JPH06126188A - Reducing catalyst - Google Patents

Reducing catalyst

Info

Publication number
JPH06126188A
JPH06126188A JP3105010A JP10501091A JPH06126188A JP H06126188 A JPH06126188 A JP H06126188A JP 3105010 A JP3105010 A JP 3105010A JP 10501091 A JP10501091 A JP 10501091A JP H06126188 A JPH06126188 A JP H06126188A
Authority
JP
Japan
Prior art keywords
substrate
platinum group
catalyst
group metal
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3105010A
Other languages
Japanese (ja)
Other versions
JP2707370B2 (en
Inventor
Tadashi Hiraide
忠 平出
Takaaki Goto
孝明 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsurumi Soda Co Ltd
Original Assignee
Tsurumi Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsurumi Soda Co Ltd filed Critical Tsurumi Soda Co Ltd
Priority to JP3105010A priority Critical patent/JP2707370B2/en
Publication of JPH06126188A publication Critical patent/JPH06126188A/en
Application granted granted Critical
Publication of JP2707370B2 publication Critical patent/JP2707370B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To provide a reducing catalyst having enhanced catalytic activity and excellent durability by combining water repellent substance with platinum group metals. CONSTITUTION:Suspension dispersed with powder of water repellent substance e.g. fluororesin is mixed with the organic solvent of platinum group metallic salt. The surface of a substrate constituted of the same material as, i.e., fluororesin is coated with the mixed solution. Thereafter the surface is dried and heated at the specified temperature to obtain both mother particles 1 reduced to platinum group metals and many small particles of fluororesin which are stuck on the surface thereof. At the time, a part of the small particles is unified to the substrate 3 by softening and melting. As a result, a reaction region is large and a catalyst difficult to be peeled is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば水素ガスで酸化
体物質を還元する場合に用いられる還元触媒に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reduction catalyst used when reducing an oxidant substance with hydrogen gas, for example.

【0002】[0002]

【従来の技術】一般に水素ガスにより酸化体物質を還元
する場合、白金族金属を触媒として用いている。例え
ば、Fe/Cr系レドックス電池においては、過剰なF
3+イオンを還元するために、陽極側にていわゆる平
衡セルにより水素ガスと電解質溶液とを接触させている
が、その還元反応を促進するために白金族金属が用いら
れている。
2. Description of the Related Art Generally, a platinum group metal is used as a catalyst when reducing an oxidant substance with hydrogen gas. For example, in a Fe / Cr-based redox battery, excess F
In order to reduce the e 3+ ions, hydrogen gas and an electrolyte solution are brought into contact with each other by a so-called equilibrium cell on the anode side, and a platinum group metal is used to accelerate the reduction reaction.

【0003】このような平衡セルと同種の構造をとるも
のとしては、LNGを改質して発生する水素ガスおよび
O2を使用して発電を行う燃料電池のガス極が知られて
いる。またソーダ電解におけるガス拡散型電極の使用に
よる水素ガスを発生しない省電解方法が検討されてい
る。
A gas electrode of a fuel cell for generating electric power by using hydrogen gas generated by reforming LNG and O 2 is known as one having a structure similar to that of such a balanced cell. In addition, a method of electrolysis saving that does not generate hydrogen gas by using a gas diffusion type electrode in soda electrolysis is being studied.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
平衡セルにおいては、水素ガス、触媒及び液体が接触す
る反応領域を大きくとることが困難であり、工業的に使
用するためには、多層の平衡セルが必要となり、不経済
であるという問題がある。
However, in the conventional equilibrium cell, it is difficult to secure a large reaction region where the hydrogen gas, the catalyst and the liquid come into contact with each other. There is a problem that a cell is necessary and it is uneconomical.

【0005】本発明はこのような事情のもとになされた
ものであり、反応領域が大きく、還元処理を効率的に行
なうことのできる還元触媒を提供することにある。
The present invention has been made under these circumstances, and an object thereof is to provide a reduction catalyst having a large reaction region and capable of efficiently performing a reduction treatment.

