
し、55℃から25℃まで3分間で急速に冷却した以外
は実施例1と同様にして、発泡性ポリスチレン粒子を得
た。
The expandable polystyrene particles obtained had a small residual stress and could easily produce good expanded particles. The properties are shown in Table 1. Example 3 The melt-kneaded resin was extruded into heated and pressurized water at 70 ° C.,
Immediately after cutting in water, the produced particles are transferred from the bottom into a stress relaxation pressure container 22 into which cooling water is introduced,
After gradually cooling the particles from 0 ° C. to 55 ° C. over 7.5 minutes to relax the residual stress of the particles, the particles were transferred to a pressure vessel 23 for cooling and rapidly cooled from 55 ° C. to 25 ° C. in 3 minutes. Expandable polystyrene particles were obtained in the same manner as in Example 1 except for the above.

【0032】得られた発泡性ポリスチレン粒子は、残留
応力が少なく、良好な発泡粒子を容易に製造できるもの
であった。その性状を表1に示す。 実施例4 図2に示す構造のペレタイズ用ダイス(押出孔の直径:
0.8mmφ、押出孔の数:80個、流路8/流路7の
断面積比:4)を用いた以外は実施例1と同様にして、
発泡性ポリスチレン粒子を得た。
The expandable polystyrene particles obtained had a small residual stress and could easily produce good expanded particles. The properties are shown in Table 1. Example 4 Pelletizing die having the structure shown in FIG. 2 (diameter of extrusion hole:
0.8 mmφ, the number of extrusion holes: 80, and the cross-sectional area ratio of channel 8 / channel 7: 4) were used in the same manner as in Example 1,
Expandable polystyrene particles were obtained.

【0033】得られた発泡性ポリスチレン粒子は、残留
応力が少なく、良好な発泡粒子を容易に製造できるもの
であった。その性状を表2に示す。 比較例1 図3に示す構造のペレタイズ用ダイス(押出孔の直径:
0.7mmφ、押出孔の数:100個)を用い、溶融混
練した樹脂を加熱加圧水の中に押出し、直ちに水中カッ
トして得た生成した粒子を、応力緩和用加圧容器22中
に滞留させずに、直接冷却用加圧容器23に移送し、8
0℃から25℃まで7分間かけて冷却した以外は実施例
1と同様にして、発泡性ポリスチレン粒子を得た。
The expandable polystyrene particles obtained had a small residual stress and could easily produce good expanded particles. The properties are shown in Table 2. Comparative Example 1 Pelletizing die having the structure shown in FIG. 3 (diameter of extrusion hole:
0.7 mmφ, number of extrusion holes: 100), the melt-kneaded resin was extruded into heated and pressurized water, and the particles produced by immediately cutting in water were retained in the stress relaxation pressure vessel 22. Without directly transferring to the pressure vessel for cooling 23,
Expandable polystyrene particles were obtained in the same manner as in Example 1 except that cooling was performed from 0 ° C to 25 ° C over 7 minutes.

【0034】得られた発泡性ポリスチレン粒子は、残留
応力が多く、良好な発泡粒子が得られないものであっ
た。その性状を表2に示す。
The expandable polystyrene particles obtained had a large residual stress, and good expanded particles could not be obtained. The properties are shown in Table 2.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【発明の効果】本発明の発泡性熱可塑性樹脂粒子の製法
によれば、発泡剤含有熱可塑性樹脂の溶融混練物が溶融
混練押出で受けた応力を、ペレタイズ用ダイス内で大き
く緩和させることができるため、残留応力の少ない良好
な発泡粒子を容易に製造できる。
According to the method for producing expandable thermoplastic resin particles of the present invention, the stress received by the melt-kneading extrusion of the melt-kneaded product of the foaming agent-containing thermoplastic resin can be greatly relaxed in the pelletizing die. Therefore, it is possible to easily produce good expanded particles with little residual stress.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明で用いるペレタイズ用ダイスの構造を
概略的に示す断面図である。
FIG. 1 is a sectional view schematically showing the structure of a pelletizing die used in the present invention.

