JPH06131658A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPH06131658A
JPH06131658A JP28328092A JP28328092A JPH06131658A JP H06131658 A JPH06131658 A JP H06131658A JP 28328092 A JP28328092 A JP 28328092A JP 28328092 A JP28328092 A JP 28328092A JP H06131658 A JPH06131658 A JP H06131658A
Authority
JP
Japan
Prior art keywords
recording medium
magnetic
magnetic recording
plasma treatment
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28328092A
Other languages
Japanese (ja)
Inventor
Akira Kochiyama
彰 河内山
Toshiki Shimamura
敏規 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP28328092A priority Critical patent/JPH06131658A/en
Publication of JPH06131658A publication Critical patent/JPH06131658A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a magnetic recording medium excellent in magnetic characteristics and to form a guard band without leaving ruggedness on the surface. CONSTITUTION:A magnetic thin film is subjected to oxygen plasma treatment under the condition of 5.04X10<7>-1.01X10<8>w.V.Pa.s (plasma treatment with an ECR ion source) or 7.61X10<7>-2.67X10<8>w.Pa.s/m<2> in a barrel type reaction chamber). A magnetic thin film is made selectively nonmagnetic by oxygen plasma treatment under the condition of >=1.02X10<8>w.Pa.s/m<2> and the objective magnetic recording medium with the resulting thin film as a guard band is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気記録媒体特に面内
方向記録を行うハードディスクに適用して好適な合金系
磁性層を有する磁気記録媒体の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a magnetic recording medium, particularly a magnetic recording medium having an alloy magnetic layer, which is suitable for application to a hard disk for in-plane recording.

【0002】[0002]

【従来の技術】従来より、磁気記録媒体においては、よ
り一層の高記録密度化が強く要求されている。このよう
に高い面記録密度を実現するためには、線記録密度のみ
ならず、トラック密度も高くする必要があり、磁気記録
媒体,磁気ヘッド及びそれらの駆動機構等の開発または
改良に多大な努力が払われてきた。
2. Description of the Related Art There has been a strong demand for higher recording density in magnetic recording media. In order to achieve such a high areal recording density, it is necessary to increase not only the linear recording density but also the track density, and a great effort is made to develop or improve the magnetic recording medium, the magnetic head and their driving mechanism. Has been paid.

【0003】ハードディスクとして用いる磁気記録媒体
としては、線記録密度の向上のために磁気特性に優れ化
学的或いは熱的に安定であることなどの特性が要求さ
れ、これに応える材料として、良好な磁気特性が得られ
且つ高耐久性を有するCo−Pt系磁性薄膜が注目され
ている。このCo−Pt系の薄膜媒体においては低温成
膜(無基板加熱)が可能であること、大きな出力が得ら
れること等の利点がある反面、ノイズが大きいという問
題点がある。
A magnetic recording medium used as a hard disk is required to have characteristics such as excellent magnetic characteristics and being chemically or thermally stable in order to improve the linear recording density. Co-Pt based magnetic thin films, which have characteristics and have high durability, are attracting attention. This Co-Pt-based thin film medium has advantages that it can be formed at a low temperature (heating of the substrate without heating) and that a large output can be obtained, but it has a problem of large noise.

【0004】一方、トラック密度の向上のためにも種々
の研究がなされてきた。一般に、トラック幅が狭くなる
と記録トラック間に設けられたガードバンドの状態の影
響をより強く受けるようになるので、この影響を避ける
ために記録トラック分離型(ディスクリートトラック
型)の磁気記録媒体が提案されるようになった。
On the other hand, various studies have been conducted to improve the track density. Generally, when the track width becomes narrower, the influence of the state of the guard band provided between the recording tracks becomes stronger. Therefore, in order to avoid this influence, a recording track separation type (discrete track type) magnetic recording medium is proposed. Came to be.

【0005】しかし、上記記録トラック分離型の磁気記
録媒体は、スパッタ成膜後の磁性膜の一部をエッチング
除去したり、基板上に予め凹凸を形成した後に成膜を行
う等の方法で製造されるため、上述の磁気記録媒体表面
には凹凸が残ってしまうため、スライダーの浮上特性に
影響を与えたり、信頼性が確保できない等の問題があ
る。
However, the above-mentioned recording track separation type magnetic recording medium is manufactured by a method in which a part of the magnetic film after sputtering film formation is removed by etching, or the film is formed after irregularities are previously formed on the substrate. As a result, unevenness remains on the surface of the magnetic recording medium described above, which causes problems such as affecting the flying characteristics of the slider and ensuring reliability.

