JPH06123632A - Dynamic quantity sensor - Google Patents

Dynamic quantity sensor

Info

Publication number
JPH06123632A
JPH06123632A JP4274530A JP27453092A JPH06123632A JP H06123632 A JPH06123632 A JP H06123632A JP 4274530 A JP4274530 A JP 4274530A JP 27453092 A JP27453092 A JP 27453092A JP H06123632 A JPH06123632 A JP H06123632A
Authority
JP
Japan
Prior art keywords
weight
electrodes
angular velocity
substrate
beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4274530A
Other languages
Japanese (ja)
Other versions
JP3293194B2 (en
Inventor
Masato Mizukoshi
正人 水越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP27453092A priority Critical patent/JP3293194B2/en
Publication of JPH06123632A publication Critical patent/JPH06123632A/en
Priority to US08/578,371 priority patent/US5734105A/en
Priority to US09/035,018 priority patent/US6128953A/en
Priority to US09/617,801 priority patent/US6470747B1/en
Application granted granted Critical
Publication of JP3293194B2 publication Critical patent/JP3293194B2/en
Priority to US12/381,534 priority patent/USRE42359E1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a dynamic quantity sensor having a novel structure. CONSTITUTION:Fixing parts 2, 3, 4, 5 are projectingly provided on a substrate 1 and L-shaped beams 6, 7, 8, 9 extend from the fixing parts 2, 3, 4, 5 and square weight 10 is connected to the other ends of the beams 6, 7, 8, 9 to be supported by the beams. The surface formed by the L-shaped beams 6, 7, 8, 9 is set to the movable surface of the weight 10. Rod-shaped electrodes 11, 12, 13, 14 are formed to four sides of the weight 10 and rod-shaped electrodes 15, 16, 17, 18 are arranged on the substrate 1 between the electrodes 11, 12, 13, 14 in respectively opposed relationship. The weight 10 is excited by the application of voltage to the opposed electrodes 13, 17 and the opposed electrodes 14, 18 and the movement of the weight 10 accompanying the application of rotary angular velocity OMEGA is detected by the opposed electrodes 11, 15 and 12, 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、角速度や加速度等の
力学量を検出するための力学量センサに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mechanical quantity sensor for detecting a mechanical quantity such as angular velocity and acceleration.

【0002】[0002]

【従来の技術】従来、コリオリの力を利用してヨーレイ
トを検出するものとしては、圧電素子を使用した音叉型
・音片型がある。
2. Description of the Related Art Conventionally, there are a tuning fork type and a tuning piece type using a piezoelectric element as a means for detecting the yaw rate by utilizing the Coriolis force.

【0003】[0003]

【発明が解決しようとする課題】ところが、複雑な形状
の機械加工及び圧電素子の貼り付けが必要であり、小型
化・低コスト化・高精度化が難しいという問題点があ
る。
However, there is a problem in that it is necessary to machine a complicated shape and attach a piezoelectric element, and it is difficult to reduce the size, cost, and accuracy.

【0004】そこで、この発明は、新規な構造の力学量
センサを提供することにある。
Therefore, the present invention is to provide a mechanical sensor having a novel structure.

【0005】[0005]

【課題を解決するための手段】この発明は、錘をL字型
の梁で支持して、同L字型の梁で形成される面を錘の可
動面とし、力学量の作用に伴う錘の動きを検出するよう
にした力学量センサをその要旨とするものである。
According to the present invention, a weight is supported by an L-shaped beam, and a surface formed by the L-shaped beam is used as a movable surface of the weight. The gist of the present invention is a mechanical quantity sensor that detects the movement of the.

【0006】[0006]

【作用】L字型の梁が変形することにより錘が可動状態
となっている。そして、力学量の作用に伴う錘の動きが
検出されて力学量が検出される。
[Function] The weight is movable due to the deformation of the L-shaped beam. Then, the movement of the weight due to the action of the mechanical quantity is detected to detect the mechanical quantity.

【0007】[0007]

【実施例】以下、この発明を角速度センサに具体化した
一実施例を図面に従って説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is embodied in an angular velocity sensor will be described below with reference to the drawings.