【0006】[0006]

【課題を解決するための手段】本発明の還元触媒は、例
えば図1に示すように白金族金属よりなる母粒子1の表
面に撥水性物質によりなる多数の子粒子2を擬集付着し
てなるものである。ただし撥水性物質を母粒子、白金族
金属を子粒子とすることもできる。
The reduction catalyst of the present invention comprises, for example, as shown in FIG. 1, a large number of child particles 2 made of a water-repellent substance, which are aggregated and attached to the surface of a mother particle 1 made of a platinum group metal. It is a thing. However, the water-repellent substance may be used as the mother particles and the platinum group metal may be used as the child particles.

【0007】白金族金属を母粒子とする場合、例えば、
子粒子の一部を撥水性物質よりなる多孔質の基体に溶着
させてもよく、この場合先述したリバランスシステムな
どに好適に使用できる。このような構成の触媒は、例え
ば次のようにして製造することができる。
When a platinum group metal is used as a mother particle, for example,
A part of the child particles may be welded to a porous substrate made of a water repellent material, and in this case, the child particles can be preferably used in the rebalance system described above. The catalyst having such a structure can be manufactured, for example, as follows.

【0008】先ず白金族金属塩を例えばエタノールなど
の有機溶媒に溶解した溶液と、第1の撥水性物質の粉末
を界面活性剤を含む水もしくはアルコールなどの分散媒
に分散してなる懸濁液とを混合して塗布液を得る。
First, a suspension obtained by dissolving a platinum group metal salt in an organic solvent such as ethanol and a powder of the first water-repellent substance in a dispersion medium such as water or alcohol containing a surfactant. And are mixed to obtain a coating liquid.

【0009】一方軟化点が前記第1の撥水性物質の軟化
点と同じかまたは近似した第2の撥水性物質よりなる例
えば多孔質の基体を用意する。これら第1及び第2の撥
水性物質としては同じ物質を用いることが好ましく、例
えばPTFE(ポリテトラフルオルフィン)などのフッ
素樹脂を用いることができる。そして前記混合液中に基
体を浸漬するか、あるいは混合液を基体に塗布または噴
霧するなどして基体表面(多孔質の場合内部の表面も含
む)に混合液をコーティングし、その後基体を乾燥す
る。これにより基体表面に白金族金属塩の結晶粒子が析
出すると共に当該結晶粒子の表面に例えば多数のPTF
Eの子粒子が擬集付着する。
On the other hand, there is prepared, for example, a porous substrate made of a second water repellent substance having a softening point which is the same as or close to that of the first water repellent substance. It is preferable to use the same substance as the first and second water repellent substances, and for example, a fluororesin such as PTFE (polytetrafluorphine) can be used. Then, the substrate is dipped in the mixed solution, or the mixed solution is applied to or sprayed on the substrate to coat the mixed solution on the surface of the substrate (including the inner surface in the case of a porous body), and then the substrate is dried. . As a result, crystal particles of the platinum group metal salt are deposited on the surface of the substrate, and a large number of PTFs are formed on the surface of the crystal particles.
The child particles of E are aggregated and attached.

【0010】更に続けて前記混合液を基体表面にコーテ
ィングした後同様に乾燥し、この操作を繰り返して基体
表面に例えば厚さ0、5〜10μの粒子層を形成する。
しかる後水素ガス中で基体をPTFEの軟化点付近例え
ば250〜310℃に加熱し、白金族金属塩を白金族金
属まで還元する。尚、基体の乾燥は格別に処理を行うこ
となくこの加熱処理に組み込むことができる。
Subsequently, the mixed solution is coated on the surface of the substrate and dried in the same manner, and this operation is repeated to form a particle layer having a thickness of 0, 5 to 10 μm on the surface of the substrate.
After that, the substrate is heated to a temperature near the softening point of PTFE, for example, 250 to 310 ° C. in hydrogen gas to reduce the platinum group metal salt to the platinum group metal. The drying of the substrate can be incorporated in this heat treatment without any special treatment.

