JPH06128697A - Ferritic stainless steel - Google Patents

Ferritic stainless steel

Info

Publication number
JPH06128697A
JPH06128697A JP27907292A JP27907292A JPH06128697A JP H06128697 A JPH06128697 A JP H06128697A JP 27907292 A JP27907292 A JP 27907292A JP 27907292 A JP27907292 A JP 27907292A JP H06128697 A JPH06128697 A JP H06128697A
Authority
JP
Japan
Prior art keywords
stainless steel
ferritic stainless
less
corrosion resistance
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27907292A
Other languages
Japanese (ja)
Inventor
Yoichi Tsuda
陽一 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27907292A priority Critical patent/JPH06128697A/en
Publication of JPH06128697A publication Critical patent/JPH06128697A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To produce a stainless steel having superior corrosion resistance in a high temp. pure water environment in the nuclear power plant by preparing a ferritic stainless steel having a specific composition where the contents of Ta and Cu are specified. CONSTITUTION:A ferritic stainless steel having a composition consisting of, by weight ratio, <=0.030% C, <=1.0% Si, <=1.0% Mn, 9.0-16.0% Cr, <=0.5& Mo, <=0.6% Ni, <=0.030% N, 6X(C+N) to 0.75% Ta, <=0.05% Co, 0.01-0.5% Cu, and the balance Fe with accompanying impurities is prepared. By this method, the ferritic stainless steel for a nuclear power plant, improved in corrosion resistance to a greater extent than heretofore, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子力発電プラント等
の熱交換器伝熱管用の耐食性にすぐれたフェライト系ス
テンレス鋼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferritic stainless steel having excellent corrosion resistance for heat exchanger heat transfer tubes in nuclear power plants and the like.

【0002】[0002]

【従来の技術】原子力発電プラントの給水加熱器及び湿
分分離加熱器などの熱交換器伝熱管材料は、従来耐食性
にすぐれたオ―ステナイト系ステンレス鋼が使用されて
きた。
2. Description of the Related Art Austenitic stainless steel having excellent corrosion resistance has been conventionally used as a material for heat exchanger tubes such as feed water heaters and moisture separation heaters in nuclear power plants.

【0003】しかし、オ―ステナイト系ステンレス鋼
は、Cl- イオンを含む環境では粒内型の応力腐食割れ
を生じる危険性が高く、復水器の海水リ―ク時にCl-
イオンによる応力腐食割れ発生の可能性がある。また、
合金成分中の主としてNiと共存している微量のCoが
溶出し、原子炉内に持ち込まれ、半減期の長いCo60
生成し放射線量を増大させる等の問題があり耐応力腐食
割れ性にすぐれ、耐食性を有し、Co含有量の少ない伝
熱管材料が要求されてきた。
[0003] However, Oh - austenitic stainless steel, Cl - In an environment containing ions high risk of developing stress corrosion cracking of grain types, condenser seawater Li - Cl when click -
Ions may cause stress corrosion cracking. Also,
A small amount of Co, which coexists mainly with Ni in the alloy components, elutes and is brought into the reactor, producing Co 60 with a long half-life and increasing the radiation dose. A heat transfer tube material having excellent corrosion resistance and low Co content has been demanded.

【0004】[0004]

【発明が解決しようとする課題】この要求に対し、最近
ではフェライト系ステンレス鋼が伝熱管材料として有望
であるとされるようになり、実用化へ向けての検討が進
んできた。フェライト系ステンレス鋼はオ―ステナイト
系ステンレス鋼と比較して、熱伝導率が高く、耐応力腐
食割れ性にすぐれ、Co含有量も極めて少ないので、原
子力用伝熱管材料として有用な材料であるが、耐食性は
オ―ステナイト系ステンレス鋼よりも劣り、主成分のF
eを主体としたクラッドが増大するという問題を有して
いる。FeはCo60より半減期は短いが、Fe59を生成
し放射線量の増大をもたらす要因となるので、極力低く
押さえなければならず、その解決策が模索されているの
が現状であった。
In response to this demand, ferritic stainless steel has recently been regarded as a promising material for heat transfer tubes, and studies for practical use have been advanced. Compared with austenitic stainless steel, ferritic stainless steel has high thermal conductivity, excellent stress corrosion cracking resistance, and extremely low Co content, so it is a useful material as a heat transfer tube material for nuclear power. , The corrosion resistance is inferior to austenitic stainless steel,
There is a problem that the cladding mainly composed of e increases. Although Fe has a shorter half-life than Co 60, it is a factor that produces Fe 59 and causes an increase in radiation dose, so it must be kept as low as possible, and the current situation is to find a solution.