【0008】図1には、本実施例の角速度センサの平面
図を示し、図2は図1のA矢視図である。基板1は単結
晶シリコン基板(又はセラミック,ガラス)よりなり、
数mm角、厚さ500μm程度のものである。
FIG. 1 shows a plan view of the angular velocity sensor of this embodiment, and FIG. 2 is a view taken in the direction of arrow A in FIG. The substrate 1 is made of a single crystal silicon substrate (or ceramic or glass),
It has a size of several mm square and a thickness of about 500 μm.

【0009】基板1の上面には4つの固定部(アンカー
部)2,3,4,5が立設され、この固定部2,3,
4,5からL字型の梁6,7,8,9が延設されてい
る。それぞれのL字型の梁6,7,8,9の他端には導
電性を有する方形の錘10が形成されている。この梁
6,7,8,9及び錘10は、基板1の表面と平行な面
に延設配置されている。
Four fixing portions (anchor portions) 2, 3, 4, 5 are erected on the upper surface of the substrate 1, and the fixing portions 2, 3,
L-shaped beams 6, 7, 8 and 9 are extended from 4,5. A square weight 10 having conductivity is formed at the other end of each L-shaped beam 6, 7, 8, 9. The beams 6, 7, 8, 9 and the weight 10 are extendedly arranged in a plane parallel to the surface of the substrate 1.

【0010】図1での錘10の左側面には5つの棒状の
電極11が図1において左右方向(X軸)に延設されて
いる。同様に、図1での錘10の右側面には5つの棒状
の電極12が図1において左右方向(X軸)に延設され
ている。さらに、図1での錘10の上側面には5つの棒
状の電極13が図1において上下方向(Y軸)に延設さ
れている。同様に、図1での錘10の下側面には5つの
棒状の電極14が図1において上下方向(Y軸)に延設
されている。
On the left side surface of the weight 10 in FIG. 1, five rod-shaped electrodes 11 are extended in the horizontal direction (X axis) in FIG. Similarly, on the right side surface of the weight 10 in FIG. 1, five rod-shaped electrodes 12 are extended in the left-right direction (X axis) in FIG. Further, five rod-shaped electrodes 13 are provided on the upper side surface of the weight 10 in FIG. 1 so as to extend in the vertical direction (Y axis) in FIG. Similarly, on the lower surface of the weight 10 in FIG. 1, five rod-shaped electrodes 14 are extended in the vertical direction (Y axis) in FIG.

【0011】一方、各電極11間には2本ずつの棒状の
電極15が配置され、その一端が基板1上面に固定され
ており、電極11と電極15とにより対向電極が構成さ
れている。又、各電極12間には2本ずつの棒状の電極
16が配置され、その一端が基板1上面に固定されてお
り、電極12と電極16とにより対向電極が構成されて
いる。同様に、各電極13間には2本ずつの棒状の電極
17が配置され、その一端が基板1上面に固定されてお
り、電極13と電極17とにより対向電極が構成されて
いる。又、各電極14間には2本ずつの棒状の電極18
が配置され、その一端が基板1上面に固定されており、
電極14と電極18とにより対向電極が構成されてい
る。このように、固定電極15〜18と可動電極11〜
14との間の空隙が電極ギャップとなる。
On the other hand, two rod-shaped electrodes 15 are arranged between each electrode 11, one end of which is fixed to the upper surface of the substrate 1, and the electrodes 11 and 15 constitute a counter electrode. Further, two rod-shaped electrodes 16 are arranged between each electrode 12, one end of which is fixed to the upper surface of the substrate 1, and the electrodes 12 and 16 constitute a counter electrode. Similarly, two rod-shaped electrodes 17 are arranged between each electrode 13, one end of which is fixed to the upper surface of the substrate 1, and the electrodes 13 and 17 form a counter electrode. Two rod-shaped electrodes 18 are provided between each electrode 14.
Is arranged, and one end thereof is fixed to the upper surface of the substrate 1,
The electrode 14 and the electrode 18 form a counter electrode. In this way, the fixed electrodes 15 to 18 and the movable electrodes 11 to
The gap between the electrode 14 and the electrode 14 serves as an electrode gap.