【0006】[0006]

【発明が解決しようとする課題】そこで本発明は、かか
る実情に鑑みて提案されたものであり、線記録密度の向
上のためノイズの低減を図って磁気特性に優れた磁気記
録媒体を製造する方法を提供することを目的とする。ま
た、本発明は、トラック記録密度を向上のためガードバ
ンドを設けても表面に凹凸が残らない磁気記録媒体の製
造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been proposed in view of the above circumstances, and in order to improve the linear recording density, noise is reduced to manufacture a magnetic recording medium having excellent magnetic characteristics. The purpose is to provide a method. It is another object of the present invention to provide a method for manufacturing a magnetic recording medium in which unevenness does not remain on the surface even if a guard band is provided for improving track recording density.

【0007】[0007]

【課題を解決するための手段】本発明等は、上述の目的
を達成せんものと鋭意検討を重ねた結果、適正な処理条
件で酸素プラズマ処理することによって、ノイズの低減
を図って磁気特性に優れた磁気記録媒体を製造すること
も、表面に凹凸が残さずガードバンドを設けることも可
能であることを見い出し、本発明を完成するに至った。
Means for Solving the Problems The present invention has been earnestly studied to achieve the above-mentioned object, and as a result, oxygen plasma treatment has been performed under appropriate treatment conditions to reduce noise and improve magnetic characteristics. It was found that it is possible to manufacture an excellent magnetic recording medium and to provide a guard band without leaving unevenness on the surface, and completed the present invention.

【0008】即ち、本願第1の発明は、非磁性の基板上
に形成された磁性薄膜に対して、酸素プラズマ処理を施
すことを特徴とするものである。このとき、ECRイオ
ン源により生じるプラズマを利用し、処理条件が5.0
4×107 〜1.01×108 W・V・Pa・sなる処
理を施すことが好ましい。又は、バレル型の反応室で酸
素プラズマ処理を行い、処理条件が7.61×107
2.67×108 W・Pa・s/m2 なる処理を施すこ
とが好ましい。
That is, the first invention of the present application is characterized in that an oxygen plasma treatment is applied to a magnetic thin film formed on a non-magnetic substrate. At this time, the plasma generated by the ECR ion source is used, and the processing condition is 5.0.
It is preferable to perform a treatment of 4 × 10 7 to 1.01 × 10 8 W · V · Pa · s. Alternatively, the oxygen plasma treatment is performed in a barrel-type reaction chamber, and the treatment condition is 7.61 × 10 7 to
It is preferable to perform a treatment of 2.67 × 10 8 W · Pa · s / m 2 .

【0009】本発明においては、磁性薄膜に対して上記
の条件で処理を施すことにより、保磁力の増加,S/N
値の向上及びノイズの低減を図ることができる。
In the present invention, the coercive force is increased and the S / N ratio is increased by treating the magnetic thin film under the above conditions.
It is possible to improve the value and reduce the noise.

【0010】なお、本発明は、非磁性の基板上に下地層
とCo−Pt系磁性薄膜が形成されたハードディスク用
の磁気記録媒体を製造する方法として提案されたが、磁
性薄膜の材料としては、Co−Pt膜の他に、Co−N
i膜,Co−Ni−P膜や、Au,Ag,Pd,Rh,
Re,Ir等のうち1種類以上とCoよりなる合金膜
等、Co−Pd膜,Co−Pt−Pd膜等が使用可能で
ある。
The present invention has been proposed as a method for manufacturing a magnetic recording medium for a hard disk in which an underlayer and a Co--Pt type magnetic thin film are formed on a non-magnetic substrate. , Co-Pt film, Co-N
i film, Co-Ni-P film, Au, Ag, Pd, Rh,
An alloy film or the like made of Co and at least one of Re and Ir, a Co-Pd film, a Co-Pt-Pd film, and the like can be used.

【0011】また、本願第2の発明は、非磁性の基板上
に形成された磁性薄膜に対して、所定パターンに耐酸素
プラズマレジストを塗布した後、酸素プラズマ処理を施
して前記磁性薄膜を選択的に非磁性化することを特徴と
するものである。このとき、酸素プラズマ処理の処理条
件は1.02×108 W・Pa・s/m 2 以上であるこ
とが好ましい。
The second invention of the present application is a non-magnetic substrate.
The magnetic thin film formed on the
After applying the plasma resist, apply oxygen plasma treatment.
And selectively demagnetize the magnetic thin film.
To do. At this time, the treatment condition of oxygen plasma treatment
The case is 1.02 × 108W ・ Pa ・ s / m 2That's all
And are preferred.

【0012】これにより、レジストでマスクされなかっ
た部分が非磁性となるため、この部分をガードバンドと
して用いることができ、磁気記録媒体表面に凹凸を残す
ことなく記録トラック分離型の磁気記録媒体とすること
ができる。
As a result, the portion not masked by the resist becomes non-magnetic, so that this portion can be used as a guard band, and a magnetic recording medium of the recording track separation type can be obtained without leaving unevenness on the surface of the magnetic recording medium. can do.