【0005】本発明は以上のような従来材質の欠点を改
良するためになされたもので、原子力発電プラントの高
温純水環境中ですぐれた耐食性を有するフェライト系ス
テンレス鋼を提供することを目的とするものである。
The present invention has been made in order to improve the above drawbacks of conventional materials, and an object thereof is to provide a ferritic stainless steel having excellent corrosion resistance in a high temperature pure water environment of a nuclear power plant. To do.

【0006】[0006]

【課題を解決するための手段】本発明は、重量基準でC
0.030%以下,Si 1.0%以下,Mn 1.0%以下,Cr
9.0〜16.0%,Mo 0.5%以下,Ni 0.6%以下,N
0.030%以下,Ta6×(C+N)〜 0.75 %,Co 0.
05 %以下,Cu 0.01 〜 0.5%を含み、残部がFe及
び付随的不純物から成るフェラテト系ステンレス鋼を与
えるものである。
The present invention is based on C by weight.
0.030% or less, Si 1.0% or less, Mn 1.0% or less, Cr
9.0-16.0%, Mo 0.5% or less, Ni 0.6% or less, N
0.030% or less, Ta6 × (C + N) to 0.75%, Co 0.
It provides a ferrate stainless steel containing less than 05%, Cu 0.01-0.5%, and the balance Fe and incidental impurities.

【0007】[0007]

【作用】図1は、本発明になる13Crのフェライト系ス
テンレス鋼(実施例1〜3)と従来の13Crのフェライ
ト系ステンレス鋼(比較例)の腐食減量比の経時変化を
示すグラフである。このグラフによれば、従来材と比較
して本発明に係る材料の耐食性は大幅に向上しており、
従来材の耐食性に劣るという欠点が改善されたものであ
る。
FIG. 1 is a graph showing the change over time in the corrosion weight reduction ratio of the 13Cr ferritic stainless steel according to the present invention (Examples 1 to 3) and the conventional 13Cr ferritic stainless steel (Comparative Example). According to this graph, the corrosion resistance of the material according to the present invention is significantly improved as compared with the conventional material,
This is an improvement in the disadvantage that the conventional material is inferior in corrosion resistance.

【0008】[0008]

【実施例】以下、本発明の一実施例を説明する。本発明
者等は、炭素鋼に合金成分を微量添加することにより耐
食性は大幅に向上することに着目し、微量の合金成分を
添加したフェライト系ステンレス鋼の耐食性を検討した
結果、Cuの添加が耐食性を向上させることを見出し本
発明に至ったものである。
EXAMPLE An example of the present invention will be described below. The present inventors have noticed that the corrosion resistance is significantly improved by adding a small amount of alloying components to carbon steel, and as a result of examining the corrosion resistance of ferritic stainless steel containing a small amount of alloying components, the addition of Cu The present invention has been found to improve the corrosion resistance and has led to the present invention.

【0009】本発明では、重量比でC 0.030%以下,S
i 1.0%以下,Mn 1.0%以下,Cr 9.0〜16.0%,M
o 0.5%以下,Ni 0.6%以下,N 0.030%以下,Ta
6×(C+N)〜 0.75 %,Co 0.05 %以下,Cu
0.01 〜 0.5%を含み、残部がFe及び付随的不純物か
ら成るように構成する。
In the present invention, C is 0.030% or less by weight and S
i 1.0% or less, Mn 1.0% or less, Cr 9.0 to 16.0%, M
o 0.5% or less, Ni 0.6% or less, N 0.030% or less, Ta
6 × (C + N) to 0.75%, Co 0.05% or less, Cu
0.01 to 0.5%, the balance being Fe and incidental impurities.

【0010】次に、この発明のフェライト系ステンレス
鋼においてその化学組成を上記のように限定した理由を
説明する。以下の記載において組成を表す「%」は、特
に断らない限り重量基準とする。
Next, the reason why the chemical composition of the ferritic stainless steel of the present invention is limited as described above will be explained. In the following description, “%” representing a composition is based on weight unless otherwise specified.