【図2】 本発明で用いるペレタイズ用ダイスの構造を
概略的に示す断面図である。
FIG. 2 is a cross-sectional view schematically showing the structure of a pelletizing die used in the present invention.

【図3】 従来のペレタイズ用ダイスの構造を概略的に
示す断面図である。
FIG. 3 is a sectional view schematically showing the structure of a conventional pelletizing die.

【図4】 本発明の発泡性熱可塑性樹脂粒子の製法の一
例を示す工程図である。
FIG. 4 is a process drawing showing an example of a method for producing expandable thermoplastic resin particles of the present invention.

【符号の説明】[Explanation of symbols]

11 タンデム型押出機 11a 第1段押出機 11b 第2段押出機 12 ホッパー 13 発泡剤の圧入装置 14 ペレタイズ用ダイス 15 熱媒ユニット 16 カッター 17 カッターチャンバー 18 加圧ポンプ 19 熱交換器 20 循環水タンク 21 圧力調整装置 22 応力緩和用加圧容器 23 冷却用加圧容器 24、24および26 バルブ 27 冷却装置 28 加圧ポンプ 29 バルブ 30 遠心脱水機 11 Tandem Extruder 11a First Stage Extruder 11b Second Stage Extruder 12 Hopper 13 Foaming Agent Press-In Device 14 Pelletizing Die 15 Heat Transfer Unit 16 Cutter 17 Cutter Chamber 18 Pressurizing Pump 19 Heat Exchanger 20 Circulating Water Tank 21 Pressure Regulator 22 Pressure Relief Pressurizing Container 23 Cooling Pressurizing Container 24, 24 and 26 Valve 27 Cooling Device 28 Pressurizing Pump 29 Valve 30 Centrifugal Dewatering Machine