【0013】本発明を適応する磁気記録媒体としては、
プラズマ処理によって非磁性化する磁性層を有するもの
であれば特に限定されるものではないが、磁性薄膜の材
料を例示するならば、Co−Pt膜の他に、Co−Ni
膜,Co−Pt−Pd膜等が使用可能である。
A magnetic recording medium to which the present invention is applied includes
The material is not particularly limited as long as it has a magnetic layer that is demagnetized by plasma treatment. However, as an example of the material of the magnetic thin film, a Co—Pt film and a Co—Ni film can be used.
A film, a Co-Pt-Pd film or the like can be used.

【0014】耐酸素プラズマレジストとしては、酸素プ
ラズマ処理によって磁性薄膜が酸化することを防止でき
る材料であれば特に限定されない。例えば、シリコン入
りの樹脂等が用いることができる。
The oxygen resistant plasma resist is not particularly limited as long as it is a material capable of preventing the magnetic thin film from being oxidized by the oxygen plasma treatment. For example, a resin containing silicon can be used.

【0015】ガードバンド部を作製する方法の変形とし
て、非磁性であった材料を酸素プラズマ処理を施すこと
によって強磁性化する、つまり記録部を作製する方法等
も考えられる。この場合に用いられる材料としては、C
r等が挙げられる。Crは非磁性体であるが、酸素プラ
ズマ処理によってCrO2 となり磁性体となる材料であ
る。
As a modification of the method of producing the guard band portion, a method of making a nonmagnetic material ferromagnetic by applying oxygen plasma treatment, that is, a method of producing a recording portion, etc. can be considered. The material used in this case is C
r and the like. Although Cr is a non-magnetic material, it is a material that becomes CrO 2 and becomes a magnetic material by oxygen plasma treatment.

【0016】[0016]

【作用】本願第1の発明においては、Co−Pt系磁性
薄膜に対して、適正な処理条件で酸素プラズマ処理を施
すことによって、膜表面にCoの酸化物が形成されるた
め、膜の硬度が増すとともに、自己潤滑効果が発揮さ
れ、摩擦係数が下がる。これが低ノイズ化につながる。
In the first invention of the present application, the Co—Pt-based magnetic thin film is subjected to oxygen plasma treatment under appropriate treatment conditions to form Co oxide on the surface of the film. As a result, the self-lubricating effect is exerted and the friction coefficient is lowered. This leads to low noise.

【0017】また、このCo酸化物形成のため、膜の耐
蝕性が増し、磁気記録媒体の信頼性を向上させることに
なる。
Further, due to the formation of the Co oxide, the corrosion resistance of the film is increased and the reliability of the magnetic recording medium is improved.

【0018】本願第2の発明においては、耐酸素プラズ
マレジストでパターニングしてガードバンドを作製する
ことにより精密なトラック形成が可能である。また、酸
素プラズマ処理によってガードバンドを作製すると、磁
気記録面上に凹凸が存在しないので、スライダーの浮上
特性に影響を与えることがない。さらに、ガードバンク
は酸化物となるため、膜の硬度が増し耐久性が増す。
In the second invention of the present application, precise track formation is possible by forming a guard band by patterning with an oxygen-resistant plasma resist. Further, when the guard band is produced by the oxygen plasma treatment, no unevenness exists on the magnetic recording surface, so that the flying characteristics of the slider are not affected. Furthermore, since the guard bank becomes an oxide, the hardness of the film increases and the durability increases.

【0019】[0019]

【実施例】以下、本発明を適用した具体的な実施例につ
いて説明するが、本発明はこの実施例に限定されるもの
ではないことは言うまでもない。
EXAMPLES Specific examples to which the present invention is applied will be described below, but it goes without saying that the present invention is not limited to these examples.

【0020】実験1 先ず、磁性薄膜に対して種々の条件で酸素プラズマ処理
を施し、磁気特性の変化を調べた。Co−Pt系磁性薄
膜をスパッタ成膜した磁気記録媒体を作製し、以下のよ
うにして酸素プラズマ処理を行った。
Experiment 1 First, the magnetic thin film was subjected to oxygen plasma treatment under various conditions, and changes in magnetic characteristics were investigated. A magnetic recording medium having a Co—Pt magnetic thin film formed by sputtering was prepared, and oxygen plasma treatment was performed as follows.