【0011】Cはフェライト系ステンレス鋼の高温純水
環境での応力腐食割れ感受性を著しく高める元素であ
り、その量は低いほど好ましい。Cを 0.030%以下にす
ることにより応力腐食割れの発生を防止できるので、上
限を 0.030%とする。ただし、後述する安定化元素のT
aの添加により目的を達成できる。
C is an element that remarkably enhances the stress corrosion cracking susceptibility of ferritic stainless steel in a high temperature pure water environment, and the lower the amount, the more preferable. The occurrence of stress corrosion cracking can be prevented by setting C to 0.030% or less, so the upper limit is made 0.030%. However, the stabilizing element T described below
The purpose can be achieved by adding a.

【0012】NはCと同様フェライト系ステンレス鋼の
応力腐食割れ感受性を著しく高める元素であり、その量
は低いほど好ましい。Nを 0.030%以下にすることによ
り応力腐食割れの発生を防止できるので、上限を 0.030
%とする。
Like C, N is an element that remarkably enhances the stress corrosion cracking susceptibility of ferritic stainless steel, and the lower the amount, the more preferable. Since the occurrence of stress corrosion cracking can be prevented by setting N to 0.030% or less, the upper limit is 0.030.
%.

【0013】TaはCおよびNを固定するため溶接時の
鋭敏化を防止し、粒界型応力腐食割れを抑制する効果が
あるが、6×(C+N)%未満では十分な効果が得られ
ないため、下限を6×(C+N)%とする。一方、 0.7
5 %を超える添加はじん性の低下をきたすので上限は
0.75 %とする。
Since Ta fixes C and N, it has the effect of preventing sensitization during welding and suppressing grain boundary type stress corrosion cracking, but if less than 6 × (C + N)%, a sufficient effect cannot be obtained. Therefore, the lower limit is set to 6 × (C + N)%. On the other hand, 0.7
Addition of more than 5% causes deterioration of toughness, so the upper limit is
0.75%

【0014】Crは、フェライト系ステンレス鋼の耐食
性向上に不可欠な成分である。高温純水環境では、全面
腐食に対し 9.0%未満では十分な耐食性がないので、下
限を9.0%とする。Cr量が多くなればなるほど耐食性
は向上すが、フェライト系ステンレス鋼に特有な 475℃
脆性が生ずるおそれがあるため上限は16.0%に制限して
いる。Moは、Crと同様含有量が増大すると 475℃脆
性が生ずるおそれがあるため、上限を 0.5%に制限して
いる。
Cr is an essential component for improving the corrosion resistance of ferritic stainless steel. In a high-temperature pure water environment, if the total corrosion is less than 9.0%, the corrosion resistance is not sufficient, so the lower limit is 9.0%. Corrosion resistance improves as the amount of Cr increases, but at 475 ° C, which is peculiar to ferritic stainless steel.
The upper limit is limited to 16.0% because brittleness may occur. As with Cr, if the content of Mo increases, brittleness at 475 ° C may occur, so the upper limit is set to 0.5%.

【0015】Cuは、初期腐食を少なくし、Cu含有の
ち密な密着性の良い保護皮膜を形成させるために 0.01
〜 0.5%添加する。CuはCrの存在下においてその効
果を発揮するが、 0.01 %未満の添加ではその効果は十
分ではないので、下限は 0.01 %とする。しかし 0.5%
を超えて添加しても、もはやそれ以上の効果は望めない
ので、上限を 0.5%とする。
Cu is used in order to reduce initial corrosion and form a dense protective film containing Cu and having a good adhesion.
Add ~ 0.5%. Cu exerts its effect in the presence of Cr, but the effect is not sufficient with the addition of less than 0.01%, so the lower limit is made 0.01%. But 0.5%
If it is added in excess of 10%, no further effect can be expected anymore, so the upper limit is made 0.5%.

【0016】Niは、オ―ステナイト相形成元素であり
含有量が増大するにつれて、Fe−Cr系合金状態図の
γル―プ幅が広がり、溶接熱影響部にマルテンサイトが
変態生成しやすくなり、溶接割れを引き起こすため、そ
の量は低いほど好ましい。Niを 0.6%以下にすること
により溶接熱影響部におけるマルテンサイトの変態生成
を防止することができるので、上限を 0.6%とする。
Ni is an austenite phase forming element, and as the content increases, the γ loop width of the Fe-Cr alloy phase diagram widens, and martensite is likely to be transformed in the weld heat affected zone. The lower the amount, the better because it causes weld cracking. Since the transformation generation of martensite in the weld heat affected zone can be prevented by setting Ni to 0.6% or less, the upper limit is set to 0.6%.

