JPH06128809A - Highly durable polyvinyl alcohol-based fiber and its production - Google Patents

Highly durable polyvinyl alcohol-based fiber and its production

Info

Publication number
JPH06128809A
JPH06128809A JP28008092A JP28008092A JPH06128809A JP H06128809 A JPH06128809 A JP H06128809A JP 28008092 A JP28008092 A JP 28008092A JP 28008092 A JP28008092 A JP 28008092A JP H06128809 A JPH06128809 A JP H06128809A
Authority
JP
Japan
Prior art keywords
polyvinyl alcohol
pva
fiber
solvent
syndiotacticity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28008092A
Other languages
Japanese (ja)
Inventor
Hirofumi Sano
洋文 佐野
Toshimi Yoshimochi
駛視 吉持
Masahiro Sato
政弘 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP28008092A priority Critical patent/JPH06128809A/en
Publication of JPH06128809A publication Critical patent/JPH06128809A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide fibers of high syndiotacticity excellent in moist heat resistance and heat deterioration resistance, suitable for tire cords and automotive hoses (radiator hoses, oil brake hoses, etc.) to be put into service for a long period of time at high temperature and humidity, reinforcing materials for FRPs and FRCs, or industrial materials such as ropes, tents, geotextile sheets or fishnets. CONSTITUTION:Spun undrawn yarns consisting of a polyvinyl alcohol-based polymer >=1500 in polymerization degree and >=58% in syndiotacticity are incorporated with an antioxidant before being put to drying process. Then, at a time during a lapse just before drying to the point just before dry hot drawing, the undrawn yarns are imparted with a crosslinking agent followed by conducting dry hot drawing so as to be >=18 in the total draw ratio, thus obtaining the objective fibers satisfying the figure shown.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高温で長時間使用される
タイヤ、ホース、コンベアベルトなどのゴム資材や、プ
ラスチック、セメントなどの補強材さらにはロープ、帆
布、テントなどの産業資材に適した耐湿熱性と耐熱老化
性を有する高強力ポリビニルアルコール(以下PVAと
略記)系繊維とその製造方法に関する。
INDUSTRIAL APPLICABILITY The present invention is suitable for rubber materials such as tires, hoses and conveyor belts, which are used at high temperature for a long time, reinforcing materials such as plastic and cement, and industrial materials such as ropes, canvas and tents. The present invention relates to a high-strength polyvinyl alcohol (hereinafter abbreviated as PVA) fiber having moist heat resistance and heat aging resistance, and a method for producing the same.

【0002】[0002]

【従来の技術】従来PVA系繊維はポリアミド、ポリエ
ステル、ポリアクリロニトリル系繊維に比べて強度、弾
性率が高く、その主用途である産業資材用繊維として使
用されている。さらにそれ以外にも、ゴム、プラスチッ
ク、セメントなどの補強繊維としても利用されて来てい
る。最近の技術では、架橋により耐湿熱性を高めようと
する事が特開平1−156517号、特開平1−207
435号、特開平2−84587号、特開平2−133
605号等の公報で例示されている。そこでは、重合度
5,000以下のPVA繊維に、エポキシ化合物、イソ
シアネート化合物、有機過酸化物、カルボン酸、リン
酸、塩酸などの架橋剤を付与し架橋させ、耐熱水性を高
めると共に耐ゴム疲労性も向上させることが記載されて
いる。しかしこれらの方法では十分な強度を保持するこ
とは出来ず、且つ乾熱老化性が悪い問題を有していた。
2. Description of the Related Art Conventionally, PVA fibers have higher strength and elastic modulus than polyamide, polyester, and polyacrylonitrile fibers, and are used as fibers for industrial materials, which are the main applications thereof. In addition to the above, it has also been used as a reinforcing fiber for rubber, plastic, cement and the like. In the recent technology, it is attempted to increase the resistance to moist heat by crosslinking. JP-A-1-156517 and JP-A-1-207
No. 435, JP-A-2-84587, JP-A-2-133.
It is exemplified in the publications such as No. 605. There, a crosslinking agent such as an epoxy compound, an isocyanate compound, an organic peroxide, carboxylic acid, phosphoric acid or hydrochloric acid is added to PVA fibers having a degree of polymerization of 5,000 or less to crosslink them to enhance hot water resistance and rubber fatigue resistance. It is also described that the property is improved. However, these methods cannot maintain sufficient strength and have a problem of poor dry heat aging.

【0003】一方乾熱延伸時や、乾熱放置時の着色防止
や強力低下を抑えようとする試みは古くから行われ、特
公昭35−1669号、特公昭45−7691号、特公
昭47−27048号などの公報で公知である。しかし
ながらこれらの方法を用いても、最近の高重合度で高強
力なPVA繊維では、乾熱老化性を十分向上させる事は
出来なかった。それは、高重合度で高強力なPVA繊維
を得るには、高温で高倍率に延伸する必要があり、延伸
性を阻害する添加物や付着物は使用出来ないからであ
る。さらに、機械的、熱的な分子鎖の切断が延伸時に起
こり、ラジカルが発生しPVAの分解が進むと共に、そ
の後の実用途において長時間使用すると、さらに分解が
促進され強力低下を起こしたからである。従って、高重
合度なPVAを用いる場合ほど乾熱老化性が悪い結果と
なっているのである。
On the other hand, attempts have been made for a long time to prevent coloration and to suppress deterioration in strength during dry heat drawing and during standing in dry heat, as disclosed in JP-B-35-1669, JP-B-45-7691, and JP-B-47-. It is known in publications such as 27048. However, even if these methods are used, it is not possible to sufficiently improve the dry heat aging property with recent PVA fibers having a high degree of polymerization and high strength. This is because in order to obtain a PVA fiber having a high degree of polymerization and a high strength, it is necessary to draw at a high draw ratio at a high temperature, and additives or deposits that hinder the drawability cannot be used. Further, mechanical and thermal breaking of the molecular chain occurs at the time of stretching, radicals are generated and the decomposition of PVA progresses, and when it is used for a long time in practical applications thereafter, the decomposition is further promoted and the strength is lowered. . Therefore, the use of PVA having a high degree of polymerization results in poor dry heat aging.