【0012】ここで、図2に示すように、梁6,7,
8,9と、電極11〜14を含む錘10と、電極15〜
18とは、基板1の上面との間に1〜2μmのギャップ
(空間)が形成されている。つまり、固定部(アンカー
部)2,3,4,5により梁6〜9及び錘10が浮いた
状態で支持されている。又、この固定部(アンカー部)
2,3,4,5が可動電極取り出し端子となる。
Here, as shown in FIG. 2, the beams 6, 7,
8, 9 and weight 10 including electrodes 11 to 14, and electrodes 15 to
A gap (space) of 1 to 2 μm is formed between the reference numeral 18 and the upper surface of the substrate 1. That is, the beams 6 to 9 and the weight 10 are supported in a floating state by the fixed portions (anchor portions) 2, 3, 4, and 5. Also, this fixed part (anchor part)
2, 3, 4, and 5 are movable electrode lead terminals.

【0013】又、固定部2,3,4,5、梁6〜9、電
極11〜14を含む錘10、及び電極15〜18は、後
述するように、犠牲層エッチングを用いた基板1の表面
マイクロマシニング技術によって作成される。
Further, the fixing portions 2, 3, 4, 5, the beams 6 to 9, the weight 10 including the electrodes 11 to 14, and the electrodes 15 to 18 are formed on the substrate 1 using the sacrificial layer etching, as will be described later. Created by surface micromachining technology.

【0014】尚、錘10は、直方体(100μm角、厚
さ2μm程度)であり、X軸(励振方向軸)とY軸(コ
リオリ力による振動軸)に関して対称となっている。
又、L字型の梁6,7,8,9は、厚さ2μm,幅1μ
m,長さ100μm程度であり、厚さより幅を小さくし
て錘10が基板表面方向(水平方向)に動きやすく、基
板1の深さ方向(垂直方向)に動きにくくなっている。
さらに、電極11〜18の形状は厚さ2μm,幅1μ
m,長さ100μm程度である。
The weight 10 is a rectangular parallelepiped (100 μm square, thickness about 2 μm), and is symmetrical with respect to the X axis (excitation direction axis) and the Y axis (vibration axis by Coriolis force).
The L-shaped beams 6, 7, 8 and 9 have a thickness of 2 μm and a width of 1 μm.
Since the weight 10 is about m, the length is about 100 μm, and the width is smaller than the thickness, the weight 10 is easy to move in the substrate surface direction (horizontal direction) and is hard to move in the depth direction (vertical direction) of the substrate 1.
Furthermore, the electrodes 11 to 18 have a thickness of 2 μm and a width of 1 μm.
m and the length is about 100 μm.

【0015】次に、角速度センサの製造工程を図3,
4,5,6,7を用いて説明する。まず、図3に示すよ
うに、単結晶シリコン基板19の表面にプラズマCVD
又は熱CVDによりSiN(窒化シリコン)膜20を1
μm程度の厚さで形成する。そして、固定部2,3,
4,5(可動電極取り出し端子)及び固定電極15,1
6,17,18をシリコン基板内の信号処理回路(図で
は省略してある)と配線する拡散リード21を、イオン
注入法または熱拡散法にて形成する。その表面に犠牲層
であるSiO2 膜(酸化シリコン膜)22を熱CVDに
より約1μmの厚さで形成する。
Next, the manufacturing process of the angular velocity sensor is shown in FIG.
This will be described using 4, 5, 6, and 7. First, as shown in FIG. 3, plasma CVD is performed on the surface of the single crystal silicon substrate 19.
Alternatively, the SiN (silicon nitride) film 20 is formed by thermal CVD.
It is formed with a thickness of about μm. And the fixed parts 2, 3,
4, 5 (movable electrode take-out terminals) and fixed electrodes 15, 1
Diffusion leads 21 for wiring 6, 17, and 18 to a signal processing circuit (not shown in the figure) in the silicon substrate are formed by an ion implantation method or a thermal diffusion method. A SiO 2 film (silicon oxide film) 22 as a sacrificial layer is formed on the surface by thermal CVD to a thickness of about 1 μm.

【0016】引き続き、図4に示すように、レジストを
マスクとしてRIEによるドライエッチング法により固
定部(アンカー部)2,3,4,5及び固定電極15〜
18の取付部(根元部)となる領域のSiO2 膜22と
SiN膜20に対し開孔部23を形成する(コンタクト
ホールの開孔工程)。
Subsequently, as shown in FIG. 4, fixed portions (anchor portions) 2, 3, 4, 5 and fixed electrodes 15 to 15 are formed by dry etching by RIE using a resist as a mask.
An opening 23 is formed in the SiO 2 film 22 and the SiN film 20 in a region that will be the attachment portion (root portion) of 18 (contact hole opening step).

