JPH06136134A - Conductive polymer - Google Patents

Conductive polymer

Info

Publication number
JPH06136134A
JPH06136134A JP28303792A JP28303792A JPH06136134A JP H06136134 A JPH06136134 A JP H06136134A JP 28303792 A JP28303792 A JP 28303792A JP 28303792 A JP28303792 A JP 28303792A JP H06136134 A JPH06136134 A JP H06136134A
Authority
JP
Japan
Prior art keywords
conductive polymer
polymer
base
nitrogen atom
hydrogen atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28303792A
Other languages
Japanese (ja)
Inventor
Fuyuhiko Kubota
冬彦 久保田
Satoshi Imahashi
▲聡▼ 今橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP28303792A priority Critical patent/JPH06136134A/en
Publication of JPH06136134A publication Critical patent/JPH06136134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PURPOSE:To provide a new conductive polymer having excellent stability even in an N-type doped state. CONSTITUTION:The conductive polymer partially or entirely consists of a conjugated bond chain containing an anionic structure obtained by removing proton from a hydrogen atom bonded to a nitrogen atom with a base. In this way, the problem of the stability of a conventional N-type dopable conductive polymer is solved, and its application field can be extended.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気・電子工業の分野
において、導電材料、電極材料、表示材料、電磁波遮蔽
材料等に用いることが出来る。
INDUSTRIAL APPLICABILITY The present invention can be used as a conductive material, an electrode material, a display material, an electromagnetic wave shielding material and the like in the field of electric and electronic industries.

【0002】[0002]

【従来の技術】ポリアセチレン、ポリピロール、ポリチ
オフェン、ポリアニリン、ポリパラフェニレン等の導電
性重合体は、様々な機能性を有する新素材として期待さ
れており、電極材料の分野では既に実用化されている。
導電性重合体の機能性は、酸化剤によるp型ドーピン
グ、又は還元剤によるn型ドーピングに際して、重合体
の性質が変化することに基づいているが、一般に導電性
重合体はp型ドーピングされるものが多い。一方n型ド
ーピングされる導電性重合体は、導電性重合体の利用分
野を飛躍的に増大させる可能性をもちながら、その種類
はポリアセチレン、ポリパラフェニレン等の一部の重合
体に限定される。さらにp型ドーピングされる導電性重
合体は、空気中で比較的安定に存在することが出来るの
に対して、n型ドーピングされる導電性重合体は一般に
空気中で極めて不安定であり、実用上十分な安定性を有
する導電性重合体の開発が待たれていた。
2. Description of the Related Art Conductive polymers such as polyacetylene, polypyrrole, polythiophene, polyaniline and polyparaphenylene are expected as new materials having various functionalities and have already been put to practical use in the field of electrode materials.
The functionality of a conductive polymer is based on the fact that the properties of the polymer change upon p-type doping with an oxidizing agent or n-type doping with a reducing agent. Generally, a conductive polymer is p-type doped. There are many things. On the other hand, the conductive polymer to be n-type doped has the possibility of dramatically increasing the field of application of the conductive polymer, but the type thereof is limited to some polymers such as polyacetylene and polyparaphenylene. . In addition, p-type doped conductive polymers can exist relatively stably in air, whereas n-type doped conductive polymers are generally very unstable in air and are not suitable for practical use. Furthermore, the development of a conductive polymer having sufficient stability has been awaited.

【0003】[0003]

【発明が解決しようとする課題】本発明は、従来のn型
ドーピングされる導電性重合体の安定性における課題を
解決せんとするものである。
SUMMARY OF THE INVENTION The present invention addresses the problem of stability of conventional n-type doped conductive polymers.