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 発泡剤含有熱可塑性樹脂の溶融混練物
を、ペレタイズ用ダイス内に導入してダイスの押出孔に
向けて流路を流動させ、次いでこの流路よりも流路断面
積の大きい流路に流入させた後、押出孔を通過させ、そ
の出口から加圧液中に押出し、即時切断して粒子とし、
次いで冷却することを特徴とする発泡性熱可塑性樹脂粒
子の製造法。
1. A melt-kneaded product of a foaming agent-containing thermoplastic resin is introduced into a pelletizing die to flow through a channel toward an extrusion hole of the die, and then the channel cross-sectional area is larger than this channel. After flowing into the flow path, pass through the extrusion hole, extrude into the pressurized liquid from its outlet, immediately cut into particles,
A method for producing expandable thermoplastic resin particles, which comprises cooling.
【請求項2】 ダイス内に導入された発泡剤含有熱可塑
性樹脂の溶融混練物を、複数の流路に流入させ、次いで
それぞれの流路よりも流路断面積の大きい流路に流入さ
せた後、押出孔を通過させる請求項1記載の製造法。
2. A melt-kneaded product of a foaming agent-containing thermoplastic resin introduced into a die is caused to flow into a plurality of flow passages, and then to a flow passage having a larger flow passage cross-sectional area than each flow passage. The manufacturing method according to claim 1, which is then passed through an extrusion hole.
【請求項3】 ダイス内に導入させた発泡剤含有熱可塑
性樹脂の溶融混練物を、この流路よりも流路断面積の大
きい流路に流入させた後、複数の押出孔を通過させる請
求項1記載の製造法。
3. A melt-kneaded product of a foaming agent-containing thermoplastic resin introduced into a die is caused to flow into a channel having a larger channel cross-sectional area than this channel, and then passed through a plurality of extrusion holes. Item 2. The production method according to Item 1.
【請求項4】 熱可塑性樹脂が、芳香族ビニル系樹脂で
ある請求項1、2または3記載の製造法。
4. The method according to claim 1, 2 or 3, wherein the thermoplastic resin is an aromatic vinyl resin.
【請求項5】 熱可塑性樹脂が、スチレン系樹脂である
請求項1、2又は3記載の製造法。
5. The method according to claim 1, 2 or 3, wherein the thermoplastic resin is a styrene resin.
【請求項6】 流路断面の大きい流路の断面積が、その
前の流路の断面積の2〜10倍である請求項4又は5記
載の製造法。
6. The method according to claim 4, wherein the cross-sectional area of the flow path having a large cross-section is 2 to 10 times the cross-sectional area of the flow path before it.
【請求項7】 発泡剤含有熱可塑性樹脂の溶融混練物を
押出孔の出口から発泡性熱可塑性樹脂粒子のガラス転移
温度(以下、Tgと略す)以上の温度の加圧液中に押出
し、即時切断して得た粒子を、加圧液中で同温度以上に
保持し、次いで冷却する請求項4又は5記載の製造法。
7. A melt-kneaded product of a thermoplastic resin containing a foaming agent is extruded from an exit of an extrusion hole into a pressurized liquid having a temperature not lower than the glass transition temperature (hereinafter abbreviated as Tg) of the expandable thermoplastic resin particles, and immediately extruded. The method according to claim 4 or 5, wherein the particles obtained by cutting are kept at the same temperature or higher in a pressurized liquid and then cooled.
【請求項8】 押出孔の出口から押し出された発泡剤含
有熱可塑性樹脂の溶融混練物の切断と、得られた粒子の
Tg以上の温度の加圧液中での保持を、圧力5kg/c
2 (ゲージ圧)以上、温度65〜95℃の水中で行な
う請求項7記載の製造法。
8. Cutting of a melt-kneaded product of a foaming agent-containing thermoplastic resin extruded from the outlet of an extrusion hole and holding of the obtained particles in a pressurized liquid at a temperature of Tg or higher are performed at a pressure of 5 kg / c.
The production method according to claim 7, which is carried out in water at a temperature of 65 to 95 ° C at a temperature of m 2 (gauge pressure) or more.
【請求項9】 発泡剤含有熱可塑性樹脂の溶融混練物を
押出孔の出口からTg以上の加熱加圧液中に押出し、即
時切断して得た粒子を、加圧液中でTg±5℃の温度範
囲で徐冷する請求項4又は5記載の製造法。
9. Particles obtained by extruding a melt-kneaded product of a foaming agent-containing thermoplastic resin from the exit of an extrusion hole into a heated and pressurized liquid having a temperature of Tg or more and immediately cutting the Tg ± 5 ° C. in the pressurized liquid. The method according to claim 4, wherein the temperature is gradually cooled in the temperature range.
JP4291351A 1992-10-29 1992-10-29 Production of foamable thermoplastic resin particle Pending JPH06136176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4291351A JPH06136176A (en) 1992-10-29 1992-10-29 Production of foamable thermoplastic resin particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4291351A JPH06136176A (en) 1992-10-29 1992-10-29 Production of foamable thermoplastic resin particle

Publications (1)

Publication Number Publication Date
JPH06136176A true JPH06136176A (en) 1994-05-17

Family

ID=17767807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4291351A Pending JPH06136176A (en) 1992-10-29 1992-10-29 Production of foamable thermoplastic resin particle

Country Status (1)

Country Link
JP (1) JPH06136176A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004080678A1 (en) * 2003-03-12 2004-09-23 Sekisui Plastics Co., Ltd. Granulation die, granulation apparatus and process for producing expandable thermoplastic resin granule
JP2007320056A (en) * 2006-05-30 2007-12-13 Mitsubishi Engineering Plastics Corp Die for extrusion
US7776244B2 (en) 2002-06-14 2010-08-17 Basf Aktiengesellschaft Method for producing expandable polystyrene
US7815828B2 (en) 2003-09-17 2010-10-19 Sekisui Plastics Co., Ltd. Influence of each of the parameters on the foamed product strength
WO2011118706A1 (en) * 2010-03-26 2011-09-29 積水化成品工業株式会社 Expanded polystyrene resin particle and method of manufacture for same, polystyrene resin pre-expansion particle, polystyrene resin expanded form, thermoplastic resin pre-expansion particle and method of manufacture for same, and thermoplastic expanded form
JP2013022911A (en) * 2011-07-25 2013-02-04 Kaneka Corp Method for producing foamable thermoplastic resin grain
DE19819058C5 (en) * 1998-04-29 2015-06-25 Basf Se Process for the production of prefoamed EPS particles with coarse foam structure from particulate, slightly foamed, expanded styrene polymers
EP1998948B2 (en) 2006-03-22 2017-06-07 Basf Se Method and device for granulating polymer melts containing blowing agent