【0017】さらに、図5に示すように、開孔部23内
を含むSiO2 膜22上に、熱CVDによりポリシリコ
ン膜24を約2μm形成する。尚、ポリシリコン膜24
の代わりに、真空蒸着法によるアモルファスシリコンを
用いてもよい。
Further, as shown in FIG. 5, a polysilicon film 24 of about 2 μm is formed on the SiO 2 film 22 including the inside of the opening 23 by thermal CVD. The polysilicon film 24
Instead of amorphous silicon, amorphous silicon formed by vacuum deposition may be used.

【0018】そして、図6に示すように、レジストをマ
スクとしてRIEによるドライエッチング法で梁6〜
9、電極15〜18、及び電極11〜14を含む錘10
の形状となるようにポリシリコン膜24をエッチングす
る。
Then, as shown in FIG. 6, the beams 6 to 6 are formed by dry etching by RIE using the resist as a mask.
9, a weight 10 including electrodes 15 to 18 and electrodes 11 to 14
The polysilicon film 24 is etched so as to have the shape described above.

【0019】さらに、図7に示すように、希フッ酸(又
はバッファドフッ酸)にディップしてSiO2 膜22
(犠牲層)をエッチング除去する。このとき、エッチン
グ液が錘10の下に入り込むことによって錘10、梁6
〜9、電極11〜14が基板19の上面から離間した状
態となる。
Further, as shown in FIG. 7, the SiO 2 film 22 is dipped in dilute hydrofluoric acid (or buffered hydrofluoric acid).
The (sacrificial layer) is removed by etching. At this time, the etching liquid enters under the weight 10 and the weight 10 and the beam 6
9 and the electrodes 11 to 14 are separated from the upper surface of the substrate 19.

【0020】このように製造された角速度センサにおい
ては、次のような動作をする。図1の対向電極13,1
7及び14,18は、励振用電極(コンデンサ)であ
り、同電極に交流電圧を印加することにより、静電吸引
力によって錘10がX軸方向に振動(励振)する。この
とき、L字型の梁6,7,8,9におけるY軸に平行な
直線部(図1での梁6では6aで示す部分)が撓むこと
によりX軸に振動するものである。
The angular velocity sensor manufactured as described above operates as follows. Counter electrodes 13, 1 of FIG.
Reference numerals 7 and 14 and 18 are excitation electrodes (capacitors), and by applying an AC voltage to the electrodes, the weight 10 vibrates (excites) in the X-axis direction by electrostatic attraction. At this time, the straight line portion of the L-shaped beams 6, 7, 8, 9 parallel to the Y axis (the portion 6a of the beam 6 in FIG. 1 is indicated by 6a) bends and vibrates in the X axis.

【0021】対向電極11,15及び12,16はコリ
オリ力検出用電極(コンデンサ)であり、図1において
紙面に直交する軸(Z軸)の回りに角速度Ωが発生する
と、錘10はY軸方向にFc =2mvΩのコリオリ力を
受ける。ここで、mは錘10の質量、vは錘10の速度
である。そして、このコリオリ力は、励振印加電圧と同
じ周期をもつこととなり、錘10はY軸方向にもX軸方
向と同じ周期で振動する。このとき、L字型の梁6,
7,8,9におけるX軸に平行な直線部(図1での梁6
では6bで示す部分)が撓むことによりY軸に振動する
ものである。
The counter electrodes 11, 15 and 12, 16 are Coriolis force detecting electrodes (capacitors), and when an angular velocity Ω is generated around an axis (Z axis) orthogonal to the paper surface in FIG. In the direction, it receives Coriolis force of Fc = 2mvΩ. Here, m is the mass of the weight 10 and v is the velocity of the weight 10. Then, this Coriolis force has the same cycle as the excitation applied voltage, and the weight 10 vibrates in the Y-axis direction as well as in the X-axis direction. At this time, the L-shaped beam 6,
A straight line portion parallel to the X axis at 7, 8, and 9 (beam 6 in FIG. 1).
Then, the portion (6b) bends and vibrates in the Y-axis.