【0017】Coは、Niと同様オ―ステナイト相形成
元素であり、かつ放射線源のCo60を生成する元素なの
で、その量は低いほど好ましいが、 0.05 %までは影響
がないので、上限を 0.05 %とする。上記成分ならびに
主成分としてFeを加える際に付随的に含まれる不純物
はなるべく少ない方が好ましい。
Like Ni, Co is an austenite phase forming element and is an element that produces Co 60 of the radiation source. Therefore, the lower the amount, the better. However, since it has no effect up to 0.05%, the upper limit is 0.05. %. It is preferable that impurities contained incidentally when Fe is added as the above-mentioned component and the main component are as small as possible.

【0018】本発明のフェライト系ステンレス鋼は、ま
ず各素材金属を真空あるいは大気圧下で混合溶解し、脱
酸後において実質的に上記組成のフェライト系ステンレ
ス鋼溶湯を得、次いでこれを造塊し、圧延を施すことに
より伝熱管用の素材となる。このようにして作られた素
材は最終用途に応じて抽伸、熱処理、フィン加工等を施
すことにより、給水加熱器、湿分分離加熱器伝熱管など
に形成される。
The ferritic stainless steel of the present invention is prepared by first melting and mixing each raw material metal under vacuum or atmospheric pressure to obtain a molten ferritic stainless steel of the above composition after deoxidation, and then making an ingot. Then, it becomes a material for heat transfer tubes by rolling. The material thus produced is subjected to drawing, heat treatment, fin processing, etc. according to the end use to form a feed water heater, a moisture separation heater, a heat transfer tube, and the like.

【0019】第1表に示す組成(表中の数字は重量%を
意味する)を有する4種類の13Cr系のフェライト系ス
テンレス鋼をそれぞれ溶解し、造塊し、圧延加工を行い
熱処理を施して、素材試験片を得た。ここで実施例は本
発明になる材料であり、比較例は13Cr系のフェライト
系ステンレス鋼として一般的なSUS410Tiであ
る。
Four kinds of 13Cr type ferritic stainless steels having the compositions shown in Table 1 (the numbers in the table mean% by weight) are melted, ingoted, rolled and heat treated. A material test piece was obtained. Here, the examples are the materials according to the present invention, and the comparative examples are SUS410Ti, which is generally used as 13Cr type ferritic stainless steel.

【0020】[0020]

【表1】 [Table 1]

【0021】かくして得られた素材試験片について、実
機湿分分離加熱器において最も腐食の激しい箇所に相当
する条件として温度 200℃、湿り度11%、流速30m/sec
の蒸気条件にて腐食試験を実施した。得られた結果を図
1に示す。図中、1は比較例の特性曲線、2は実施例1
の特性曲線、3は実施例2の特性曲線、4は実施例3の
特性曲線をそれぞれ示す。図1に示す結果をみれば、本
発明による素材は何れも耐食性が従来材(比較例)より
優れている。特に実施例3においては、腐食減量は従来
材の1/2以下であり、本発明による素材では従来材に
比較して耐食性が大幅に改善されていることがわかる。
With respect to the material test piece thus obtained, the conditions corresponding to the most corrosive part in the actual moisture separator / heater were a temperature of 200 ° C., a wetness of 11% and a flow rate of 30 m / sec.
Corrosion test was carried out under the steam conditions. The obtained results are shown in FIG. In the figure, 1 is the characteristic curve of the comparative example, and 2 is the example 1
3 is a characteristic curve of the second embodiment, and 4 is a characteristic curve of the third embodiment. From the results shown in FIG. 1, all the materials according to the present invention are superior in corrosion resistance to the conventional material (comparative example). Particularly, in Example 3, the corrosion weight loss is 1/2 or less of that of the conventional material, and it can be seen that the material according to the present invention has significantly improved corrosion resistance as compared with the conventional material.

【0022】上記実施例においては、材料は金属地肌の
ままで評価したものであるが、プレフィルミング処理を
施せば更に耐食性が向上するのはもちろんのことであ
り、製造方法は特に制限されるものではない。
In the above examples, the material was evaluated with the metal surface as it was, but it goes without saying that the corrosion resistance is further improved by the pre-filming treatment, and the manufacturing method is particularly limited. Not a thing.