【0004】[0004]

【課題を解決するための手段】本発明者らは、n型ドー
ピングが可能でかつ空気中での安定性に優れた新規な導
電性重合体の開発を目的として鋭意検討した結果、窒素
原子に結合する水素原子を塩基で脱プロトン化して得ら
れるアニオン構造を含む共役結合鎖を、重合体の一部又
は全部として有することを特徴とする導電性重合体が、
n型ドーピング状態をとり、かつ空気中においても長期
間安定に存在できることを見出し、本発明を完成するに
至った。
Means for Solving the Problems The inventors of the present invention have earnestly studied for the purpose of developing a novel conductive polymer capable of n-type doping and excellent in stability in air. A conductive polymer characterized by having a conjugated bond chain containing an anion structure obtained by deprotonating a hydrogen atom to be bonded with a base, as a part or all of the polymer,
The present invention has been completed by finding that the n-type doping state is taken and that it can exist stably in the air for a long period of time.

【0005】一般に窒素原子に結合する水素は、電子吸
引性基、共役二重結合、芳香環等の存在により酸性度を
増し、塩基によって脱プロトン化され、アニオンを生成
する。この際用いた塩基のカチオンが、対イオンとして
その近傍に存在する。本発明者らはこの現象を鑑みて研
究を実施したところ、水素原子が結合した窒素原子を共
役結合鎖に含み得る構造を有する重合体において、当該
水素原子を脱プロトン化することにより、n型ドーピン
グが起こることを見出した。さらに得られた重合体は導
電性を有し、また空気中におけるその安定性は、従来の
n型ドーピングされる導電性重合体に比較して、極めて
良好であることが判明した。本発明におけるアニオン構
造を含む共役結合鎖とは、窒素原子に結合した水素原子
を脱プロトン化して得られたアニオンが、隣接する他の
多重結合と共役している状態を指す。
Generally, hydrogen bonded to a nitrogen atom increases its acidity due to the presence of an electron-withdrawing group, a conjugated double bond, an aromatic ring, etc., and is deprotonated by a base to generate an anion. The cation of the base used at this time exists in the vicinity as a counter ion. The inventors of the present invention conducted research in view of this phenomenon, and as a result, in a polymer having a structure in which a nitrogen atom to which a hydrogen atom is bonded can be included in a conjugated bond chain, by deprotonating the hydrogen atom, the n-type We found that doping occurs. It was further found that the polymer obtained is electrically conductive and its stability in air is very good compared to conventional n-type doped conducting polymers. The conjugated bond chain containing an anion structure in the present invention refers to a state in which an anion obtained by deprotonating a hydrogen atom bonded to a nitrogen atom is conjugated with another adjacent multiple bond.

【0006】本発明の重合体における、脱プロトン化に
よりアニオン構造を生成する具体的な構造単位として
は、ピロール、インドール、イソインドール、ナフトピ
ロール、ピロロピリジン、ベンズイミダゾール、プリ
ン、カルバゾール、フェノキサジン、フェノチアジン等
の窒素含有複素環化合物構造が挙げられる。これらの構
造単位は単独でも塩基と反応することによりアニオン構
造を生成できるが、そのアニオン構造がより安定に存在
するためには、当該構造単位が隣接する他の多重結合と
共役していることが好ましい。さらにその共役系の電子
密度の分布に影響を及ぼし得る位置に、電子吸引性基が
存在することはアニオン構造の安定化に大きな効果があ
る。
Specific structural units for producing an anion structure by deprotonation in the polymer of the present invention include pyrrole, indole, isoindole, naphthopyrrole, pyrrolopyridine, benzimidazole, purine, carbazole, phenoxazine, Examples include nitrogen-containing heterocyclic compound structures such as phenothiazine. These structural units alone can generate an anion structure by reacting with a base, but in order for the anion structure to exist more stably, the structural unit must be conjugated to another adjacent multiple bond. preferable. Furthermore, the presence of the electron-withdrawing group at a position that can affect the electron density distribution of the conjugated system has a great effect on stabilizing the anion structure.