【0022】このようにして、コリオリ力により錘10
がY軸方向に変位し、その変位(振動)が対向電極1
1,15及び12,16により容量変化として測定され
る。この容量変化に基づいて回転角速度Ωが検出され
る。つまり、Y軸方向の振幅はコリオリ力2mvΩに比
例し、m及びvは既知であるのでY軸方向の振幅より回
転角速度Ωを求めることができる。
In this way, the weight 10 is generated by the Coriolis force.
Is displaced in the Y-axis direction, and the displacement (vibration) is caused by the counter electrode 1
1, 15 and 12, 16 are measured as capacitance change. The rotational angular velocity Ω is detected based on this capacitance change. That is, the amplitude in the Y-axis direction is proportional to the Coriolis force of 2 mvΩ, and since m and v are known, the rotational angular velocity Ω can be obtained from the amplitude in the Y-axis direction.

【0023】このように本実施例では、錘10をL字型
の梁6,7,8,9で支持して、同L字型の梁6,7,
8,9で形成される面を錘10の可動面とし、回転角速
度Ωの印加に伴う錘10の動きを検出するようにした。
このように、マイクロ加工が可能な平面状態で2次元的
に変位可能な錘10を有する梁構造となり、新規な構造
の角速度センサとなる。
As described above, in this embodiment, the weight 10 is supported by the L-shaped beams 6, 7, 8, and 9, and the L-shaped beams 6, 7, and 8 are supported.
The surface formed by 8 and 9 is a movable surface of the weight 10, and the movement of the weight 10 due to the application of the rotational angular velocity Ω is detected.
As described above, the beam structure has the weight 10 that can be two-dimensionally displaced in a planar state in which micromachining is possible, and the angular velocity sensor has a novel structure.

【0024】尚、この発明は上記実施例に限定されるも
のではなく、例えば、上記実施例では対向電極(コンデ
ンサ)の面積をかせぐために櫛歯状としていたが、図
8,9に示すように、基板の厚さ方向で電極面積をかせ
ぐようにしてもよい。
The present invention is not limited to the above-described embodiment. For example, in the above-mentioned embodiment, the comb-teeth shape is used to increase the area of the counter electrode (capacitor), but as shown in FIGS. The electrode area may be increased in the thickness direction of the substrate.

【0025】つまり、基板25に対し4つのL字型の梁
26,27,28,29が延設され、その梁26,2
7,28,29の他端には錘30が支持されている。
又、基板25の表面において直交するX,Y軸方向に
は、錘側電極31,32,33,34及び固定側電極3
5,36,37,38が形成されている。この図8,9
に示すセンサの製造方法を図10,11,12を用いて
説明する。まず、図10に示す単結晶シリコン基板39
を用意するとともに、図11に示す単結晶シリコン基板
40を用意し、さらに、単結晶シリコン基板40の主表
面の所定領域に凹部41を形成する。そして、図12に
示すように、単結晶シリコン基板40の主表面と単結晶
シリコン基板39とを直接接合する。そして、図9に示
すように、ドライエッチングにより単結晶シリコン基板
39に所定のパターンの開孔部を形成する。
That is, four L-shaped beams 26, 27, 28, 29 are extended from the substrate 25, and the beams 26, 2 are formed.
A weight 30 is supported on the other ends of 7, 28 and 29.
The weight-side electrodes 31, 32, 33, 34 and the fixed-side electrode 3 are arranged in the X and Y axis directions orthogonal to each other on the surface of the substrate 25.
5, 36, 37 and 38 are formed. These Figures 8 and 9
A method of manufacturing the sensor shown in will be described with reference to FIGS. First, the single crystal silicon substrate 39 shown in FIG.
11, the single crystal silicon substrate 40 shown in FIG. 11 is prepared, and the recess 41 is formed in a predetermined region of the main surface of the single crystal silicon substrate 40. Then, as shown in FIG. 12, the main surface of single crystal silicon substrate 40 and single crystal silicon substrate 39 are directly bonded. Then, as shown in FIG. 9, an opening having a predetermined pattern is formed in the single crystal silicon substrate 39 by dry etching.