【0011】このときPTFEが軟化溶融し、白金族金
属粒子同士がPTFEの子粒子の溶着により結着すると
共に、子粒子及び基体が溶着により一体化する。このよ
うにして得られた触媒の構造を図2に模式的示す。図中
3は基体、4は溶着部である。 以上において、白金族
金属としては、Pt,Ir,Rh,Ruなどを単体とし
て用いてもよいが、これらを2種以上組み合わせてなる
合金として用いてもよ
At this time, the PTFE softens and melts, the platinum group metal particles are bonded to each other by welding of the PTFE child particles, and the child particles and the substrate are integrated by welding. The structure of the catalyst thus obtained is schematically shown in FIG. In the figure, 3 is a substrate, and 4 is a welded portion. In the above, as the platinum group metal, Pt, Ir, Rh, Ru, etc. may be used alone, but may be used as an alloy formed by combining two or more kinds thereof.

【0012】い。Yes.

【作用】本発明の触媒を用いて、例えば水素ガスにより
FeCl溶液をFeCl溶液に還元する場合、その
反応は白金族金属と溶液と水素ガスとの接触領域(三相
界面)で進行するが撥水性物質の表面に水素ガスが存在
すると水分が弾かれるため、反応領域は図3に示すよう
に母粒子1と子粒子2との接触部Sとなる。
When the FeCl 3 solution is reduced to the FeCl 2 solution with hydrogen gas using the catalyst of the present invention, the reaction proceeds in the contact region (three-phase interface) between the platinum group metal, the solution and the hydrogen gas. When hydrogen gas is present on the surface of the water-repellent substance, water is repelled, so that the reaction region becomes the contact portion S between the mother particle 1 and the child particle 2 as shown in FIG.

【0013】ここで例えば撥水性物質によりなる基体に
白金族金属粒子を単に付着した場合には、各粒子と基体
との接触部のみが反応領域となるが、本発明の場合には
母粒子とこれら表面に多数付着した子粒子との接触部が
反応領域となるので、反応領域を大きくとることがで
き、この結果例えば白金黒並みの高い触媒活性を得るこ
とができ、三相界面反応を効率的に行うことができる。
Here, for example, when platinum group metal particles are simply adhered to a substrate made of a water-repellent substance, only the contact portion between each particle and the substrate serves as a reaction region. Since the reaction area is the contact area with many particles attached to these surfaces, the reaction area can be made large, and as a result, for example, high catalytic activity equivalent to platinum black can be obtained, and the three-phase interfacial reaction can be performed efficiently. Can be done on a regular basis.

【0014】また例えばレドックス電池のリバランスシ
ステムに本発明の触媒を適用する場合、白金族金属粒子
と基体とが子粒子同士の溶着及び子粒子と基体との溶着
により強固に結着され、その剥離を防止でき大きな耐久
性が得られる。
When the catalyst of the present invention is applied to, for example, a redox battery rebalancing system, the platinum group metal particles and the substrate are firmly bound to each other by welding the child particles to each other and welding the child particles to the substrate. Peeling can be prevented and great durability can be obtained.

【0015】[0015]

【実施例】塩化白金酸(HPtCl・6HO)の
溶解液を用い、Pt2gを含むエタノール溶液50ml
とPTFE粉末4gを分散した懸濁液12gとを混合
し、この混合液中にPTFEの切削片(幅5mm長さ5
〜10cm平均厚さ100μ)よりなる、200gの基
体を浸漬した後乾燥し、浸漬、乾燥を25〜30回繰り
返して平均厚さ1、2μ程度の粒子層を得る。しかる後
これを水素ガス雰囲気炉中にて280℃で60分間加熱
し、これにより白金塩を白金金属まで還元すると共に、
その表面に付着しているPTFEの粉末の一部と基体と
を軟化溶融により互いに溶着する。こうして得られた触
媒を触媒Aとする。
[Example] 50 ml of an ethanol solution containing 2 g of Pt using a solution of chloroplatinic acid (H 2 PtCl 6 · 6H 2 O)
And 12 g of a suspension in which 4 g of PTFE powder are dispersed are mixed, and PTFE cutting pieces (width 5 mm, length 5
Approximately 10 cm average thickness of 100 μ) is immersed in 200 g of a substrate and then dried, and immersion and drying are repeated 25 to 30 times to obtain a particle layer having an average thickness of about 1 or 2 μ. Thereafter, this is heated in a hydrogen gas atmosphere furnace at 280 ° C. for 60 minutes to reduce the platinum salt to platinum metal, and
Part of the PTFE powder adhering to the surface and the substrate are welded to each other by softening and melting. The catalyst thus obtained is referred to as catalyst A.