【0004】また最近は、耐湿熱性や強度・弾性率の高
いシンジオタクチシティに富む(以下高シンジオと略
す)PVA系重合体を繊維化する提案がなされている。
即ち、特開昭61−108713号公報によれば、ポリ
トリフロロ酢酸ビニルより得られたPVA系重合体であ
って、本発明で言うダイアッド表示でシンジオタクチシ
ティが58%、平均重合度が6,000のPVA系重合
体を用いこれを、溶剤に溶解して乾湿式紡糸し、最高単
糸強度15g/d、弾性率380g/d程度の繊維が得
られている。しかしこれらの値は特に高いものではな
く、耐湿熱性や乾熱老化性も十分とは言い難かった。
Further, recently, a proposal has been made to fiberize a PVA polymer having a high syndiotacticity (hereinafter referred to as high syndio) which is high in wet heat resistance and high in strength and elastic modulus.
That is, according to JP-A-61-108713, a PVA-based polymer obtained from polytrifluorovinyl acetate, which has a syndiotacticity of 58% and an average degree of polymerization of 6, in the diad display of the present invention. 000 PVA-based polymer was dissolved in a solvent and spun dry and wet to obtain fibers having a maximum single yarn strength of 15 g / d and an elastic modulus of about 380 g / d. However, these values were not particularly high, and it was difficult to say that the wet heat resistance and dry heat aging resistance were sufficient.

【0005】さらに高シンジオPVA繊維で耐湿熱性や
強度の高いものを本発明者らは見出し、それを特開平4
−108109号公報に開示しているが、ここにおいて
も重合度17,000の場合、熱水溶断温度は160℃
と未だ十分とは言えず、乾熱老化性も満足されるもので
はなかった。
The present inventors have found a high syndio-PVA fiber having high resistance to moist heat and high strength, which is disclosed in Japanese Patent Application Laid-Open No. 4 (1999) -54242.
As disclosed in Japanese Patent Application Laid-Open No. 108109, in this case as well, when the degree of polymerization is 17,000, the hot water disconnection temperature is 160 ° C.
That is not enough, and the dry heat aging property was not satisfactory.

【0006】[0006]

【発明が解決しようとする課題】本発明は、ゴム、セメ
ントの補強材やロープ、あるいは帆布、土木シートなど
の産業資材の用途に適した、耐湿熱性と耐乾熱老化性に
優れたPVA繊維を得ようとしたものである。
DISCLOSURE OF THE INVENTION The present invention provides a PVA fiber excellent in wet heat resistance and dry heat aging resistance, which is suitable for use in industrial materials such as rubber, cement reinforcements, ropes, canvas and civil engineering sheets. That is what I was trying to obtain.

【0007】[0007]

【課題を解決するための手段】本発明者らは、高シンジ
オPVA繊維が本来持っている耐湿熱性、高強度、高弾
性率を生かし、さらに耐湿熱性、乾熱老化性、高温耐ゴ
ム疲労性などを向上させる目的で鋭意検討した。その結
果、繊維、特にその内部に酸化防止剤を付与し、さらに
表面を選択的にある範囲の架橋密度(ゲル弾性率)で架
橋させることにより、従来のPVA繊維で得られない耐
久性に優れた目的の繊維が得られることを見出したもの
である。
[Means for Solving the Problems] The present inventors have taken advantage of the high heat resistance, high strength, and high elastic modulus originally possessed by the high syndio PVA fiber, and further, have high heat resistance, dry heat aging resistance, and high temperature rubber fatigue resistance. Therefore, we conducted a thorough study for the purpose of improving As a result, by imparting an antioxidant to the fiber, especially inside thereof, and further selectively crosslinking the surface with a certain range of crosslinking density (gel elastic modulus), excellent durability not obtained with conventional PVA fibers is obtained. It was found that the desired fiber can be obtained.

【0008】すなわち本発明は、粘度平均重合度が15
00以上でシンジオタクティシティが58%以上である
PVA系重合体からなり、ゲル弾性率が0.1×10-2
〜1.5×10-2g/d、熱水溶断温度(WTb)が下
記[1]式を満足し、且つ160℃,24時間乾熱処理
後の強力保持率が50%以上であることを特徴とする高
シンジオPVA系繊維であり、また粘度平均重合度が1
500以上でシンジオタクティシティが58%以上であ
るPVA系重合体を溶媒に溶解して得られた溶液をノズ
ルより吐出して糸条を形成し、そのまま該溶媒を乾燥除
去するか、或いは抽出浴で該溶媒を除去してから乾燥
し、そして乾熱延伸して総延伸倍率18倍以上とする高
シンジオPVA系繊維の製造方法において、(A)該乾
燥までの工程で酸化防止剤を付与すること、(B)溶媒
除去から乾熱延伸直前までの間に架橋剤を付与すること
を特徴とする製造方法である。 WTb≧1.2(P)0.4+135・・・・・[1] 但し、WTbは200mg/d荷重下の熱水溶断温度
(℃)で、PはPVA系重合体の粘度平均重合度であ
る。
That is, the present invention has a viscosity average degree of polymerization of 15
It is made of a PVA polymer having a syndiotacticity of 58% or more at 00 or more and a gel elastic modulus of 0.1 × 10 -2.
~ 1.5 × 10 -2 g / d, hot water cutoff temperature (WTb) satisfy the following formula [1], and the strength retention after dry heat treatment at 160 ° C for 24 hours is 50% or more. It is a high syndio-PVA fiber characterized by a viscosity average degree of polymerization of 1
A solution obtained by dissolving a PVA-based polymer having a syndiotacticity of 58% or more at 500 or more in a solvent is discharged from a nozzle to form a filament, and the solvent is directly removed by drying or extraction. In a method for producing a high syndio-PVA-based fiber in which the solvent is removed in a bath, drying is performed, and then dry heat drawing is performed to obtain a total draw ratio of 18 times or more, (A) an antioxidant is added in the steps up to the drying. And (B) adding a cross-linking agent between the removal of the solvent and immediately before dry heat drawing. WTb ≧ 1.2 (P) 0.4 +135 (1) where WTb is the hot water cutoff temperature (° C.) under a load of 200 mg / d, and P is the viscosity average degree of polymerization of the PVA-based polymer. .

【0009】以下本発明の内容をさらに詳細に説明す
る。本発明で用いるPVAは、その繊維が産業資材に適
したより高強度、高弾性率、高融点、高耐湿熱性となる
ために、粘度平均重合度が1500以上、好ましくは5
000以上、さらに好ましくは10,000以上のもの
であり、かつ後述するタクチシティ評価法でダイアッド
表示のシンジオタクチシティが58%以上、好ましくは
60%以上のものである。さらに、ケン化度が98.5
モル%以上、好ましくは99.5モル%以上で分岐度の
低い直鎖状のものである。
The contents of the present invention will be described in more detail below. The PVA used in the present invention has a viscosity average degree of polymerization of 1500 or more, preferably 5 or more, because the fiber has higher strength, higher elastic modulus, higher melting point, and higher resistance to moist heat suitable for industrial materials.
000 or more, more preferably 10,000 or more, and the syndiotacticity of dyad display is 58% or more, preferably 60% or more by the tacticity evaluation method described later. Furthermore, the saponification degree is 98.5.
It is a straight chain having a low branching degree of not less than mol%, preferably not less than 99.5 mol%.