【0026】又、他の応用例としては、図8に示すセン
サの製造方法として、図13,14,15に示すように
してもよい。まず、図13に示す単結晶シリコン基板4
3を用意し、図14に示すように、単結晶シリコン基板
43の裏面をウェットエッチングして凹部44を形成す
る。そして、図14に示すように、単結晶シリコン基板
43の薄肉部にドライエッチングにより所定のパターン
の貫通孔45を形成する。このようして図8に示すセン
サを製造してもよい。
As another application example, the method of manufacturing the sensor shown in FIG. 8 may be as shown in FIGS. First, the single crystal silicon substrate 4 shown in FIG.
3, the back surface of the single crystal silicon substrate 43 is wet-etched to form a recess 44, as shown in FIG. Then, as shown in FIG. 14, a through hole 45 having a predetermined pattern is formed in the thin portion of the single crystal silicon substrate 43 by dry etching. In this way, the sensor shown in FIG. 8 may be manufactured.

【0027】さらに、角速度センサの他にも、2次元加
速度センサとしてもよい。つまり、例えば、図1におい
て、X軸の加速度を対向電極13,17及び対向電極1
4,18にてコンデンサ容量変化として測定するととも
に、Y軸の加速度を対向電極11,15及び対向電極1
2,16にてコンデンサ容量変化として測定するように
してもよい。
Further, in addition to the angular velocity sensor, a two-dimensional acceleration sensor may be used. That is, for example, in FIG. 1, the X-axis acceleration is applied to the counter electrodes 13 and 17 and the counter electrode 1.
4 and 18 measure the change in the capacitance of the capacitor, and measure the acceleration of the Y-axis at the counter electrodes 11 and 15 and the counter electrode 1.
It may be possible to measure the change in the capacitance of capacitors 2 and 16.

【0028】[0028]

【発明の効果】以上詳述したようにこの発明によれば、
新規な構造の力学量センサとすることができる効果を発
揮する。
As described above in detail, according to the present invention,
The effect that it can be used as a mechanical sensor having a novel structure is exhibited.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の角速度センサの平面図である。FIG. 1 is a plan view of an angular velocity sensor of an embodiment.

【図2】図1のA矢視図である。FIG. 2 is a view on arrow A in FIG.

【図3】角速度センサの製造工程を示す断面図である。FIG. 3 is a cross-sectional view showing the manufacturing process of the angular velocity sensor.

【図4】角速度センサの製造工程を示す断面図である。FIG. 4 is a cross-sectional view showing the manufacturing process of the angular velocity sensor.

【図5】角速度センサの製造工程を示す断面図である。FIG. 5 is a cross-sectional view showing the manufacturing process of the angular velocity sensor.

【図6】角速度センサの製造工程を示す断面図である。FIG. 6 is a cross-sectional view showing the manufacturing process of the angular velocity sensor.

【図7】角速度センサの製造工程を示す断面図である。FIG. 7 is a cross-sectional view showing the manufacturing process of the angular velocity sensor.

【図8】別例の角速度センサの平面図である。FIG. 8 is a plan view of an angular velocity sensor of another example.

【図9】図8のB−B断面図である。9 is a sectional view taken along line BB of FIG.

【図10】別例の角速度センサの製造工程を示す断面図
である。
FIG. 10 is a cross-sectional view showing the manufacturing process of the angular velocity sensor of another example.

【図11】別例の角速度センサの製造工程を示す断面図
である。
FIG. 11 is a cross-sectional view showing the manufacturing process of the angular velocity sensor of another example.

【図12】別例の角速度センサの製造工程を示す断面図
である。
FIG. 12 is a cross-sectional view showing the manufacturing process of the angular velocity sensor of another example.

【図13】別例の応用例の角速度センサの製造工程を示
す断面図である。
FIG. 13 is a cross-sectional view showing the manufacturing process of the angular velocity sensor of another application example.

【図14】別例の応用例の角速度センサの製造工程を示
す断面図である。
FIG. 14 is a cross-sectional view showing the manufacturing process of the angular velocity sensor of another application example.

【図15】別例の応用例の角速度センサの製造工程を示
す断面図である。
FIG. 15 is a cross-sectional view showing the manufacturing process of the angular velocity sensor of another application example.