【0023】[0023]

【発明の効果】本発明によれば比較的安価な元素のわず
かな添加により、従来の素材に比べて耐食性が大幅に改
善されたフェライト系ステンレス鋼が与えられる。この
ため、例えば給水加熱器、湿分分離加熱器などの伝熱管
に用いれば、従来材で有しているすぐれた耐応力腐食割
れ性、低Coに併せて給水中のFeクラッドが減少し、
原子力発電プラントの安全性、信頼性が向上するなど、
産業上有利な効果がもたらされる。
According to the present invention, a ferritic stainless steel having a significantly improved corrosion resistance as compared with conventional materials can be provided by adding a relatively inexpensive element in a small amount. Therefore, for example, when used in a heat transfer tube such as a feed water heater or a moisture separation heater, the Fe clad in the feed water is reduced in addition to the excellent stress corrosion cracking resistance and low Co that conventional materials have,
For example, the safety and reliability of nuclear power plants are improved.
Industrially beneficial effects are brought about.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による特性図FIG. 1 is a characteristic diagram according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…比較例の特性曲線 2…実施例1の特性曲線 3…実施例2の特性曲線 4…実施例3の特性曲線 1 ... Characteristic curve of comparative example 2 ... Characteristic curve of Example 1 3 ... Characteristic curve of Example 2 4 ... Characteristic curve of Example 3

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量比でC 0.030%以下,Si 1.0%以
下,Mn 1.0%以下,Cr 9.0〜16.0%,Mo 0.5%以
下,Ni 0.6%以下,N 0.030%以下,Ta6×(C+
N)〜 0.75 %,Co 0.05 %以下,Cu 0.01 〜 0.5
%を含み、残部がFe及び付随的不純物から成るフェラ
イト系ステンレス鋼。
1. A weight ratio of C 0.030% or less, Si 1.0% or less, Mn 1.0% or less, Cr 9.0 to 16.0%, Mo 0.5% or less, Ni 0.6% or less, N 0.030% or less, Ta6 × (C +
N) to 0.75%, Co 0.05% or less, Cu 0.01 to 0.5
%, With the balance Fe and incidental impurities, ferritic stainless steel.
JP27907292A 1992-10-19 1992-10-19 Ferritic stainless steel Pending JPH06128697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27907292A JPH06128697A (en) 1992-10-19 1992-10-19 Ferritic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27907292A JPH06128697A (en) 1992-10-19 1992-10-19 Ferritic stainless steel

Publications (1)

Publication Number Publication Date
JPH06128697A true JPH06128697A (en) 1994-05-10

Family

ID=17606026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27907292A Pending JPH06128697A (en) 1992-10-19 1992-10-19 Ferritic stainless steel

Country Status (1)

Country Link
JP (1) JPH06128697A (en)

Similar Documents

Publication Publication Date Title
AU650799B2 (en) Duplex stainless steel having improved strength and corrosion resistance
JPS59176501A (en) Boiler tube
JP2005023353A (en) Austenitic stainless steel for high temperature water environment
JPS58217662A (en) High strength and high corrosion resistant boiler tube having resistance against brittlement during use
JPH028840B2 (en)
JPH0114305B2 (en)
JP3982069B2 (en) High Cr ferritic heat resistant steel
JPS5950437B2 (en) Covered arc welding rod for Cr-Mo based low alloy steel
JP2017020054A (en) Stainless steel and stainless steel tube
JP3848463B2 (en) High strength austenitic heat resistant steel with excellent weldability and method for producing the same
JPH0472013A (en) Manufacture of two phase stainless steel having excellent corrosion resistance to concentrated sulfuric acid
JPH06128697A (en) Ferritic stainless steel
JPH07138708A (en) Austenitic steel good in high temperature strength and hot workability
JPS6376854A (en) Heat resistant ferritic steel having superior strength at high temperature
JPH0570694B2 (en)
JPH0219447A (en) Ferritic stainless steel
JPS63434A (en) High strength ferrite steel for atomic reactor
JPH02145752A (en) Ferritic stainless steel
JP2014040669A (en) High corrosion-resistant alloy excellent in intergranular corrosion resistance
JPS5980755A (en) Chrome-molybdenum steel having superior temper embrittlement resistance at weld heat-affected zone
JPH06184631A (en) Production of nitric acid resistant austenitic stainless steel
JPH01242759A (en) Ferritic stainless steel
JPS6366383B2 (en)
US3859080A (en) Corrosion resistant alloys
JPS62297440A (en) Austenitic stainless steel having superior pitting corrosion resistance