【0010】本発明の繊維は、その目的からヤーン強度
が15g/d以上のものを対象とするものであるが、そ
の中でもゲル弾性率と熱水溶断温度並びに乾熱処理後の
強力保持率が前記の如く、同時に高い値を満足するもの
である事が特徴である。 以後の説明で理解されるよう
に、酸化防止剤のみの処理ではゲル弾性率も熱水溶断温
度も本発明で規定するが如き高い値を満足し得ず、また
架橋剤のみの処理では乾熱処理後の強力保持率の点で満
足できるものとはならないのである。
The fiber of the present invention has a yarn strength of 15 g / d or more for its purpose. Among them, the gel elastic modulus, the hot water cutting temperature and the tenacity retention after dry heat treatment are the above. As described above, the feature is that they simultaneously satisfy a high value. As will be understood from the following description, neither the gel elastic modulus nor the hot water cutoff temperature can be satisfied by the treatment with only the antioxidant as specified in the present invention, but neither high value can be satisfied. Later, the strength retention is not satisfactory.

【0011】本発明は、結晶性の良い高シンジオPVA
系重合体で、通常のアタクチックPVA系重合体より強
度、弾性率、耐熱性、耐湿熱性を高め、さらに酸化防止
剤処理と架橋剤処理の両処理を組合せる事により、今ま
で達成されたことのない高耐湿熱性と高耐熱老化性を兼
備したPVA系繊維を得るものである。本発明に用いら
れる高シンジオPVAは、前記した特開平4−1081
09号公報に記載されている方法等により得られる。
The present invention provides a high syndio PVA having good crystallinity.
This polymer has higher strength, elastic modulus, heat resistance and moist heat resistance than ordinary atactic PVA polymer, and has been achieved by combining both antioxidant treatment and crosslinking agent treatment. It is intended to obtain a PVA-based fiber having both high moisture-heat resistance and high heat-aging resistance. The high syndio PVA used in the present invention is the same as described in JP-A-4-1081.
It can be obtained by the method described in Japanese Patent Application Publication No. 09.

【0012】本発明の繊維を製造する際に用いるPVA
系ポリマーの溶剤には制限がなく、例えばグリセリン、
エチレングリコール、ジエチレングリコール、トリエチ
レングリコール、プロピレングリコール、ブタンジオー
ルなどの多価アルコールや、ジメチルスルホキシド、ジ
メチルホルムアミド、ジエチレントリアミン、水、およ
びこれら2種以上の混合溶剤などが挙げられる。PVA
を溶剤に溶解する際、ホウ酸、顔料、界面活性剤などを
添加しても支障はないが、本発明に言う湿熱性と熱老化
性やヤーン強度を低下させるものは好ましくない。
PVA used in producing the fiber of the present invention
There is no limitation on the solvent of the polymer, for example, glycerin,
Examples thereof include polyhydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, butanediol, dimethyl sulfoxide, dimethylformamide, diethylenetriamine, water, and a mixed solvent of two or more thereof. PVA
Although boric acid, a pigment, a surfactant, etc. may be added to the solution when dissolved in a solvent, it is not preferred that it reduces wet heat and heat aging properties and yarn strength referred to in the present invention.

【0013】紡糸は湿式、乾式、乾湿式いずれの紡糸法
によっても良い。凝固浴はアルコール、アセトン、アル
カリ水溶液、アルカリ金属水溶液などいずれでも良い
が、本発明繊維が得られやすい均一ゲル繊維の生成し易
いアルコール/溶剤混合系が好ましい。均一ゲル化を起
こすには凝固浴中に10重量%以上の該溶剤を含有させ
ゆっくりと凝固させるのが好ましい。さらに凝固温度を
20℃以下にして急冷させるのも均一ゲル繊維を得るの
に好ましい。溶剤を含んだ状態での湿延伸は繊維間の膠
着を少なくし、生成した微結晶を壊して非晶化し、その
後の乾熱延伸を容易にする点で3倍以上に行うのが望ま
しい。次いで溶剤の抽出を行うが、抽出剤としてはメタ
ノール、エタノール、プロパノールなどのアルコール類
や、アセトン、エーテル、水などいずれでも良い。但し
本発明で、抽出工程に酸化防止剤を添加する場合、酸化
防止剤が沈殿したり大径のエマルジョン粒子を生成する
ような抽出剤は使えない。
Spinning may be carried out by any of wet, dry and dry-wet spinning methods. The coagulation bath may be any of alcohol, acetone, an aqueous alkali solution, an aqueous alkali metal solution, etc., but an alcohol / solvent mixed system that easily forms the uniform gel fiber of the present invention is preferable. In order to cause uniform gelation, it is preferable that 10% by weight or more of the solvent be contained in the coagulation bath to slowly coagulate. Furthermore, it is also preferable to obtain a uniform gel fiber by setting the solidification temperature to 20 ° C. or lower and quenching. It is desirable that the wet drawing in a state of containing a solvent is performed three times or more in order to reduce sticking between fibers, break the generated fine crystals to make them amorphous, and facilitate the subsequent dry heat drawing. Next, the solvent is extracted, and the extractant may be any of alcohols such as methanol, ethanol and propanol, acetone, ether and water. However, in the present invention, when an antioxidant is added to the extraction step, an extractant that precipitates the antioxidant or produces large-sized emulsion particles cannot be used.