【符号の説明】[Explanation of symbols]

6,7,8,9 梁 10 錘 6,7,8,9 Beam 10 Weight

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 錘をL字型の梁で支持して、同L字型の
梁で形成される面を錘の可動面とし、力学量の作用に伴
う錘の動きを検出するようにしたことを特徴とする力学
量センサ。
1. A weight is supported by an L-shaped beam, and a surface formed by the L-shaped beam is used as a movable surface of the weight so that movement of the weight due to the action of a mechanical quantity is detected. A mechanical quantity sensor characterized by the above.
JP27453092A 1992-10-13 1992-10-13 Mechanical quantity sensor Expired - Lifetime JP3293194B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP27453092A JP3293194B2 (en) 1992-10-13 1992-10-13 Mechanical quantity sensor
US08/578,371 US5734105A (en) 1992-10-13 1995-12-26 Dynamic quantity sensor
US09/035,018 US6128953A (en) 1992-10-13 1998-03-05 Dynamical quantity sensor
US09/617,801 US6470747B1 (en) 1992-10-13 2000-07-17 Dynamical quantity sensor
US12/381,534 USRE42359E1 (en) 1992-10-13 2009-03-12 Dynamical quantity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27453092A JP3293194B2 (en) 1992-10-13 1992-10-13 Mechanical quantity sensor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP28403999A Division JP3293606B2 (en) 1999-10-05 1999-10-05 Mechanical quantity sensor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH06123632A true JPH06123632A (en) 1994-05-06
JP3293194B2 JP3293194B2 (en) 2002-06-17

Family

ID=17542997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27453092A Expired - Lifetime JP3293194B2 (en) 1992-10-13 1992-10-13 Mechanical quantity sensor

Country Status (1)

Country Link
JP (1) JP3293194B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0942973A (en) * 1995-08-01 1997-02-14 Nissan Motor Co Ltd Angle speed sensor
EP0778458A1 (en) 1995-12-05 1997-06-11 Murata Manufacturing Co., Ltd. Angular velocity sensor
EP0795737A1 (en) * 1996-03-11 1997-09-17 Murata Manufacturing Co., Ltd. Angular velocity sensor
EP0810441A3 (en) * 1996-05-30 1998-12-16 Texas Instruments Incorporated Composite sensor
US5864064A (en) * 1995-09-22 1999-01-26 Nippondenso Co., Ltd. Acceleration sensor having coaxially-arranged fixed electrode and movable electrode
US6199430B1 (en) 1997-06-17 2001-03-13 Denso Corporation Acceleration sensor with ring-shaped movable electrode
EP0833127B1 (en) * 1996-09-25 2001-03-28 Murata Manufacturing Co., Ltd. Angular-velocity detection apparatus
US6209394B1 (en) 1997-10-23 2001-04-03 Stmicroelectronics S.R.L. Integrated angular speed sensor device and production method thereof
US6388300B1 (en) 1999-01-25 2002-05-14 Denso Corporation Semiconductor physical quantity sensor and method of manufacturing the same
JP2003510194A (en) * 1999-09-27 2003-03-18 インプット/アウトプット,インコーポレーテッド Temporary bridge for micromachined structure
KR100430367B1 (en) * 2000-07-07 2004-05-04 가부시키가이샤 무라타 세이사쿠쇼 External force measuring device
JP2006138855A (en) * 2004-11-12 2006-06-01 Ind Technol Res Inst Rotation measuring apparatus and fabricating method
JP2007532338A (en) * 2004-04-19 2007-11-15 アナログ デバイシス, インコーポレイテッド MEMS device with conductive path through substrate
JP2009066750A (en) * 2001-02-20 2009-04-02 Rockwell Automation Technologies Inc Micro electromechanical system (mems) device
JP2011039074A (en) * 1999-10-13 2011-02-24 Analog Devices Inc Mechanical sensor, mechanical rate gyroscope including the sensor, and operation method of the gyroscope
US8109144B2 (en) 2008-09-26 2012-02-07 Kabushiki Kaisha Toshiba Inertia sensor
DE10107327B4 (en) * 2000-02-18 2013-01-24 Denso Corporation To prevent unnecessary oscillation suitable angular velocity sensor