【0021】バレル型の反応室で発生させた酸素プラズ
マとプラズマ強度を定量化できる、電子サイクロトロン
共鳴(ECR)イオン源で生ずるイオンシャワーを利用
し、スパッタ成膜後のCo−Pt系磁性膜の磁気記録媒
体に対して、マイクロ波電力350W、加速電圧400
V、サンプルホルダー傾斜角度45度なる条件で酸素プ
ラズマ処理を施した。
The oxygen plasma generated in the barrel type reaction chamber and the ion shower generated by the electron cyclotron resonance (ECR) ion source capable of quantifying the plasma intensity are utilized, and the Co--Pt based magnetic film after sputtering is formed. For magnetic recording media, microwave power 350 W, acceleration voltage 400
Oxygen plasma treatment was performed under the conditions of V and sample holder inclination angle of 45 degrees.

【0022】図1は上述のようにプラズマ処理された磁
気記録媒体について、プラズマ処理時間と保持力の関係
を示したものである。図より、酸素プラズマ処理により
保磁力Hcが増大していることが判った。
FIG. 1 shows the relationship between the plasma processing time and the coercive force of the magnetic recording medium that has been plasma-processed as described above. From the figure, it was found that the coercive force Hc was increased by the oxygen plasma treatment.

【0023】さらに、図1に示した磁気記録媒体と同じ
サンプルを用いて、酸素プラズマ処理の効果を電磁変換
特性の変化で表す。図2はプラズマ処理時間に対して、
記録波長1μmの記録を行ったときのS/N値とノイズ
強度とを示したものである。図中、○印はS/N値を示
し、□印はノイズ強度を示しており、これより、プラズ
マ処理によってノイズの低減が図られ、S/N値が極度
に向上していることが判る。
Further, using the same sample as the magnetic recording medium shown in FIG. 1, the effect of oxygen plasma treatment is represented by the change in electromagnetic conversion characteristics. Figure 2 shows the plasma processing time
It shows the S / N value and the noise intensity when recording is performed at a recording wavelength of 1 μm. In the figure, the ◯ mark indicates the S / N value, and the □ mark indicates the noise intensity. From this, it can be seen that the noise is reduced by the plasma treatment and the S / N value is extremely improved. .

【0024】図1,図2において、処理時間5〜10分
の範囲で本発明の効果が認められる。このため、ECR
イオン源で生じるプラズマを利用する場合の処理条件範
囲は5.04×107 〜1.01×108 W・V・Pa
・sとなる。
1 and 2, the effect of the present invention can be recognized within the processing time range of 5 to 10 minutes. Therefore, the ECR
When plasma generated by the ion source is used, the processing condition range is 5.04 × 10 7 to 1.01 × 10 8 W · V · Pa.
・ It becomes s.

【0025】また、同様なプラズマ処理の効果は、バレ
ル型反応室を用いて行った酸素プラズマ処理においても
確認された。スパッタ成膜後のCo−Pt系磁性膜の磁
気記録媒体を内径約200mm長さ300mmのバレル
反応室に入れ、133Paの酸素雰囲気中,投入RF電
力200Wの条件下で4分間酸素プラズマ処理を行っ
た。この処理の前後において、保磁力Hc,ノイズ強
度,S/N値は表1に示すように変化した。
Further, the similar effect of the plasma treatment was also confirmed in the oxygen plasma treatment performed using the barrel type reaction chamber. The magnetic recording medium of the Co-Pt magnetic film after the sputter film formation is put in a barrel reaction chamber having an inner diameter of about 200 mm and a length of 300 mm, and oxygen plasma treatment is performed for 4 minutes in an oxygen atmosphere of 133 Pa under a condition of an RF power of 200 W. It was Before and after this treatment, the coercive force Hc, noise intensity, and S / N value changed as shown in Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】上述のような条件下でバレル型の反応室を
用いて処理を行う場合は1.5〜5.25分の範囲で効
果が確認される。このため、この場合の処理条件範囲は
7.61×107 〜2.67×108 W・Pa・s/m
2 となる。
When the treatment is carried out using the barrel type reaction chamber under the above-mentioned conditions, the effect is confirmed within the range of 1.5 to 5.25 minutes. Therefore, the processing condition range in this case is 7.61 × 10 7 to 2.67 × 10 8 W · Pa · s / m.
It becomes 2 .

【0028】図3,4,5はそれぞれの酸素プラズマ処
理前、ECRによる酸素プラズマ処理後、バレル型によ
る酸素プラズマ処理後の各磁気記録媒体について、1μ
mの波長で記録を行ったときの変調ノイズスペクトルを
示したものである。プラズマ処理前の磁気記録媒体に見
えている低周波域での変調ノイズがプラズマ処理後では
両処理法によるものとも極めて小さくなっており、シス
テムノイズと同程度にまで低減されている。
FIGS. 3, 4 and 5 show 1 μm of each magnetic recording medium before the oxygen plasma treatment, after the ECR oxygen plasma treatment, and after the barrel type oxygen plasma treatment.
It shows a modulation noise spectrum when recording is performed at a wavelength of m. The modulation noise in the low frequency range, which appears in the magnetic recording medium before the plasma processing, is extremely small after the plasma processing by both processing methods, and is reduced to the same level as the system noise.