【0014】本発明に言う酸化防止剤としては、熱、光
安定剤のホスファイト系、チオエーテル系、ベンゾトリ
アゾール系、ヒンダードアミン系など用いても良いが、
好ましくはフェノール系酸化防止剤が良い。フェノール
系酸化防止剤としては、アルキルエステル系、イオウ
系、リン系、酸アミド系あるいはアミン系のモノフェノ
ールあるいはジフェノール化合物などがある。その代表
的な化合物として第三ブチルフェノール系の化合物が挙
げられる。さらにCu、Mn、Ti、Sn、Pb、Z
n、Crなどのハロゲン化物、硫酸塩、硝酸塩も含ま
れ、これらの1種又は2種以上を用いる事が出来る。付
与方法は、PVAの紡糸原液に該酸化防止剤を直接添加
するか、あるいはPVAの原液溶媒を抽出する浴に添加
して、繊維の内部および表面、特に内部に含有させるこ
とがポイントである。酸化防止剤の保持量は繊維に対し
て0.01〜2重量%が良く、好ましくは0.02〜
1.5重量%である。0.01重量%未満では架橋処理
後の熱老化を十分に抑えることは出来ない。2.0重量
%を越えると、延伸性を阻害したり、架橋密度をコント
ロールするのが難しく好ましくない。
As the antioxidant referred to in the present invention, phosphite type, thioether type, benzotriazole type, hindered amine type of heat and light stabilizers may be used.
Phenolic antioxidants are preferred. Examples of the phenol-based antioxidant include alkyl ester-based, sulfur-based, phosphorus-based, acid amide-based or amine-based monophenol or diphenol compounds. A typical compound thereof is a tert-butylphenol compound. Furthermore, Cu, Mn, Ti, Sn, Pb, Z
Halides such as n and Cr, sulfates, and nitrates are also included, and one or more of these can be used. The point of the application method is to add the antioxidant directly to the spinning solution for PVA or to add the solvent for the solution for PVA to a bath for extraction so as to be contained inside and on the surface of the fiber, particularly inside the fiber. The amount of the antioxidant retained is preferably 0.01 to 2% by weight with respect to the fiber, and is preferably 0.02.
It is 1.5% by weight. If it is less than 0.01% by weight, heat aging after the crosslinking treatment cannot be sufficiently suppressed. If it exceeds 2.0% by weight, it is difficult to inhibit the stretchability and control the crosslinking density, which is not preferable.

【0015】PVAの紡糸原液から抽出浴までの間で酸
化防止剤を含有させると共に、乾熱延伸性を向上させる
ため油剤浴で油剤処理を施し、しかる後、抽出浴の第2
溶媒の乾燥前から延伸直前までの間で架橋剤を付与す
る。本発明において、酸化防止剤を含有させた後に架橋
剤を付与することが好ましく、この順序で行うことによ
り酸化防止剤の繊維内部への浸透を十分に行わせて繊維
表面を選択的に架橋反応させることとなる。本発明に言
う架橋剤は、リン酸モノアルキル、リン酸ジアルキル、
あるいはそれらのアンモニウム塩やアルキルアミン塩、
リン酸1〜3アンモニウム、リン酸尿素、ポリリン酸な
どのリン化合物、硫酸チタン、硫酸アルキル、硫酸アン
モニウム、硫酸水素アンモニウムなどのイオウ化合物、
オキシ塩化ジルコニウム、硫酸ジルコニウム、さらには
有機系金属錯塩化合物、特に金属がクロムやアルミニウ
ムである有機金属錯塩化合物などが挙げられるが、本発
明はこれに限定されるものではない。
An antioxidant is added between the stock solution of PVA spinning and the extraction bath, and an oil treatment is applied in the oil bath to improve the dry heat drawability, and then the second extraction bath is used.
A cross-linking agent is applied from before the solvent is dried to immediately before the stretching. In the present invention, it is preferable to add a cross-linking agent after the antioxidant is contained, and by carrying out in this order, the antioxidant is sufficiently permeated into the fiber interior to selectively cross-link the fiber surface. Will be made. The cross-linking agent referred to in the present invention is a monoalkyl phosphate, a dialkyl phosphate,
Or their ammonium or alkylamine salts,
Phosphorus compounds such as 1 to 3 ammonium phosphate, urea phosphate, and polyphosphoric acid, sulfur compounds such as titanium sulfate, alkyl sulfate, ammonium sulfate, and ammonium hydrogen sulfate,
Examples thereof include zirconium oxychloride, zirconium sulfate, and organic metal complex salt compounds, particularly organic metal complex salt compounds in which the metal is chromium or aluminum, but the present invention is not limited thereto.

【0016】付与方法は紡糸抽出後の、乾燥前から延伸
直前までの間で、デイップ方式、ローラータッチ方式、
ギヤポンプオイリング方式などにより付着可能である
が、繊維の表層部のみを架橋するように設定することが
肝要である。付与量は架橋剤の種類によって異なるが、
PVA繊維に対して0.01〜5重量%である。架橋の
密度および分布は架橋剤、付与量の他に、乾熱延伸の温
度、時間、倍率など多数のファクターが関与するが、本
発明では、結果的に、得られた繊維のゲル弾性率が0.
1×10-2〜1.5×10-2g/dとなるように、比較
的軽く、即ち前述の如く繊維の表面層のみが架橋できる
ように条件設定することが必要である。
The application method is, after spinning extraction, from before drying to immediately before drawing, using a dip method, a roller touch method,
It can be attached by a gear pump oiling method or the like, but it is important to set so that only the surface layer of the fiber is crosslinked. The applied amount depends on the type of cross-linking agent,
It is 0.01 to 5% by weight with respect to the PVA fiber. The density and distribution of cross-linking involve many factors such as the cross-linking agent and the applied amount, as well as the temperature, time and magnification of dry heat drawing, but in the present invention, as a result, the gel elastic modulus of the obtained fiber is 0.
It is necessary to set conditions such that the weight is from 1 × 10 −2 to 1.5 × 10 −2 g / d, which is relatively light, that is, only the surface layer of the fiber can be crosslinked as described above.

【0017】例えば乾熱延伸温度としては230℃以上
でPVAの融点以下、乾熱延伸処理時間としては1〜2
00秒、また乾熱延伸倍率としては3〜18倍が好まし
い。ゲル弾性率は架橋度を示すパラメーターであるが
0.1×10-2g/d未満では架橋が少なく、耐湿熱性
の向上が低下し産業資材として寿命の短いものとなり好
ましくない。一方1.5×10-2g/dを越えると耐湿
熱性は若干増加するが、強度低下が起こりかつ耐熱老化
性が悪化する問題が生じる。好ましいゲル弾性率は0.
2〜1.0×10-2g/dである。160℃、24時間
乾熱処理後の強力保持率が50%未満では寿命が短く実
用が難しい。なお、架橋によりPVAの分解ラジカルが
同時に発生し、繊維強度を低下させかつその後の乾熱老
化性も悪くなると思われる。酸化防止剤は分解ラジカル
を抑える効果がありうるが、架橋度が高くなるにつれ
て、その効果が減少する。
For example, the dry heat stretching temperature is 230 ° C. or higher and the melting point of PVA or lower, and the dry heat stretching treatment time is 1 to 2
00 seconds, and the dry heat draw ratio is preferably 3 to 18 times. The gel elastic modulus is a parameter indicating the degree of cross-linking, but if it is less than 0.1 × 10 -2 g / d, the cross-linking is small and the improvement in wet heat resistance is lowered, resulting in a short life as an industrial material, which is not preferable. On the other hand, when it exceeds 1.5 × 10 -2 g / d, the wet heat resistance is slightly increased, but the strength is lowered and the heat aging resistance is deteriorated. The preferred gel modulus is 0.
It is 2 to 1.0 × 10 -2 g / d. If the strength retention after dry heat treatment at 160 ° C. for 24 hours is less than 50%, the life is short and practical use is difficult. It is considered that the crosslinking radicals simultaneously generate PVA-decomposing radicals, which lowers the fiber strength and deteriorates the dry heat aging property thereafter. Antioxidants may have the effect of suppressing decomposition radicals, but as the degree of crosslinking increases the effect decreases.