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0942973A (en) * 1995-08-01 1997-02-14 Nissan Motor Co Ltd Angle speed sensor
US5864064A (en) * 1995-09-22 1999-01-26 Nippondenso Co., Ltd. Acceleration sensor having coaxially-arranged fixed electrode and movable electrode
EP0778458A1 (en) 1995-12-05 1997-06-11 Murata Manufacturing Co., Ltd. Angular velocity sensor
US5900549A (en) * 1995-12-05 1999-05-04 Murata Manufacturing Co., Ltd. Angular velocity sensor
EP0795737A1 (en) * 1996-03-11 1997-09-17 Murata Manufacturing Co., Ltd. Angular velocity sensor
US6070463A (en) * 1996-03-11 2000-06-06 Murata Manufacturing Co., Ltd. Angular velocity sensor
EP0810441A3 (en) * 1996-05-30 1998-12-16 Texas Instruments Incorporated Composite sensor
EP0833127B1 (en) * 1996-09-25 2001-03-28 Murata Manufacturing Co., Ltd. Angular-velocity detection apparatus
US6199430B1 (en) 1997-06-17 2001-03-13 Denso Corporation Acceleration sensor with ring-shaped movable electrode
US6387725B1 (en) 1997-10-23 2002-05-14 Stmicroelectronics S.R.L. Production method for integrated angular speed sensor device
US6209394B1 (en) 1997-10-23 2001-04-03 Stmicroelectronics S.R.L. Integrated angular speed sensor device and production method thereof
US6388300B1 (en) 1999-01-25 2002-05-14 Denso Corporation Semiconductor physical quantity sensor and method of manufacturing the same
JP2003510194A (en) * 1999-09-27 2003-03-18 インプット/アウトプット,インコーポレーテッド Temporary bridge for micromachined structure
JP2011039074A (en) * 1999-10-13 2011-02-24 Analog Devices Inc Mechanical sensor, mechanical rate gyroscope including the sensor, and operation method of the gyroscope
DE10107327B4 (en) * 2000-02-18 2013-01-24 Denso Corporation To prevent unnecessary oscillation suitable angular velocity sensor
KR100430367B1 (en) * 2000-07-07 2004-05-04 가부시키가이샤 무라타 세이사쿠쇼 External force measuring device
JP2009066750A (en) * 2001-02-20 2009-04-02 Rockwell Automation Technologies Inc Micro electromechanical system (mems) device
JP2007532338A (en) * 2004-04-19 2007-11-15 アナログ デバイシス, インコーポレイテッド MEMS device with conductive path through substrate
JP4732445B2 (en) * 2004-04-19 2011-07-27 アナログ デバイシス, インコーポレイテッド MEMS device with conductive path through substrate
JP2006138855A (en) * 2004-11-12 2006-06-01 Ind Technol Res Inst Rotation measuring apparatus and fabricating method
US8109144B2 (en) 2008-09-26 2012-02-07 Kabushiki Kaisha Toshiba Inertia sensor

Also Published As

Publication number Publication date
JP3293194B2 (en) 2002-06-17

Similar Documents

Publication Publication Date Title
USRE42359E1 (en) Dynamical quantity sensor
JP4705229B2 (en) Micromachining rotational angular acceleration sensor
KR100492105B1 (en) Vertical MEMS gyroscope by horizontal driving and it's fabrication method
US6089088A (en) Vibrating microgyrometer
JPH06123632A (en) Dynamic quantity sensor
EP1762823A2 (en) Combined sensor and its fabrication method
JPH0832090A (en) Inertia force sensor and manufacture thereof
KR100316774B1 (en) Method for fabricating a micro inertia sensor
JP4362877B2 (en) Angular velocity sensor
JP3669713B2 (en) Angular velocity sensor
JP2003248016A (en) Capacitance-type accelerometer
JP2001349732A (en) Micro-machine device, angular acceleration sensor, and acceleration sensor
JP4362739B2 (en) Vibration type angular velocity sensor
JP3293606B2 (en) Mechanical quantity sensor and method of manufacturing the same
JP2004004119A (en) Semiconductor dynamic quantity sensor
JP3217849B2 (en) Gyro device
JPH11337342A (en) Semiconductor angular velocity sensor and manufacture thereof
JP3181368B2 (en) Gyro device
JP2001349731A (en) Micro-machine device, angular acceleration sensor, and acceleration sensor
JP2000081338A (en) Dynamical amount sensor
JP2002148278A (en) Semiconductor kinetic quantity sensor and its manufacturing method
JP3800238B2 (en) Angular velocity sensor and angular velocity detection method
JP2001281264A (en) Semiconductor dynamic quantity sensor
JP3198194B2 (en) Gyro device and driving method thereof
JP2576080Y2 (en) Gyro device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080405

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110405

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120405

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120405

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130405

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130405

Year of fee payment: 11