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19819058C5 (en) * 1998-04-29 2015-06-25 Basf Se Process for the production of prefoamed EPS particles with coarse foam structure from particulate, slightly foamed, expanded styrene polymers
US7776244B2 (en) 2002-06-14 2010-08-17 Basf Aktiengesellschaft Method for producing expandable polystyrene
WO2004080678A1 (en) * 2003-03-12 2004-09-23 Sekisui Plastics Co., Ltd. Granulation die, granulation apparatus and process for producing expandable thermoplastic resin granule
US7294299B2 (en) 2003-03-12 2007-11-13 Sekisui Plastics Co., Ltd. Granulating die, granulation device and method of manufacturing expandable thermoplastic resin granules
US7815828B2 (en) 2003-09-17 2010-10-19 Sekisui Plastics Co., Ltd. Influence of each of the parameters on the foamed product strength
EP1998948B2 (en) 2006-03-22 2017-06-07 Basf Se Method and device for granulating polymer melts containing blowing agent
JP2007320056A (en) * 2006-05-30 2007-12-13 Mitsubishi Engineering Plastics Corp Die for extrusion
WO2011118706A1 (en) * 2010-03-26 2011-09-29 積水化成品工業株式会社 Expanded polystyrene resin particle and method of manufacture for same, polystyrene resin pre-expansion particle, polystyrene resin expanded form, thermoplastic resin pre-expansion particle and method of manufacture for same, and thermoplastic expanded form
JP2013022911A (en) * 2011-07-25 2013-02-04 Kaneka Corp Method for producing foamable thermoplastic resin grain

Similar Documents

Publication Publication Date Title
CN100436516C (en) Expanded particulate moulded parts consisting of expandable polystyrenes and mixtures of thermoplastic polymers
JP4198113B2 (en) Method for producing expandable polystyrene
JP4221408B2 (en) Method for producing thermoplastic resin foamable particles
US4606873A (en) Process for the production of expandable granules of thermoplastic polymers and relative apparatus
TWI410315B (en) Production method of expandable thermoplastic resin pellets, production method of expanded thermoplastic resin pellets, and production method of expanded thermoplastic molded form
KR20100053524A (en) Moulded foams made of expandable acrylonitrile copolymers
WO2019024870A1 (en) Micro-particle-size thermoplastic micro-airbag polyurethane elastomer material and preparation therefor
KR20070043840A (en) Method for the production of expandable styrol polymers having improved expandability
US5707573A (en) Method of preparing thermoplastic foams using a gaseous blowing agent
JPH06136176A (en) Production of foamable thermoplastic resin particle
US7868053B2 (en) Expandable polystyrene granulates with a bi- or multi-modal molecular-weight distribution
JPH06298983A (en) Production of expandable thermoplastic resin particle
JPH07314438A (en) Production of foamable thermoplastic resin granule
JPH0632932A (en) Preparation of expandable thermoplastic resin particle
JPH07316335A (en) Production of expandable thermoplastic resin particle
JP2012207093A (en) Production method for polystyrene-based expandable resin particle
JPS59207941A (en) Styrenic polymer and manufacture
WO2011065561A1 (en) Foamable thermoplastic resin particles and method for producing same
JPH09208734A (en) Production of foamable styrene-based resin particle
JP7005158B2 (en) Method for manufacturing foamable thermoplastic resin particles
JP2004292489A (en) Styrenic resin expandable particle, method for producing the same, expanded particle and expansion molded product
JP2004204110A (en) Apparatus for manufacture of foaming thermoplastic resin particle, method of manufacturing the particle and the particle obtained
JP2022009145A (en) Method for manufacturing foamable thermoplastic resin particles
JP5734611B2 (en) Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding
JP2013071998A (en) Foamable polystyrene-based resin particle, method for producing the same, polystyrene-based resin pre-foamed particle and polystyrene-based resin foamed compact