【0018】従って耐湿熱性と高強度で耐熱老化性を満
足させるには、本発明の如く酸化防止剤を繊維内部に入
れて、分解ラジカルを抑えながら繊維表面を架橋する方
法が最も好ましいものである。
Therefore, in order to satisfy the wet heat resistance, the high strength, and the heat aging resistance, the method in which an antioxidant is put inside the fiber to crosslink the fiber surface while suppressing decomposition radicals is the most preferable. .

【0019】乾熱延伸は、ヤーン強度で15g/d以上
の繊維とするために、前記の湿延伸倍率を含めて総延伸
倍率が18倍以上、好ましくは20倍以上となるように
行なうものであり、総延伸倍率が18倍未満の場合に
は、目的とする強度の繊維が得られない。延伸温度はP
VAの重合度やシンジオタクチシティによっても異なる
が230〜270℃が望ましい。
The dry heat drawing is carried out so that the total draw ratio including the wet draw ratio is 18 times or more, preferably 20 times or more, in order to obtain fibers having a yarn strength of 15 g / d or more. However, if the total draw ratio is less than 18 times, fibers having the desired strength cannot be obtained. Stretching temperature is P
Although it depends on the degree of polymerization of VA and syndiotacticity, it is preferably 230 to 270 ° C.

【0020】[0020]

【実施例】以下実施例により本発明を具体的に説明する
が、本発明は実施例のみに限定されるものではない。な
お以下に述べる実施例中における各種物性値は、以下の
方法で測定されたものである。 (1)PVA系重合体の粘度平均重合度(P) 高シンジオPVA系重合体を酸化して得た酢酸ビニルの
アセトン中の極限粘度(30℃測定)から下記数式1に
より求めた。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the examples. In addition, various physical property values in the examples described below are measured by the following methods. (1) Viscosity average degree of polymerization (P) of PVA-based polymer It was determined from the intrinsic viscosity (measured at 30 ° C.) of acetone of vinyl acetate obtained by oxidizing a high syndio-PVA-based polymer by the following mathematical formula 1.

【数1】 [Equation 1]

【0021】(2)シンジオタクチシティ(S) 重水素化ジメチルスルホキシド(d6−DMSO)に溶
解したPVA系重合体のプロトンNMR測定により求ま
るトライアッド表示によるシンジオタクチシテイ(T.
Moritani etal., Macromol
ecules,5, 577(1972))でり、シン
ジオタクチシティ(S)、ヘテロタクチシティ(H)、
およびアイソタクチシティ(I)から次式により算出さ
れる値である。 s=S+H/2(ダイアッド表示によるシンジオタクチ
シティ) i=I+H/2(ダイアッド表示によるアイソタクチシ
ティ)
(2) Syndiotacticity (S) Syndiotacticity (T.D.) by triad display obtained by proton NMR measurement of a PVA polymer dissolved in deuterated dimethyl sulfoxide (d 6 -DMSO).
Moritani et al. , Macromol
ecules, 5, 577 (1972)), syndiotacticity (S), heterotacticity (H),
And a value calculated from the isotacticity (I) by the following equation. s = S + H / 2 (Syndiotacticity by dyad display) i = I + H / 2 (Isotacticity by dyad display)

【0022】(3)酸化防止剤の付与量 乾燥後の未延伸糸を100〜130℃の熱水に溶解せし
め、NMRによりPVAのCH2基ピークに対する酸化
防止剤のピーク比を算出し、予め作成した検量線より付
与量を求めた。 (4)架橋剤の付与量 架橋剤を付着した延伸前の未架橋糸を熱水に溶解させ、
NMRや蛍光X線で架橋剤の帰属ピークや特定元素のピ
ークを測定し、検量線より求めた。またリン酸化合物は
未架橋糸を塩酸に溶解し、比色法にて求めた。
(3) Amount of Antioxidant Added The undrawn yarn after drying is dissolved in hot water at 100 to 130 ° C., and the peak ratio of the antioxidant to the CH 2 group peak of PVA is calculated by NMR. The applied amount was determined from the created calibration curve. (4) Amount of cross-linking agent applied The uncross-linked yarn before stretching with the cross-linking agent attached is dissolved in hot water,
The peaks attributable to the cross-linking agent and the peaks of the specific element were measured by NMR and fluorescent X-rays and determined from the calibration curve. In addition, the phosphoric acid compound was obtained by dissolving the uncrosslinked yarn in hydrochloric acid and determining the colorimetric method.

【0023】(5)ヤーンの引張強伸度、弾性率 JIS L−1013に準じ予め調湿されたヤーンを、
試長20cmで0.25g/dの初期荷重および50%
/分の引張速度にて破断伸度および初期弾性率を求め、
10点以上の平均値を採用した。デニールは重量法によ
り求めた。 (6)ゲル弾性率(E) 架橋された試料ヤーンに1gの初期荷重をかけ、50
℃、50%ZnCl2水溶液の中に2〜5分間入れて未
架橋部を溶出させる。次いでZnCl2水溶液中、十分
に収縮が起こったところで、試料長L1を読む。読み取
った荷重と試料長の点をグラフにプロットし、L1に対
する100%伸長(2L1)時の荷重Wgを読み取り、
それを処理前ヤーンデニールで除して求めた値で、下式
で計算される。 E=W/Dr(g/d)
(5) Tensile Strength and Elongation and Elastic Modulus of Yarn The humidity-adjusted yarn according to JIS L-1013 is used.
Initial load of 0.25 g / d and 50% at a test length of 20 cm
The elongation at break and the initial elastic modulus are calculated at the pulling speed of / min,
The average value of 10 points or more was adopted. Denier was determined by the gravimetric method. (6) Gel elastic modulus (E) 50 g of initial load was applied to the crosslinked sample yarn,
The mixture is placed in a 50% ZnCl 2 aqueous solution at 0 ° C for 2 to 5 minutes to elute the uncrosslinked portion. Next, the sample length L 1 is read at the point where sufficient shrinkage has occurred in the ZnCl 2 aqueous solution. The points of the read load and the sample length are plotted on a graph, and the load Wg at 100% elongation (2L 1 ) with respect to L 1 is read,
It is the value obtained by dividing it by the yarn denier before treatment and calculated by the following formula. E = W / Dr (g / d)

【0024】(7)熱水溶断温度(WTb) 単繊維25本にデニール当り200mgの荷重をかけ、
水を満たしたガラス製円筒状密閉容器の中間に吊し、周
囲より水を1〜2℃/分の速度で加熱昇温させていき、
繊維が溶断したときの温度を示す。 (8)乾熱老化性(乾熱処理後の強力保持率) ヤーンをフリーの状態で熱風炉に入れ、160℃、24
時間乾熱処理した後ヤーン強力を測定し、乾熱処理前の
ヤーン強力に対する強力保持率(%)を算出した。
(7) Hot water disconnection temperature (WTb) A load of 200 mg per denier was applied to 25 single fibers,
Suspend in the middle of a glass cylindrical closed container filled with water, and heat water from the surroundings at a rate of 1 to 2 ° C./min to raise the temperature,
The temperature at which the fiber melts is shown. (8) Dry heat aging property (strength retention ratio after dry heat treatment) The yarn was put in a hot-air stove in a free state at 160 ° C. for 24 hours.
The yarn tenacity was measured after the dry heat treatment for an hour, and the tenacity retention rate (%) with respect to the yarn tenacity before the dry heat treatment was calculated.

【0025】[0025]

【実施例】【Example】

実施例1〜3および比較例1〜3 ポリピバリン酸,ビニールをケン化して得た粘度平均重
合度が1850(実施例1)、4000(実施例2)、
10,000(実施例3)でシンジオタクチシティがい
ずれも61.5%、ケン化度が各々99.8、99.
5、99.7モル%の高シンジオPVAをそれぞれ濃度
16、11、5.5重量%になるようにジメチルスルホ
キシドに120℃にて溶解せしめた。なお溶解度は密閉
系で系内はN2ガスで置換後、減圧に保持してPVAの
着色分解を抑えた。次いで各溶液を150℃にて孔径
0.15mm、ホール数60のノズルより吐出させ乾湿
式法にて固化させた。ノズル面と凝固浴液面との間の空
気相の距離(エアギャップ長)は15mmであった。凝
固浴組成はメタノール/ジメチルスルホキシド=7/3
(重合比)であり、凝固浴温度は7℃とした。
Examples 1 to 3 and Comparative Examples 1 to 3 Polypivalic acid, viscosity average polymerization degree obtained by saponifying vinyl is 1850 (Example 1), 4000 (Example 2),
At 10,000 (Example 3), syndiotacticity was 61.5% and saponification degrees were 99.8 and 99.
High syndio-PVA of 5 and 99.7 mol% was dissolved in dimethyl sulfoxide at 120 ° C. so that the concentrations thereof were 16, 11, and 5.5 wt%, respectively. The solubility was a closed system, and the inside of the system was replaced with N 2 gas and then kept under reduced pressure to suppress the color decomposition of PVA. Next, each solution was discharged from a nozzle having a hole diameter of 0.15 mm and a number of holes of 60 at 150 ° C. and solidified by a dry-wet method. The distance of the air phase (air gap length) between the nozzle surface and the coagulation bath liquid surface was 15 mm. Coagulation bath composition is methanol / dimethyl sulfoxide = 7/3
(Polymerization ratio) and the coagulation bath temperature was 7 ° C.

【0026】得られた原糸をさらに40℃のメタノール
浴中で4倍に湿延伸した後、3つのメタノール浴槽で該
溶剤のほとんど全部を除去した。3槽目のメタノール抽
出浴には酸化防止剤の塩化マンガンが30ppm/浴の
濃度で添加された均一溶液で、原糸をこの浴に3分間滞
留させ、繊維の内部および表面に塩化マンガンを付着さ
せた。次いで90℃にて乾燥してメタノールを除去し
た。得られた原糸を乾熱延伸前に架橋剤が繊維の表面に
付着するようにローラータッチ方式で下記化1で示され
る有機系クロム錯塩化合物の1%メタノール溶液を付着
させ、実施例1は170℃と250℃の輻射炉で延伸所
要時間68秒で総延伸倍率22.4倍、実施例2は17
0℃と255℃で延伸所要時間60秒で21.5倍、実
施例3は190℃と260℃で延伸所要時間54秒で2
0.0倍延伸した。未延伸糸の酸化防止剤と架橋剤の付
着量および得られた延伸糸の諸物性を表1に記述した。
The obtained raw yarn was further wet-drawn 4 times in a methanol bath at 40 ° C., and then almost all of the solvent was removed in three methanol baths. In the methanol extraction bath of the 3rd tank, manganese chloride as an antioxidant was added at a concentration of 30 ppm / bath, and the raw yarn was allowed to stay in this bath for 3 minutes to attach manganese chloride to the inside and surface of the fiber. Let Then, it was dried at 90 ° C. to remove methanol. Prior to dry heat drawing, the obtained raw yarn was applied with a 1% methanol solution of an organic chromium complex salt compound represented by the following chemical formula 1 by a roller touch method so that the cross-linking agent adheres to the surface of the fiber. In a radiation furnace at 170 ° C. and 250 ° C., the total draw ratio was 22.4 times with the drawing time of 68 seconds, and Example 2 was 17 times.
At 0 ° C. and 255 ° C., a stretching time of 60 seconds is 21.5 times, and in Example 3, at 190 ° C. and 260 ° C., a stretching time of 54 seconds is 2 seconds.
It was stretched 0.0 times. Table 1 shows the amounts of the antioxidant and the crosslinking agent attached to the undrawn yarn and various physical properties of the obtained drawn yarn.

【0027】[0027]

【化1】 [Chemical 1]

【0028】また比較例1として実施例1において酸化
防止剤のみ付与した場合、比較例2として実施例2で架
橋剤のみ付与した場合、比較例3として実施例2でアタ
クチックPVAを用い170℃と250℃で延伸した場
合を実施し、それらの評価結果を表1に併記した。
Further, as Comparative Example 1, when only the antioxidant was added in Example 1, when only the cross-linking agent was added in Example 2 as Comparative Example 2, and when atactic PVA was used in Example 2 as Comparative Example 3, 170 ° C. The case of stretching at 250 ° C. was carried out, and the evaluation results thereof are also shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】実施例1はP=1850の高シンジオPV
Aの場合であり、延伸糸のゲル弾性率率は0.39×1
-2g/dで、熱水溶断温度(WTb)は172℃と高
く、かつヤーン強度は16.8g/d、ヤーン弾性率は
490g/dであった。さらに該延伸糸を160℃24
時間乾熱処理した後の強力保持率(乾熱老化性)は74
%であり、従来の同一重合度のPVA繊維より数段優れ
た高性能PVA繊維となった。実施例2はP=400
0、実施例3はP=10,000の高シンジオPVAの
場合であり、高重合度であるほど強度、弾性率は勿論の
事、WTbも180℃以上に増大して、いずれも図1に
示す本発明範囲(図中斜線部)を満足し、かつ乾熱老化
性は65%以上を保持し、PVAとは思えないほどの高
付加価値繊維となった。これらの繊維は、コンベアベル
ト、オイルブレーキホース、Vベルト、タイヤコードな
どのゴム補強材や、FRP、FRCなどの補強材、さら
には漁網、ロープ、土木シート、テントなど一般産業資
材にも長時間使用可能である事が判明した。比較例1
は、実施例1で架橋剤なしの場合であるが、ゲル弾性率
が0、WTbが153℃と耐湿熱性に劣っていた。比較
例2は、実施例2で酸化防止剤なしの場合であるが、乾
熱老化性が31%と低く高温長時間使用に耐えられなか
った。比較例3は、実施例2でアタクチックPVAを用
いた場合であるが、弾性率、WTbが低く、今一歩見劣
りする性能であった。
Example 1 is a high syndio PV with P = 1850.
In the case of A, the gel elastic modulus of the drawn yarn is 0.39 × 1.
The hot water cutoff temperature (WTb) was as high as 172 ° C. at 0 −2 g / d, the yarn strength was 16.8 g / d, and the yarn elastic modulus was 490 g / d. Furthermore, the drawn yarn is heated at 160 ° C. 24
Strength retention (dry heat aging) after dry heat treatment for 74 hours is 74
%, Which is a high-performance PVA fiber that is significantly superior to the conventional PVA fiber having the same degree of polymerization. In Example 2, P = 400
0, Example 3 is a case of high syndio PVA with P = 10,000, and the higher the degree of polymerization, the higher the degree of strength and elastic modulus, and of course, the WTb increased to 180 ° C. or higher. Satisfying the range of the present invention shown (hatched portion in the figure), and maintaining dry heat aging property of 65% or more, it became a high value-added fiber which cannot be considered as PVA. These fibers are used for rubber reinforcing materials such as conveyor belts, oil brake hoses, V-belts, and tire cords, reinforcing materials such as FRP and FRC, as well as general industrial materials such as fishing nets, ropes, civil engineering sheets, and tents for a long time. It turned out to be usable. Comparative Example 1
Shows the case where no cross-linking agent was used in Example 1, but the gel elastic modulus was 0 and WTb was 153 ° C., which was poor in wet heat resistance. Comparative Example 2 is a case in which no antioxidant was used in Example 2, but the dry heat aging property was as low as 31% and it could not withstand long-term use at high temperature. Comparative Example 3 is a case where the atactic PVA was used in Example 2, but the elastic modulus and WTb were low, and the performance was inferior.

【0031】実施例4 粘度平均重合度が21,000でシンジオタクチシティ
が61.3%、ケン化度が99.6モル%の高シンジオ
PVAを4.5重量%になるように180℃のエチレン
グリコールに溶解せしめた。その時同時に化2で示され
る酸化防止剤を0.8重量%添加した。次いで得られた
溶液を200℃にして150ホールのノズルより吐出さ
せメタノール/エチレングリコール=8/2、0℃の凝
固浴で乾湿式紡糸した(エアギャップ長15mm)。
Example 4 High SyndioPVA having a viscosity average degree of polymerization of 21,000, a syndiotacticity of 61.3% and a saponification degree of 99.6 mol% was added at 180 ° C. so as to be 4.5% by weight. It was dissolved in ethylene glycol. At that time, 0.8% by weight of the antioxidant shown in Chemical formula 2 was added at the same time. Next, the obtained solution was heated to 200 ° C. and discharged from a nozzle having 150 holes, and dry-wet spinning was performed in a coagulation bath of methanol / ethylene glycol = 8/2 and 0 ° C. (air gap length 15 mm).

【0032】[0032]

【化2】 [Chemical 2]

【0033】次いでメタノール浴で4.5倍湿延伸した
あと更にメタノールでエチレングリコールをほとんど全
部抽出したあと、リン酸を300ppm付着させて10
0℃にて乾燥した。得られた紡糸原糸を180℃−22
0℃−260℃の3段の熱風炉で77秒かけて総延伸倍
率19.8倍に延伸した。得られた延伸糸のゲル弾性率
は1.0×10-2g/d、WTbは212℃と非常に高
く、かつヤーン強度は22.1g/d、弾性率は617
g/d、乾熱老化性は67%であり、従来のPVA繊維
では得ることができないバランスのとれた高性能繊維で
あった。この繊維は産業資材用途に申し分のない耐久性
と機械的性能を有し、軽量化や形態安定化に十分期待で
きるものであった。
Next, the film was wet-stretched 4.5 times in a methanol bath, and then almost all of ethylene glycol was extracted with methanol.
It was dried at 0 ° C. The obtained spun yarn is 180 ° C-22
It was stretched in a three-stage hot air oven at 0 ° C to 260 ° C over 77 seconds to a total stretching ratio of 19.8 times. The obtained drawn yarn had a gel elastic modulus of 1.0 × 10 -2 g / d, a WTb of 212 ° C., which was very high, a yarn strength of 22.1 g / d, and an elastic modulus of 617.
The g / d and dry heat aging property were 67%, which was a well-balanced and high-performance fiber that cannot be obtained by the conventional PVA fiber. This fiber has durability and mechanical performance that are perfect for industrial material applications, and could be expected to be lightweight and stable in shape.