【0016】一方この触媒Aと比較するためにPt2g
を含むエタノール溶液を上記の方法で同様の基体にコー
ティング及び加熱還元処理を行ない、基体上に白金の粒
子の層を形成した比較触媒Bを得た。
On the other hand, for comparison with this catalyst A, 2 g of Pt
The same substrate was coated with an ethanol solution containing the above by the above method and heat reduction treatment was carried out to obtain a comparative catalyst B in which a layer of platinum particles was formed on the substrate.

【0017】本発明の触媒A及び比較触媒Bについて次
のような実験を行って触媒の初期活性を調べた。
The following experiment was conducted on the catalyst A of the present invention and the comparative catalyst B to examine the initial activity of the catalyst.

【0018】図4に示すように還元塔5に触媒Aまたは
Bを充填すると共に、供試液として塩化第2鉄溶液(3
7重量%)2lを用い、これを還元塔5と受けタンク6
との間をポンプPにより循環させ、還元塔5の下方部よ
り水素ガスをバブリングさせて、塩化第2鉄溶液を還元
させた。反応状態については、酸化還元電位(ORP)
計7の計測値により確認した。この操作を複数回繰り返
して各回毎の塩化第2鉄溶液の還元に要する時間を触媒
A,B夫々について調べたところ図5に示す結果が得ら
れた。グラフA,Bは夫々触媒A,Bに対応する。
As shown in FIG. 4, the reducing tower 5 was filled with the catalyst A or B, and the ferric chloride solution (3
7 wt%) 2 liters, which are used as a reducing tower 5 and a receiving tank 6
And a hydrogen gas was bubbled from the lower part of the reduction tower 5 to reduce the ferric chloride solution. Regarding the reaction state, the redox potential (ORP)
It was confirmed by a total of 7 measured values. This operation was repeated a plurality of times, and the time required for reducing the ferric chloride solution each time was examined for each of the catalysts A and B, and the results shown in FIG. 5 were obtained. Graphs A and B correspond to catalysts A and B, respectively.

【0019】以上の結果から比較触媒Bの初期活性は本
発明の触媒Aの60〜70%であった。
From the above results, the initial activity of comparative catalyst B was 60 to 70% of that of catalyst A of the present invention.

【0020】また、図6、図7は夫々触媒A,Bの表面
状態写真(SEM)であり、触媒Bは基板に単に白金族
金属が付着しているにすぎないが、触媒Aは白金族金属
がPTFEの溶融により基板に結着している様子が伺え
る。
FIGS. 6 and 7 are surface state photographs (SEM) of the catalysts A and B, respectively. The catalyst B is merely a platinum group metal attached to the substrate, but the catalyst A is a platinum group metal. It can be seen that the metal is bound to the substrate due to the melting of PTFE.

【0021】以上において本発明では、必ずしも基体を
構成要素とするものではなく、例えば実施例で得られた
塗布液をそのまま乾燥させたものを触媒として用いても
よい。 また基体を用いる場合には、セラミック、アル
ミナ、その他種々の金属を撥水性物質で被覆したものを
使用してもよい。
In the present invention described above, the substrate is not always used as a constituent element, and for example, the coating solution obtained by drying the coating solution obtained in the examples may be used as a catalyst. When a substrate is used, ceramics, alumina, or other various metals coated with a water-repellent substance may be used.

【0022】[0022]

【発明の効果】請求項1の発明によれば、白金族金属と
撥水性物質を組み合わせて触媒を構成するにあたって、
母粒子の表面に多数の子粒子を付着してなるものである
ため、(作用)の項で詳述したように反応領域を大きく
とることができ、従って触媒活性が高く、還元処理を効
率的に行うことができる。
According to the invention of claim 1, when a catalyst is formed by combining a platinum group metal and a water-repellent substance,
Since a large number of child particles are attached to the surface of the mother particle, a large reaction region can be secured as described in detail in the section (Action), and therefore the catalytic activity is high and the reduction treatment is efficient. It can be carried out.