【0007】本発明の導電性重合体は、予め脱プロトン
化され得る水素原子を結合した窒素原子を有する重合体
を塩基で処理することによって得ることが出来る。ここ
で用いられる塩基としては、リチウム、カリウム、ナト
リウム、水酸化リチウム、水酸化カリウム、水酸化ナト
リウム、水素化リチウム、水素化ナトリウム、水素化カ
ルシウム、カリウムt−ブトキシド、ナトリウムエトキ
シド、ナトリウムメトキシド、ブチルリチウム、フェニ
ルリチウム、リチウムジイソプロピルアミド等が挙げら
れる。本発明の導電性重合体においては、脱プロトン化
過程で用いられる塩基に含まれるカチオンがアニオン構
造の対イオンとなるが、このカチオンは重合体を他のカ
チオン含有溶液に浸漬又は溶解することにより、イオン
交換することが出来る。
The conductive polymer of the present invention can be obtained by treating a polymer having a nitrogen atom bonded with a hydrogen atom which can be deprotonated in advance, with a base. Examples of the base used here include lithium, potassium, sodium, lithium hydroxide, potassium hydroxide, sodium hydroxide, lithium hydride, sodium hydride, calcium hydride, potassium t-butoxide, sodium ethoxide, sodium methoxide. , Butyllithium, phenyllithium, lithium diisopropylamide and the like. In the conductive polymer of the present invention, the cation contained in the base used in the deprotonation process becomes a counterion of the anion structure, and this cation is obtained by immersing or dissolving the polymer in another cation-containing solution. , Ion exchange is possible.

【0008】本発明の導電性重合体が、窒素原子に結合
する水素原子を塩基で脱プロトン化して得られるアニオ
ン構造を含む共役結合鎖を重合体の一部として有する場
合の、残りの構成成分は特に限定されないが、具体的な
例としてはポリエステル、ポリアミド、ポリイミド、ポ
リアクリレート、ポリメタクリレート、ポリスチレン、
ポリエーテル、メチン等が挙げられる。窒素原子に結合
する水素原子を塩基で脱プロトン化して得られるアニオ
ン構造を含む共役結合鎖と、残りの構成成分との存在状
態としては、ブロック共重合、グラフト共重合、ランダ
ム共重合等が挙げられる。以下に実施例を示し、本発明
をより具体的に述べる。
When the conductive polymer of the present invention has a conjugated bond chain containing an anion structure obtained by deprotonating a hydrogen atom bonded to a nitrogen atom with a base as a part of the polymer, the remaining components Is not particularly limited, but specific examples include polyester, polyamide, polyimide, polyacrylate, polymethacrylate, polystyrene,
Examples include polyether and methine. The presence state of a conjugated bond chain containing an anion structure obtained by deprotonating a hydrogen atom bonded to a nitrogen atom with a base, and the existence state of the remaining constituent components include block copolymerization, graft copolymerization, random copolymerization and the like. To be Hereinafter, the present invention will be described more specifically with reference to examples.

【0009】(実施例−1)インドール(100m
g)、テトラn−ブチルアンモニウムパークロレート
(1.2g)をアセトニトリル(30ml)に溶解し、
電解液を調製した。この電解液を用いて、ネサガラスを
陽極、白金を陰極として定電位法(1.2V対銀/塩化
銀電極)で電解重合を行ったところ、陽極板上に黒色の
フィルム状生成物が得られた。次に上記電解液と同濃度
のテトラn−ブチルアンモニウムパークロレート/アセ
トニトリル溶液中で脱ドーピングを行い、その後電極よ
りフィルムを剥離し、すり鉢を用いて粉末状に粉砕し
た。予めモレキュラーシーブス、水素化カルシウムで乾
燥、蒸留したジメチルスルホキシド(50ml)にカリ
ウムt−ブトキシド(150mg)を溶解した。この塩
基溶液に上記の脱ドーピングしたポリインドール粉末を
添加し、窒素雰囲気下、50度で3時間攪拌した。ポリ
インドール粉末をろ過し、ジメチルスルホキシド引き続
いてアセトンで洗浄し、真空乾燥した。この生成物の元
素分析を原子吸光によって行ったところ、インドールモ
ノマー単位に対して20%のカリウムカチオンが検出さ
れた。また通常の元素分析法によっては、塩素原子は全
く検出されなかった。またその導電率を測定したとこ
ろ、12S/cmであり、その値は生成物を空気中で1
ケ月放置した後も、9S/cmにまで低下しただけであ
った。
(Example-1) Indole (100 m
g), tetra-n-butylammonium perchlorate (1.2 g) is dissolved in acetonitrile (30 ml),
An electrolytic solution was prepared. Using this electrolytic solution, electrolytic polymerization was carried out by a potentiostatic method (1.2 V vs. silver / silver chloride electrode) using Nesa glass as an anode and platinum as a cathode, and a black film-like product was obtained on the anode plate. It was Next, dedoping was performed in a tetra-n-butylammonium perchlorate / acetonitrile solution having the same concentration as that of the above electrolytic solution, and then the film was peeled off from the electrode and pulverized into a powder using a mortar. Potassium t-butoxide (150 mg) was dissolved in dimethyl sulfoxide (50 ml) which had been previously dried over molecular sieves and calcium hydride and distilled. The above dedoped polyindole powder was added to this base solution, and the mixture was stirred at 50 ° C. for 3 hours in a nitrogen atmosphere. The polyindole powder was filtered, washed with dimethylsulfoxide followed by acetone and vacuum dried. When the elemental analysis of this product was performed by atomic absorption, 20% of potassium cation was detected with respect to the indole monomer unit. Further, no chlorine atom was detected by the usual elemental analysis method. The conductivity was measured to be 12 S / cm, which was 1 in the air.
Even after being left for a month, it only dropped to 9 S / cm.

【0010】(実施例−2)実施例−1で用いたインド
ールの代わりにイソインドールを用いて同様の実験を行
ったところ、最終的に得られた生成物は、イソインドー
ルモノマー単位に対して15%のカリウムカチオンを含
んでいることが原子吸光より明らかになった。またその
導電率を測定したところ、3S/cmであり、その値は
生成物を空気中で1ケ月放置した後も、1S/cmにま
で低下しただけであった。
Example-2 A similar experiment was conducted using isoindole instead of the indole used in Example-1, and the product finally obtained was based on isoindole monomer units. It was revealed by atomic absorption that it contained 15% of potassium cation. Further, the conductivity was measured and found to be 3 S / cm, which was only lowered to 1 S / cm even after the product was left in the air for 1 month.

【0011】(実施例−3)実施例−1で用いたインド
ールの代わりにピロロ〔3,4−c〕ピリジンを用いて
同様の実験を行ったところ、最終的に得られた生成物
は、ピロロ〔3,4−c〕ピリジンモノマー単位に対し
て23%のカリウムカチオンを含んでいることが原子吸
光より明らかになった。またその導電率を測定したとこ
ろ、20S/cmであり、その値は生成物を空気中で1
ケ月放置した後も変化しなかった。
Example 3 A similar experiment was carried out using pyrrolo [3,4-c] pyridine in place of the indole used in Example 1, and the product finally obtained was Atomic absorption revealed that it contained 23% of potassium cations based on the pyrrolo [3,4-c] pyridine monomer unit. The conductivity was measured and found to be 20 S / cm, which was 1 in the air.
It remained unchanged after being left for a month.

【0012】[0012]

【発明の効果】本発明により、n型ドーピング状態でも
優れた安定性を有する導電性重合体が得られた。本発明
の導電性重合体は、導電材料、電極材料、表示材料、電
磁波遮蔽材料等としての利用が可能である。
According to the present invention, a conductive polymer having excellent stability even in an n-type doped state was obtained. The conductive polymer of the present invention can be used as a conductive material, an electrode material, a display material, an electromagnetic wave shielding material and the like.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 窒素原子に結合する水素原子を塩基で脱
プロトン化して得られるアニオン構造を含む共役結合鎖
を、重合体の一部又は全部として有することを特徴とす
る導電性重合体。
1. A conductive polymer having a conjugated bond chain containing an anion structure obtained by deprotonating a hydrogen atom bonded to a nitrogen atom with a base, as a part or all of the polymer.
【請求項2】 窒素原子が複素環化合物構造の構成原子
であることを特徴とする請求項1記載の導電性重合体。
2. The conductive polymer according to claim 1, wherein the nitrogen atom is a constituent atom of the heterocyclic compound structure.
JP28303792A 1992-10-21 1992-10-21 Conductive polymer Pending JPH06136134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28303792A JPH06136134A (en) 1992-10-21 1992-10-21 Conductive polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28303792A JPH06136134A (en) 1992-10-21 1992-10-21 Conductive polymer

Publications (1)

Publication Number Publication Date
JPH06136134A true JPH06136134A (en) 1994-05-17

Family

ID=17660404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28303792A Pending JPH06136134A (en) 1992-10-21 1992-10-21 Conductive polymer

Country Status (1)

Country Link
JP (1) JPH06136134A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8630515B2 (en) 2009-11-06 2014-01-14 Baker Hughes Incorporated Rotated single or multicore optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8630515B2 (en) 2009-11-06 2014-01-14 Baker Hughes Incorporated Rotated single or multicore optical fiber

Similar Documents

Publication Publication Date Title
Malinauskas Self-doped polyanilines
Kumar et al. Advances in conductive polymers
CA1318063C (en) Highly conductive polymer composition and process for producing the same
Reynolds et al. Electrically conductive polymers
Kim et al. Polymer electrolytes prepared by polymerizing mixtures of polymerizable PEO-oligomers, copolymer of PVDC and poly (acrylonitrile), and lithium triflate
Sundaresan et al. Electroactive copolymers of pyrrole containing covalently bound dopant ions: poly {pyrrole-co-[3-(pyrrol-1-yl) propanesulphonate]}
JPH09120709A (en) Highpolymer conductor having self-doping function and manufacture of highpolymer conductor
Pei et al. Poly [3-(4-octylphenyl) thiophene], a new processible conducting polymer
Kang et al. XPS studies of proton modification and some anion exchange processes in polypyrrole
US4691005A (en) Thiophene derivative polymer, polymer composition, and methods for manufacture thereof
Saito et al. Electrochemical and chemical preparation of linear. pi.-conjugated poly (quinoline-2, 6-diyl) using nickel complexes and electrochemical properties of the polymer
Koval'chuk et al. Synthesis and properties of the polyanisidines
JPH01158067A (en) Conductive polymer composition and production thereof
Kwak et al. Ionic polyacetylene with aromatic functional groups: synthesis and properties
Trivedi Dopant induced solubilization of conducting polyaniline
Qiu et al. Poly [3, 6‐(carbaz‐9‐yl) propanesulfonate]: A Self‐Doped Polymer with Both Cation and Anion Exchange Properties
JPH06136134A (en) Conductive polymer
Choi et al. Electrochemical characteristics of dodecylbenzene sulfonic acid-doped polyaniline in aqueous solutions
Bock et al. Electron transfer and ion pairing. 12.[(Benzosemiquinone-18-crown-6). bul.-Li+ Na+]. bul.+: a paramagnetic triple ion with two different counter cations
Sivakumar et al. Characterization of poly (N-methylaniline) as a cathode active material in aqueous rechargeable batteries
Han et al. Electropolymerization of polypyrrole on PFIL–PSS-modified electrodes without added support electrolytes
Kanbara et al. Preparation of new redox-active quaternized poly (quinolinium) and poly (isoquinolinium) salts showing viologen-like redox behavior
Chan et al. Poly (4-aminobiphenyl): chemical synthesis, characterization studies and comparison with conductive electropolymerized samples
JP3837602B2 (en) Method for producing conductive polymer having excellent stability
JPH0678493B2 (en) Method for producing conductive polymer composition