【0029】以上のように、Co−Pt系磁性薄膜はあ
る範囲の処理条件で酸素プラズマ処理することによって
磁気特性が向上していることが判る。
As described above, it is understood that the magnetic characteristics of the Co—Pt magnetic thin film are improved by the oxygen plasma treatment under a certain range of treatment conditions.

【0030】さらに、このような酸素プラズマ処理は、
平行平板型のプラズマ反応室でも可能であるため、図6
に示すような装置配置により量産化に際しても適応可能
な技術となり得る。
Further, such oxygen plasma treatment is
Since it is also possible to use a parallel plate type plasma reaction chamber, FIG.
The device arrangement as shown in FIG. 2 may be a technique that can be applied even in mass production.

【0031】実験2 酸素プラズマ処理は、処理条件によっては、上記のよう
な磁性薄膜を非磁性化することも可能である。以下に、
酸素プラズマ処理によって磁性薄膜を選択的に非磁性化
してガードバンドを設けた磁気記録媒体について説明す
る。
Experiment 2 In the oxygen plasma treatment, the above magnetic thin film can be made non-magnetic depending on the treatment conditions. less than,
A magnetic recording medium provided with a guard band by selectively demagnetizing a magnetic thin film by oxygen plasma treatment will be described.

【0032】先ず、図7に示すように、基板1上に下地
層2とCo−Pt系磁性薄膜3がスパッタ成膜された上
に、耐酸素プラズマレジスト4を所望のパターンに塗布
し、記録部分として残したい部分をマスクした。その
後、バレル型反応室に入れ酸素雰囲気中でプラズマ処理
を行うと、図8のように、磁性薄膜のマスクされていな
い部分3aが酸化し非磁性化した。
First, as shown in FIG. 7, an underlayer 2 and a Co—Pt magnetic thin film 3 are sputter-deposited on a substrate 1, and an oxygen-resistant plasma resist 4 is applied in a desired pattern for recording. I masked the part that I want to leave as a part. After that, when placed in a barrel-type reaction chamber and subjected to plasma treatment in an oxygen atmosphere, the unmasked portion 3a of the magnetic thin film was oxidized and made non-magnetic, as shown in FIG.

【0033】さらに、上記プラズマ処理の終わった磁気
記録媒体上のレジスト4を除去すると、図9に示すよう
に、磁性薄膜3は非磁性化した部分3aと強磁性のまま
残された部分3bとに分かれた状態となった。
Further, when the resist 4 on the magnetic recording medium after the plasma treatment is removed, as shown in FIG. 9, the magnetic thin film 3 has a demagnetized portion 3a and a portion 3b which remains ferromagnetic. It was divided into two parts.

【0034】このようにして作製された磁気記録媒体に
おいて、上記非磁性化した部分3aはガードバンドであ
り、強磁性のまま残された部分3bは記録部分である。
よって、トラック分離型でありながら、磁気記録媒体表
面に凹凸のない磁気記録媒体が作製された。
In the magnetic recording medium thus manufactured, the demagnetized portion 3a is a guard band, and the portion 3b left as ferromagnetic is a recording portion.
Therefore, a magnetic recording medium, which is a track separation type and has no irregularities on the surface of the magnetic recording medium, was manufactured.

【0035】図10は、Co−Pt系磁性薄膜を成膜し
た磁気記録媒体に対して、内径約200mm長さ300
mmのバレル反応室内で133Paの酸素雰囲気中で投
入RF電力200Wの条件下でプラズマ処理を施した場
合の飽和磁化の変化を処理時間に対して示したものであ
る。これにより、上記条件下の酸素プラズマ処理を7分
以上施すことによって、Co−Pt系磁性薄膜が完全に
非磁性化できることが判る。
FIG. 10 shows an inner diameter of about 200 mm and a length of 300 for a magnetic recording medium on which a Co—Pt magnetic thin film is formed.
3 shows changes in saturation magnetization with respect to processing time when plasma processing was performed in an oxygen atmosphere of 133 Pa in a barrel reaction chamber of mm under conditions of an input RF power of 200 W. This shows that the Co—Pt magnetic thin film can be completely demagnetized by performing the oxygen plasma treatment for 7 minutes or more under the above conditions.

【0036】さらに表2に、上記磁性薄膜を成膜した磁
気記録媒体に対して、種々の投入電力,酸素ガス圧にお
いてプラズマ処理を施したとき、上記磁性薄膜を非磁性
化するのに要した時間を示す。
Further, in Table 2, it was necessary to demagnetize the magnetic thin film when the magnetic recording medium on which the magnetic thin film was formed was subjected to plasma treatment at various input powers and oxygen gas pressures. Indicates the time.

【0037】[0037]

【表2】 [Table 2]

【0038】これより、投入電力とガス圧が大きいほ
ど、処理時間は短くてすみ、投入電力とガス圧と処理時
間との積も小さくなることが判る。上記投入電力とガス
圧と処理時間との積の値は、投入電力400W、ガス圧
266Paのとき3.192×106 W・Pa・sとな
り、この値をバレル反応室の断面積0.0313m2
割った1.02×108 W・Pa・s/m2 を必要最小
処理条件とした。
From this, it is understood that the larger the input power and the gas pressure, the shorter the processing time, and the smaller the product of the input power, the gas pressure and the processing time. The value of the product of the input power, the gas pressure, and the processing time was 3.192 × 10 6 W · Pa · s when the input power was 400 W and the gas pressure was 266 Pa, and this value was 0.0313 m in the cross-sectional area of the barrel reaction chamber. The necessary minimum treatment condition was 1.02 × 10 8 W · Pa · s / m 2 divided by 2 .

【0039】なお、磁性薄膜を非磁性化する場合には、
磁気特性を向上させる場合に比較して、高い投入電力で
短時間に処理することが好ましい。
When demagnetizing the magnetic thin film,
As compared with the case of improving the magnetic characteristics, it is preferable to perform the treatment with a high input power in a short time.

【0040】以上のような処理条件により酸素プラズマ
処理を施すことによって、完全に非磁性化したガードバ
ンド部が作製されたことになり、記録トラック分離型の
磁気記録媒体が製造できた。
By performing the oxygen plasma treatment under the above treatment conditions, a completely non-magnetized guard band portion was produced, and a recording track separated type magnetic recording medium could be produced.

【0041】[0041]

【発明の効果】以上の説明からも明らかなように、Co
−Pt膜等の磁性薄膜を、バレル型の反応室を用いて処
理を行う場合は7.61×107 〜2.67×108
・Pa・s/m2 なる処理条件で酸素プラズマ処理し、
ECRイオン源で生じるプラズマを利用する場合は5.
04×107 〜1.01×108 W・V・Pa・sなる
処理条件で酸素プラズマ処理すると、保磁力の向上,S
/N値の増加及びノイズの低減を図ることができ、線密
度の高い磁気記録媒体とすることができる。
As is clear from the above description, Co
-7.61 x 10 7 to 2.67 x 10 8 W when a magnetic thin film such as a Pt film is processed using a barrel type reaction chamber.
・ Oxygen plasma treatment under the treatment condition of Pa · s / m 2 ,
When using the plasma generated by the ECR ion source, 5.
When the oxygen plasma treatment is performed under the treatment condition of 04 × 10 7 to 1.01 × 10 8 W · V · Pa · s, the coercive force is improved and S
The / N value can be increased and noise can be reduced, and a magnetic recording medium having a high linear density can be obtained.

【0042】また、1.02×108 W・Pa・s/m
2 以上の処理条件で酸素プラズマ処理し磁性薄膜を選択
的に非磁性化することによって、磁気記録媒体表面に凹
凸を残すことなくガードバンドを形成することができ
る。よって、精密なトラック形成が可能であり、トラッ
ク密度の高い磁気記録媒体とすることができるうえに、
スライダーの浮上特性に影響を与えない信頼性の高い磁
気記録媒体とすることができる。
Further, 1.02 × 10 8 W · Pa · s / m
By performing oxygen plasma treatment under two or more treatment conditions to selectively demagnetize the magnetic thin film, a guard band can be formed without leaving unevenness on the surface of the magnetic recording medium. Therefore, a precise track can be formed, and a magnetic recording medium having a high track density can be obtained.
A highly reliable magnetic recording medium that does not affect the flying characteristics of the slider can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】酸素プラズマ処理時間と保磁力との関係を示す
特性図である。
FIG. 1 is a characteristic diagram showing the relationship between oxygen plasma treatment time and coercive force.

【図2】酸素プラズマ処理時間に対するS/N値とノイ
ズ強度の変化を示す特性図である。
FIG. 2 is a characteristic diagram showing changes in S / N value and noise intensity with respect to oxygen plasma treatment time.

【図3】酸素プラズマ処理前の変調ノイズスペクトルを
示す特性図である。
FIG. 3 is a characteristic diagram showing a modulation noise spectrum before oxygen plasma treatment.

【図4】酸素プラズマ処理後の変調ノイズスペクトルを
示す特性図である。
FIG. 4 is a characteristic diagram showing a modulation noise spectrum after oxygen plasma treatment.

【図5】酸素プラズマ処理後の変調ノイズスペクトルを
示す特性図である。
FIG. 5 is a characteristic diagram showing a modulation noise spectrum after oxygen plasma treatment.

【図6】平行平板型のプラズマ反応室の構造を概略的に
示す模式図である。
FIG. 6 is a schematic view schematically showing the structure of a parallel plate type plasma reaction chamber.

【図7】磁性薄膜にガードバンドを形成するための工程
を順に示すものであり、耐酸素プラズマレジストを塗布
する工程を模式的に示す断面図である。
FIG. 7 is a cross-sectional view showing the steps for forming a guard band on a magnetic thin film in order, and schematically showing the step of applying an oxygen-resistant plasma resist.

【図8】酸素プラズマ処理により磁性薄膜の一部が非磁
性化する工程を模式的に示す断面図である。
FIG. 8 is a cross-sectional view schematically showing a step of demagnetizing a part of a magnetic thin film by oxygen plasma treatment.

【図9】耐酸素プラズマレジストが取り除かれる工程を
模式的に示す断面図である。
FIG. 9 is a cross-sectional view schematically showing a step of removing the oxygen-resistant plasma resist.

【図10】酸素プラズマ処理時間と飽和磁化との関係を
示す特性図である。
FIG. 10 is a characteristic diagram showing a relationship between oxygen plasma treatment time and saturation magnetization.

【符号の説明】 1・・・基板 2・・・下地層 3・・・磁性薄膜 4・・・耐酸素プラズマレジスト[Explanation of symbols] 1 ... Substrate 2 ... Underlayer 3 ... Magnetic thin film 4 ... Oxygen-resistant plasma resist

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 非磁性の基板上に形成された磁性薄膜に
対して、酸素プラズマ処理を施すことを特徴とする磁気
記録媒体の製造方法。
1. A method of manufacturing a magnetic recording medium, which comprises subjecting a magnetic thin film formed on a non-magnetic substrate to oxygen plasma treatment.
【請求項2】 ECRイオン源により生じるプラズマを
利用し、処理条件が5.04×107 〜1.01×10
8 W・V・Pa・sであることを特徴とする請求項1記
載の磁気記録媒体の製造方法。
2. The processing condition is 5.04 × 10 7 to 1.01 × 10 using plasma generated by an ECR ion source.
The method of manufacturing a magnetic recording medium according to claim 1, wherein the magnetic recording medium is 8 W · V · Pa · s.
【請求項3】 バレル型の反応室で酸素プラズマ処理を
行い、処理条件が7.61×107 〜2.67×108
W・Pa・s/m2 であることを特徴とする請求項1記
載の磁気記録媒体の製造方法。
3. Oxygen plasma treatment is carried out in a barrel type reaction chamber under treatment conditions of 7.61 × 10 7 to 2.67 × 10 8.
2. The method for manufacturing a magnetic recording medium according to claim 1, wherein W · Pa · s / m 2 .
【請求項4】 非磁性の基板上に形成された磁性薄膜に
対して、所定パターンに耐酸素プラズマレジストを塗布
した後、酸素プラズマ処理を施して前記磁性薄膜を選択
的に非磁性化することを特徴とする磁気記録媒体の製造
方法。
4. A magnetic thin film formed on a non-magnetic substrate is coated with an oxygen-resistant plasma resist in a predetermined pattern and then subjected to oxygen plasma treatment to selectively demagnetize the magnetic thin film. And a method for manufacturing a magnetic recording medium.
【請求項5】 酸素プラズマ処理の処理条件が1.02
×108 W・Pa・s/m2 以上であることを特徴とす
る請求項4記載の磁気記録媒体の製造方法。
5. The processing condition of the oxygen plasma processing is 1.02.
5. The method for producing a magnetic recording medium according to claim 4, wherein the magnetic recording medium has a density of × 10 8 W · Pa · s / m 2 or more.
JP28328092A 1992-10-21 1992-10-21 Production of magnetic recording medium Pending JPH06131658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28328092A JPH06131658A (en) 1992-10-21 1992-10-21 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28328092A JPH06131658A (en) 1992-10-21 1992-10-21 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH06131658A true JPH06131658A (en) 1994-05-13

Family

ID=17663410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28328092A Pending JPH06131658A (en) 1992-10-21 1992-10-21 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH06131658A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008156189A1 (en) * 2007-06-19 2008-12-24 Showa Denko K.K. Method of producing magnetic recording medium, and magnetic recording and reading device
WO2009084366A1 (en) * 2007-12-27 2009-07-09 Kabushiki Kaisha Toshiba Magnetic recording medium and method of manufacturing the same
WO2009084364A1 (en) * 2007-12-27 2009-07-09 Kabushiki Kaisha Toshiba Magnetic recording medium and method of manufacturing the same
JP2009157983A (en) * 2007-12-26 2009-07-16 Showa Denko Kk Method of manufacturing magnetic recording medium, and magnetic recording and reproducing device
WO2009139477A1 (en) * 2008-05-15 2009-11-19 昭和電工株式会社 Process for producing magnetic recording medium, magnetic recording medium, and apparatus for magnetic recording/reproducing
WO2009139381A1 (en) * 2008-05-13 2009-11-19 昭和電工株式会社 Process and apparatus for producing magnetic recording medium
US8263190B2 (en) 2007-06-19 2012-09-11 Showa Denko K.K. Method of producing magnetic recording medium, and magnetic recording and reading device
JP5478251B2 (en) * 2007-07-30 2014-04-23 昭和電工株式会社 Method for manufacturing magnetic recording medium

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8263190B2 (en) 2007-06-19 2012-09-11 Showa Denko K.K. Method of producing magnetic recording medium, and magnetic recording and reading device
WO2008156189A1 (en) * 2007-06-19 2008-12-24 Showa Denko K.K. Method of producing magnetic recording medium, and magnetic recording and reading device
JP5478251B2 (en) * 2007-07-30 2014-04-23 昭和電工株式会社 Method for manufacturing magnetic recording medium
US8551349B2 (en) 2007-12-26 2013-10-08 Showa Denko K.K. Method for producing magnetic recording medium, and magnetic recording/reproducing apparatus
JP2009157983A (en) * 2007-12-26 2009-07-16 Showa Denko Kk Method of manufacturing magnetic recording medium, and magnetic recording and reproducing device
US8551348B2 (en) 2007-12-27 2013-10-08 Kabushiki Kaisha Toshiba Magnetic recording medium and method of manufacturing the same
WO2009084364A1 (en) * 2007-12-27 2009-07-09 Kabushiki Kaisha Toshiba Magnetic recording medium and method of manufacturing the same
WO2009084366A1 (en) * 2007-12-27 2009-07-09 Kabushiki Kaisha Toshiba Magnetic recording medium and method of manufacturing the same
JP2009277275A (en) * 2008-05-13 2009-11-26 Showa Denko Kk Manufacturing method and apparatus for magnetic recording medium
WO2009139381A1 (en) * 2008-05-13 2009-11-19 昭和電工株式会社 Process and apparatus for producing magnetic recording medium
JP2009277296A (en) * 2008-05-15 2009-11-26 Showa Denko Kk Method of manufacturing magnetic recording medium, magnetic recording medium, and magnetic recording and reproducing device
WO2009139477A1 (en) * 2008-05-15 2009-11-19 昭和電工株式会社 Process for producing magnetic recording medium, magnetic recording medium, and apparatus for magnetic recording/reproducing
US8802188B2 (en) 2008-05-15 2014-08-12 Showa Denko K.K. Method for manufacturing magnetic recording medium, magnetic recording medium, and magnetic recording and reproducing apparatus

Similar Documents

Publication Publication Date Title
JP4427392B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic recording / reproducing apparatus
US8263190B2 (en) Method of producing magnetic recording medium, and magnetic recording and reading device
JP2004227745A (en) Magnetic recording medium, magnetic recorder with the same mounted thereon, and method and device for manufacturing magnetic recording medium
US4749459A (en) Method for manufacturing a thin film magnetic recording medium
JPH06131658A (en) Production of magnetic recording medium
US4988578A (en) Method for manufacturing a thin film magnetic recording medium
US6221519B1 (en) Magnetic recording medium and process for producing the same
JP2001167420A (en) Magnetic recording medium and its manufacturing method
JPH09288818A (en) Magnetic recording medium
JPH07129953A (en) Magnetic recording disk and its magnetic recording method
WO2008156189A1 (en) Method of producing magnetic recording medium, and magnetic recording and reading device
JP2964596B2 (en) Manufacturing method of magnetic recording medium
JP2796092B2 (en) Recording medium film manufacturing method
JPS62128019A (en) Magnetic recording medium
KR920008933B1 (en) Magnetic recording medium
JPH02148417A (en) Production of perpendicular magnetic recording medium
JPH097172A (en) Magnetic recording medium and its production
JP2710048B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JPH0869641A (en) Magneto-optical recording medium and its production
JP2548231B2 (en) Method of manufacturing magnetic recording medium
JPH0624055B2 (en) Perpendicular magnetic recording medium
JP2001250216A (en) Magnetic recording medium and its manufacturing method
JPH0328733B2 (en)
JPS6025014A (en) Magnetic recording and reproducing device
JPS6194220A (en) Magnetic recording medium and its manufacture

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010612