【0023】請求項2,3の発明によれば、請求項1で
得られる効果に加えて、白金族金属が撥水性物質の溶着
部を介して基体に強固に結着されるので、物理的剥離や
薬品の劣化による剥離を抑えることができて、触媒の寿
命が長く、例えばレドックス電池のリバランスシステム
に好適に用いることができる。
According to the inventions of claims 2 and 3, in addition to the effect obtained in claim 1, since the platinum group metal is firmly bound to the substrate through the welded portion of the water-repellent substance, it is physically Peeling and peeling due to deterioration of chemicals can be suppressed, and the life of the catalyst is long, and the catalyst can be suitably used for a redox battery rebalancing system, for example.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の還元触媒の一例を示す説明図である。FIG. 1 is an explanatory diagram showing an example of a reduction catalyst of the present invention.

【図2】本発明の還元触媒の他の例を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing another example of the reduction catalyst of the present invention.

【図3】本発明の還元触媒の一部を拡大して示す説明図
である。
FIG. 3 is an explanatory view showing an enlarged part of the reduction catalyst of the present invention.

【図4】本発明の実験例に用いた装置の概略図である。FIG. 4 is a schematic view of an apparatus used in an experimental example of the present invention.

【図5】触媒の特性の経時変化を示すグラフである。FIG. 5 is a graph showing the change over time in the characteristics of the catalyst.

【図6】本発明の還元触媒を示す表面状態写真である。FIG. 6 is a surface state photograph showing the reduction catalyst of the present invention.

【図7】本発明の還元触媒を示す表面状態写真である。FIG. 7 is a surface state photograph showing the reduction catalyst of the present invention.

【符号の説明】[Explanation of symbols]

1 母粒子 2 子粒子 3 基体 4 溶着部 5 接触部 1 Mother particle 2 Child particle 3 Substrate 4 Welding part 5 Contact part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】白金族金属及び撥水性物質の一方により母
粒子を、他方により子粒子を夫々構成し、母粒子の表面
に多数の子粒子を付着してなることを特徴とする還元触
媒。
1. A reduction catalyst comprising a mother particle made of one of a platinum group metal and a water-repellent substance, and a child particle made of the other, and a large number of child particles attached to the surface of the mother particle.
【請求項2】白金族金属よりなる母粒子の表面に撥水性
物質よりなる多数の子粒子が付着され、子粒子の一部が
撥水性物質よりなる基体に溶着してなることを特徴とす
る還元触媒。
2. A reduction characterized in that a large number of child particles made of a water repellent material are attached to the surface of mother particles made of a platinum group metal, and a part of the child particles are welded to a substrate made of a water repellent material. catalyst.
【請求項3】白金族金属塩の溶液と第1の撥水性物質よ
りなる粒末との混合液を、軟化点が前記第1の撥水性物
質の軟化点と同じかまたは近似した第2の撥水性物質よ
りなる基体に積層し、ついで前記基体を乾燥して前記粉
末が付着した白金族金属塩の結晶粒子を折出しその後前
記粉末または基体の軟化点と同じかあるいは、近似した
温度により還元雰囲気中にて加熱し、これによって白金
族金属塩を金属まで還元すると共に前記粉末の一部及び
基体を互に溶着することを特徴とする還元触媒の製造方
法。
3. A second mixed solution having a softening point equal to or close to that of the first water-repellent substance in a mixed liquid of a solution of the platinum group metal salt and the powdery particles of the first water-repellent substance. It is laminated on a substrate made of a water-repellent substance, and then the substrate is dried to form crystal particles of the platinum group metal salt to which the powder adheres, and then the powder or the substrate is reduced at a temperature that is the same as or close to the softening point of the substrate. A method for producing a reduction catalyst, which comprises heating in an atmosphere to reduce the platinum group metal salt to a metal and welding a part of the powder and a substrate to each other.
JP3105010A 1991-03-15 1991-03-15 Method for producing reduction catalyst Expired - Fee Related JP2707370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3105010A JP2707370B2 (en) 1991-03-15 1991-03-15 Method for producing reduction catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3105010A JP2707370B2 (en) 1991-03-15 1991-03-15 Method for producing reduction catalyst