【0034】[0034]

【発明の効果】本発明により、タイヤ、自動車用ホー
ス、ベルトなどのゴム補強用や、プラスチックやセメン
トの補強用として用いた場合、さらには漁網、ロープ、
テント、土木シートなどの産業資材として用いた場合
に、長時間使用しても強力低下が少なく寿命の長い高シ
ンジオPVA繊維が得られる。
INDUSTRIAL APPLICABILITY According to the present invention, when it is used for rubber reinforcement of tires, automobile hoses, belts, etc., or reinforcement of plastics and cement, fishing nets, ropes,
When used as an industrial material such as a tent and a civil engineering sheet, a high syndio PVA fiber having a long life and a small decrease in strength can be obtained even when used for a long time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で規定する乾熱収縮率(WTb)とPV
Aの粘度平均重合度との関係を示す図であり、図中、斜
線部が本発明の範囲を示す。
FIG. 1 shows the dry heat shrinkage ratio (WTb) and PV specified in the present invention.
It is a figure which shows the relationship with the viscosity average degree of polymerization of A, and a hatched part shows the range of this invention in the figure.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粘度平均重合度が1500以上でシンジ
オタクティシティが58%以上であるポリビニルアルコ
ール系重合体からなり、ゲル弾性率が0.1×10-2
1.5×10-2g/d、熱水溶断温度(WTb)が下記
[1]式を満足し、且つ160℃,24時間乾熱処理後
の強力保持率が50%以上であることを特徴とするポリ
ビニルアルコール系繊維。 WTb≧1.2(P)0.4+135・・・・・[1] 但し、WTbは200mg/d荷重下の熱水溶断温度
(℃)で、Pはポリビニルアルコール系重合体の粘度平
均重合度である。
1. A polyvinyl alcohol-based polymer having a viscosity average degree of polymerization of 1500 or more and a syndiotacticity of 58% or more, and a gel elastic modulus of 0.1 × 10 -2 to.
1.5 × 10 -2 g / d, hot water cutoff temperature (WTb) satisfies the following formula [1], and the strength retention after dry heat treatment at 160 ° C for 24 hours is 50% or more. And polyvinyl alcohol fiber. WTb ≧ 1.2 (P) 0.4 +135 ... [1] where WTb is the hot water disconnection temperature (° C.) under a load of 200 mg / d, and P is the viscosity average degree of polymerization of the polyvinyl alcohol polymer. is there.
【請求項2】 粘度平均重合度が1500以上でシンジ
オタクティシティが58%以上であるポリビニルアルコ
ール系重合体を溶媒に溶解して得られた溶液をノズルよ
り吐出して糸条を形成し、そのまま該溶媒を乾燥除去す
るか、或いは抽出浴で該溶媒を除去してから乾燥し、そ
して230℃以上で乾熱延伸して総延伸倍率18倍以上
とするポリビニルアルコール系繊維の製造方法におい
て、(A)該乾燥までの工程で酸化防止剤を付与するこ
と、(B)溶媒除去から乾熱延伸直前までの間に架橋剤
を付与することを特徴とするポリビニルアルコール系繊
維の製造方法。
2. A yarn is formed by discharging a solution obtained by dissolving a polyvinyl alcohol polymer having a viscosity average degree of polymerization of 1500 or more and a syndiotacticity of 58% or more in a solvent through a nozzle, In the method for producing a polyvinyl alcohol fiber, the solvent is directly removed by drying, or the solvent is removed in an extraction bath, followed by drying, and dry drawing at 230 ° C. or more to give a total draw ratio of 18 times or more, (A) A method for producing a polyvinyl alcohol fiber, which comprises applying an antioxidant in the steps up to the drying and (B) applying a cross-linking agent between the removal of the solvent and immediately before dry heat drawing.
JP28008092A 1992-10-19 1992-10-19 Highly durable polyvinyl alcohol-based fiber and its production Pending JPH06128809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28008092A JPH06128809A (en) 1992-10-19 1992-10-19 Highly durable polyvinyl alcohol-based fiber and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28008092A JPH06128809A (en) 1992-10-19 1992-10-19 Highly durable polyvinyl alcohol-based fiber and its production

Publications (1)

Publication Number Publication Date
JPH06128809A true JPH06128809A (en) 1994-05-10

Family

ID=17620034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28008092A Pending JPH06128809A (en) 1992-10-19 1992-10-19 Highly durable polyvinyl alcohol-based fiber and its production

Country Status (1)

Country Link
JP (1) JPH06128809A (en)

Similar Documents

Publication Publication Date Title
JPS63120107A (en) High-strength and high-elastic modulus polyvinyl alcohol based fiber having excellent hot water resistance and production thereof
JPH06128809A (en) Highly durable polyvinyl alcohol-based fiber and its production
JP2888503B2 (en) Polyvinyl alcohol fiber excellent in wet heat resistance and heat aging resistance and method for producing the same
JPH01156517A (en) High-strength and high-modulus polyvinyl alcohol fiber having excellent hot-water resistance and production of said fiber
JPS61108713A (en) Polyvinyl alcohol fiber having good fiber properties and its production
JP3067056B2 (en) High strength polyvinyl alcohol fiber and method for producing the same
JP2851017B2 (en) Method for producing high strength polyvinyl alcohol fiber with good dry heat aging property
JPH06299410A (en) Polyvinyl alcohol-based fiber and its production
JPH0578910A (en) Polyvinyl alcohol fiber and its production
JP3183483B2 (en) Polyvinyl alcohol fiber having good fatigue resistance and method for producing the same
JP3316300B2 (en) Polyvinyl alcohol fiber excellent in durability and method for producing the same
JP2856837B2 (en) Polyvinyl alcohol fiber and method for producing the same
JP3021859B2 (en) High performance polyvinyl alcohol fiber and method for producing the same
JP3366476B2 (en) High-strength polyvinyl alcohol-based fiber excellent in wet heat resistance and method for producing the same
KR100531614B1 (en) Polyvinyl alcohol fiber having excellent hot water resistance
JP3210785B2 (en) Polyvinyl alcohol cord and method for producing the same
JP3183479B2 (en) High moisture-heat resistance high-strength polyvinyl alcohol fiber and method for producing the same
JPH04343708A (en) Production of high-tenacity polyvinyl alcohol-based fiber having excellent heat aging characteristic
JPH07243122A (en) High-modulus polyvinyl alcohol-based fiber with excellent fatigue resistance and its production
JPH08158149A (en) Production of polyvinyl alcohol-based fiber
JPH07278950A (en) Polyvinyl alcohol-based fiber having excellent high-temperature characteristic and its production
JPH05321020A (en) Method for continuously acetalizing polyvinyl alcohol-based yarn
JPS63190010A (en) Production of high-tenacity polyvinyl alcohol based fiber
JPS61289112A (en) Polyvinyl alcohol fiber having ultra-high tenacity
JPH08218277A (en) High-strength polyvinyl alcohol-based fiber excellent in fatigue resistance and its production