Publications (2)

Publication Number Publication Date
JPH06126188A true JPH06126188A (en) 1994-05-10
JP2707370B2 JP2707370B2 (en) 1998-01-28

Family

ID=14396106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3105010A Expired - Fee Related JP2707370B2 (en) 1991-03-15 1991-03-15 Method for producing reduction catalyst

Country Status (1)

Country Link
JP (1) JP2707370B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116442A (en) * 1979-02-28 1980-09-08 Yardney Electric Corp Preparation of catalyst for hydrogenation
JPS55121842A (en) * 1979-03-12 1980-09-19 Hitachi Ltd Chemical reduction process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116442A (en) * 1979-02-28 1980-09-08 Yardney Electric Corp Preparation of catalyst for hydrogenation
JPS55121842A (en) * 1979-03-12 1980-09-19 Hitachi Ltd Chemical reduction process

Also Published As

Publication number Publication date
JP2707370B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
An et al. A self‐standing high‐performance hydrogen evolution electrode with nanostructured NiCo2O4/CuS heterostructures
Yu et al. Direct methanol alkaline fuel cell with catalysed metal mesh anodes
US6670301B2 (en) Carbon monoxide tolerant electrocatalyst with low platinum loading and a process for its preparation
Zhang et al. Sustained potential oscillations in proton exchange membrane fuel cells with PtRu as anode catalyst
Wei et al. Electrochemical deposition of PtRu on an uncatalyzed carbon electrode for methanol electrooxidation
TWI650897B (en) Fuel cell electrode material, method for manufacturing fuel cell electrode material, and fuel cell device
WO2001099217A1 (en) Method of fabricating catalyzed porous carbon electrode for fuel cell
Lüsi et al. Oxygen reduction reaction on carbon-supported palladium nanocubes in alkaline media
Tung et al. Electrochemical growth of gold nanostructures on carbon paper for alkaline direct glucose fuel cell
Yue et al. Mechanisms of Enhanced Electrocatalytic Activity for Oxygen Reduction Reaction on High-Index Platinum n (111)–(111) Surfaces
JP4776240B2 (en) Electrode catalyst, method for producing the same, and fuel cell
US5686150A (en) Catalyst formation techniques
Ghodbane et al. Electrochemical reduction of nitrate on pyrolytic graphite-supported Cu and Pd–Cu electrocatalysts
Solmaz Gold‐supported activated NiZn coatings: hydrogen evolution and corrosion studies
Rezaei et al. Highly efficient electrocatalytic oxidation of glycerol by Pt-Pd/Cu trimetallic nanostructure electrocatalyst supported on nanoporous stainless steel electrode using galvanic replacement
Oliveira et al. Investigation of the electrochemical oxidation reaction of the borohydride anion in palladium layers on Pt (111)
US20060287194A1 (en) Electrode for solid polymer type fuel cell and manufacturing method therefor
Hussain et al. Platinum particles electrochemically deposited on multiwalled carbon nanotubes for oxygen reduction reaction in acid media
JP2005501177A (en) Electrochemical reaction electrode, manufacturing method, and application device thereof.
Chen et al. Carbon nanotube‐supported bimetallic palladium–gold electrocatalysts for electro‐oxidation of formic acid
Kozu et al. One-step electrochemical synthesis of Pt–CeO 2 composite thin films on a glassy carbon electrode
JPH06126188A (en) Reducing catalyst
KR102393974B1 (en) Manufacturing method of platinum nano-catalyst supporting transition metal and platinum using chemical vapor deposition method, and the platinum nano-catalyst and the fuel cell thereof
JPH08162124A (en) Manufacture of gas diffusion electrode
CN104779401B (en) Method for plating metal elements on nano porous metal film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees