JPH0612346B2 - Method for measuring the spheroidization rate of graphite in molten cast iron - Google Patents

Method for measuring the spheroidization rate of graphite in molten cast iron

Info

Publication number
JPH0612346B2
JPH0612346B2 JP59101360A JP10136084A JPH0612346B2 JP H0612346 B2 JPH0612346 B2 JP H0612346B2 JP 59101360 A JP59101360 A JP 59101360A JP 10136084 A JP10136084 A JP 10136084A JP H0612346 B2 JPH0612346 B2 JP H0612346B2
Authority
JP
Japan
Prior art keywords
graphite
extracted
spheroidization rate
cooling curve
cast iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59101360A
Other languages
Japanese (ja)
Other versions
JPS60244845A (en
Inventor
勉 栗熊
政和 北林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKAYAMA KK
Aisin Takaoka Co Ltd
Original Assignee
NAKAYAMA KK
Aisin Takaoka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKAYAMA KK, Aisin Takaoka Co Ltd filed Critical NAKAYAMA KK
Priority to JP59101360A priority Critical patent/JPH0612346B2/en
Publication of JPS60244845A publication Critical patent/JPS60244845A/en
Publication of JPH0612346B2 publication Critical patent/JPH0612346B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/02Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering
    • G01N25/04Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering of melting point; of freezing point; of softening point

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は黒鉛の球状化処理を施した鋳鉄溶湯の黒鉛球状
化率を高精度かつ高速度で測定する方法に関する。
TECHNICAL FIELD The present invention relates to a method for measuring the spheroidization rate of graphite in a molten cast iron obtained by subjecting graphite to spheroidization with high accuracy and high speed.

本発明は、鋳鉄溶湯の鋳込み前に、その黒鉛球状化率を
迅速かつ正確に判定するものであるので、鋳鉄の製造効
率及び製品の品質管理の向上に利用できる。
INDUSTRIAL APPLICABILITY Since the present invention quickly and accurately determines the graphite spheroidization rate of a cast iron molten metal, it can be used for improving the production efficiency of cast iron and the quality control of products.

[従来技術] 鋳鉄の製造過程において、黒鉛の球状化率を精度良く制
御することは製品の品質管理の面において非常に重要な
ことである。従来、一般に鋳鉄の黒鉛球状化率を測定す
る方法としては次の様な方法が知られている。
[Prior Art] In the production process of cast iron, it is very important to control the spheroidization rate of graphite with high precision in terms of product quality control. Conventionally, the following method is generally known as a method for measuring the spheroidization rate of graphite in cast iron.

第1の方法は同一の球状化処理を施された溶湯から製作
された鋳鉄製品、又は、この鋳鉄製品と同一の条件で鋳
造した供試材の断面の顕微鏡写真により球状化率を判定
する方法である。この方法は、球状化率の測定の確実性
はあるが、測定に長時間要するという欠点がある。又、
注湯後の判定試験のため、品質不良と判定されても、す
でに多数の製品は鋳造されており、この溶湯から形成さ
れた製品は全て不良品とされてしまう。このため製造効
率が極めて悪いという欠点がある。
The first method is a method of determining the spheroidization rate by a micrograph of a cross section of a cast iron product manufactured from a molten metal subjected to the same spheroidization treatment, or a sample material cast under the same conditions as this cast iron product. Is. This method has certainty in measuring the spheroidization rate, but has the drawback that the measurement takes a long time. or,
Because of the judgment test after pouring, even if it is judged that the quality is poor, many products have already been cast, and all the products formed from this molten metal are regarded as defective products. Therefore, there is a drawback that the manufacturing efficiency is extremely poor.

第2の方法は、黒鉛の球状化処理を施した後の溶湯の一
部を取出し、この溶湯の冷却曲線を測定し、この冷却曲
線の各種の特徴量を抽出し、これらの特徴量、と予め多
数のサンプルについて測定された黒鉛の球状化率との重
回帰分析法によって求められた関係式を利用して、黒鉛
の球状化率を測定する方法、即ち熱分析法が知られてい
る。しかし、従来の熱分析法は、黒鉛の球状化処理を施
した後の冷却曲線から抽出される特徴量のみを用いたも
のでり、黒鉛の球状化処理を施す前の元湯の冷却曲線か
ら得られる特徴量については何等加味されていなかっ
た。従って、元湯の成分に不均一性がある場合には、黒
鉛の球状化率の測定精度が劣るという欠点が存在した。
本発者等は黒鉛の球状化率は球状化処理を施す前の元湯
の冷極曲線から得られる元湯の初晶温度、元湯の共晶温
度と極めて高い相関関係があることを発見した。本発明
はこのような発見に基づいて成されたものである。
The second method is to take out a part of the molten metal after the spheroidizing treatment of graphite, measure the cooling curve of this molten metal, extract various characteristic amounts of this cooling curve, and extract these characteristic amounts. There is known a method for measuring the spheroidization rate of graphite, that is, a thermal analysis method, using a relational expression obtained by a multiple regression analysis method with the spheroidization rate of graphite measured in advance for a large number of samples. However, the conventional thermal analysis method uses only the feature amount extracted from the cooling curve after the spheroidizing treatment of graphite, and from the cooling curve of the original hot water before the spheroidizing treatment of graphite. The feature quantity obtained was not considered at all. Therefore, when the components of the hot water have non-uniformity, the measurement accuracy of the spheroidization rate of graphite is inferior.
The present inventors discovered that the spheroidization rate of graphite has a very high correlation with the eutectic temperature of the original hot water and the eutectic temperature of the original hot water obtained from the cold pole curve of the original hot water before the spheroidizing treatment. did. The present invention has been made based on these findings.

[発明の目的] そこで本発明はこれらの欠点を改良するために成された
ものであり、黒鉛の球状化処理を施す前の元湯の冷却曲
線から得られる元湯の初晶温度、共晶温度を必須の特徴
量とすることにより黒鉛の球状化率を精度よく、かつ高
速に求めることを目的とする。
[Object of the invention] Then, the present invention has been made in order to improve these drawbacks, the primary crystal temperature of the original hot water obtained from the cooling curve of the original hot water before the spheroidizing treatment of graphite, eutectic The purpose is to obtain the spheroidization rate of graphite accurately and at high speed by making temperature an essential feature amount.

[発明の構成] 本発明は、鋳鉄溶湯の冷却曲線から黒鉛の球状化率と相
関のある特徴量を抽出し、 予め多数のサンプルについて、測定された該特徴量と、
黒鉛球状化率とから、前記特徴量を変数とする黒鉛球状
化率を求める関係式を決定し、 該関係式から黒鉛球状化率を求める熱分析法を用いた鋳
鉄溶湯の黒鉛球状化率の測定方法において、 前記特徴量は、少なくとも、黒鉛の球状化処理を施す前
の元湯の冷却曲線から測定された元湯の初晶温度、元湯
の共晶温度を含むことを特徴とする鋳鉄溶湯の黒鉛球状
化率の測定方法に関する。
[Structure of the Invention] The present invention extracts a characteristic amount correlated with the spheroidization rate of graphite from a cooling curve of a cast iron molten metal, and the characteristic amount measured in advance for a large number of samples, and
From the graphite spheroidization rate, a relational expression for obtaining the graphite spheroidization rate with the above-mentioned characteristic variable as a variable is determined, and the graphite spheroidization rate of the cast iron molten metal using the thermal analysis method for determining the graphite spheroidization rate from the relational expression is calculated. In the measurement method, the characteristic amount is at least the primary crystal temperature of the original hot water measured from the cooling curve of the original hot water before spheroidizing the graphite, the cast iron characterized by including the eutectic temperature of the original hot water The present invention relates to a method for measuring the spheroidization rate of graphite in molten metal.

本発明は鋳鉄溶湯の冷却曲線から得られる各種の特徴量
と黒鉛の球状化率との関係式を、各種のサンプルについ
て行なった実験から求め、この実験的に求められた関係
式を用いて、測定試料について冷却曲線を測定し、その
冷却曲線から得られる特徴量から、黒鉛の球状化率を算
出する熱分析法と関連している。本発明はこの様な熱分
析法において、黒鉛の球状化処理を施す前の元湯の冷却
曲線から得られた元湯の初晶温度及び元湯の共晶温度を
上記関係式の必須の変数としていることを特徴としてい
る。上記元湯の初晶温度、元湯の共晶温度以外の他の特
徴量には、球状化処理を施した後の鋳鉄溶湯の冷却曲線
から得られる共晶温度、初晶温度、過冷温度の中から選
択された特徴量を必要とする。
The present invention, a relational expression between various characteristic amounts obtained from the cooling curve of the cast iron molten metal and the spheroidization rate of graphite, is obtained from an experiment conducted on various samples, using the relational expression obtained experimentally, This is related to a thermal analysis method in which a cooling curve is measured for a measurement sample, and the spheroidization rate of graphite is calculated from the characteristic amount obtained from the cooling curve. According to the present invention, in such a thermal analysis method, the primary temperature and the eutectic temperature of the original hot water obtained from the cooling curve of the original hot water before the spheroidizing treatment of graphite are the essential variables of the above relational expression. It is characterized by that. Other than the eutectic temperature of the original hot water and the eutectic temperature of the original hot water, the eutectic temperature, the primary crystal temperature, and the supercooling temperature obtained from the cooling curve of the cast iron melt after the spheroidizing treatment are performed. It requires the feature quantity selected from among.

更に具体的に説明すれば、第1態様では、鋳鉄溶湯の冷
却曲線から黒鉛球状化率と相関関係をもつ特徴量を抽出
し、予め多数のサンプルから抽出した前記特徴量と前記
黒鉛球状化率とから前記特徴量を変数とする黒鉛球状化
率を求める関係式を決定し、該関係式から黒鉛球状化率
を求める熱分析法を用いた鋳鉄溶湯の黒鉛球状化率の測
定方法において、 黒鉛球状化処理前の元湯の冷却曲線から抽出された前記
元湯の初晶温度TLO及び共晶温度TE0と、黒鉛球状
化処理後の溶湯の冷却曲線から抽出された前記溶湯の共
晶温度TEとを前記特徴量として抽出し、 K1、K2、K3、K4を係数とした場合にSG=K1
×TLO+K2×TEO+K3×TE+K4とした前記
関係式から前記黒鉛球状化率SGを算出される。
More specifically, in the first aspect, the characteristic amount having a correlation with the graphite spheroidizing rate is extracted from the cooling curve of the cast iron molten metal, and the characteristic amount and the graphite spheroidizing rate extracted from a large number of samples in advance are extracted. In the method of measuring the graphite spheroidization rate of the cast iron molten metal by using the thermal analysis method to determine the relational expression for obtaining the graphite spheroidization rate with the characteristic amount as a variable from the The eutectic temperature TE0 and eutectic temperature TE0 of the original melt extracted from the cooling curve of the melt before spheroidizing treatment, and the eutectic temperature TE of the melt extracted from the cooling curve of the melt after graphite spheroidizing treatment Is extracted as the feature amount, and SG = K1 when K1, K2, K3, and K4 are used as coefficients.
The graphite spheroidization rate SG is calculated from the relational expression of × TLO + K2 × TEO + K3 × TE + K4.

第2態様では、鋳鉄溶湯の冷却曲線から黒鉛球状化率と
相関関係をもつ特徴量を抽出し、予め多数のサンプルか
ら抽出した前記特徴量と前記黒鉛球状化率とから前記特
徴量を変数とする黒鉛球状化率を求める関係式を決定
し、該関係式から黒鉛球状化率を求める熱分析法を用い
た鋳鉄溶湯の黒鉛球状化率の測定方法において、 黒鉛球状化処理前の元湯の冷却曲線から抽出された前記
元湯の初晶温度TLO及び共晶温度TE0と、黒鉛球状
化処理後の溶湯の冷却曲線から抽出された前記溶湯の共
晶温度TE及び初晶温度TLとを前記特徴量として抽出
し、 K1、K2、K3、K4、K5を係数とした場合にSG
=K1×TLO+K2×TEO+K3×TE+K4×T
L+K5とした前記関係式から前記黒鉛球状化率SGが
算出される。
In the second aspect, a characteristic amount having a correlation with the graphite spheroidizing rate is extracted from the cooling curve of the cast iron molten metal, and the characteristic amount is extracted as a variable from the characteristic amount and the graphite spheroidizing rate extracted from a large number of samples in advance. In the method of measuring the graphite spheroidization rate of the cast iron melt using the thermal analysis method to determine the relational expression to determine the graphite spheroidization rate from the relational expression, The primary crystal temperature TLO and eutectic temperature TE0 of the original molten metal extracted from the cooling curve, and the eutectic temperature TE and primary crystal temperature TL of the molten metal extracted from the cooling curve of the molten metal after the graphite spheroidization treatment are described above. SG when it is extracted as a feature amount and K1, K2, K3, K4, and K5 are used as coefficients.
= K1 x TLO + K2 x TEO + K3 x TE + K4 x T
The graphite spheroidization rate SG is calculated from the relational expression L + K5.

第3態様では、鋳鉄溶湯の冷却曲線から黒鉛球状化率と
相関関係をもつ特徴量を抽出し、予め多数のサンプルか
ら抽出した前記特徴量と前記黒鉛球状化率とから前記特
徴量を変数とする黒鉛球状化率を求める関係式を決定
し、該関係式から黒鉛球状化率を求める熱分析法を用い
た鋳鉄溶湯の黒鉛球状化率の測定方法において、 黒鉛球状化処理前の元湯の冷却曲線から抽出された前記
元湯の初晶温度TLO及び共晶温度TE0と、黒鉛球状
化処理後の溶湯の冷却曲線から抽出された前記溶湯の共
晶温度TE及び過冷温度TCとを前記特徴量として抽出
し、 K1、K2、K3、K4、K5を係数とした場合にSG
=K1×TLO+K2×TEO+K3×TE+K4×T
C+K5とした前記関係式から前記黒鉛球状化率SGが
算出される。
In the third aspect, a characteristic amount having a correlation with the graphite spheroidizing rate is extracted from the cooling curve of the cast iron molten metal, and the characteristic amount is extracted from a large number of samples in advance and the graphite spheroidizing rate is used as a variable. In the method of measuring the graphite spheroidization rate of the cast iron melt using the thermal analysis method to determine the relational expression to determine the graphite spheroidization rate from the relational expression, The primary crystal temperature TLO and eutectic temperature TE0 of the original molten metal extracted from the cooling curve, and the eutectic temperature TE and the supercooling temperature TC of the molten metal extracted from the cooling curve of the molten metal after the graphite spheroidization treatment are described above. SG when it is extracted as a feature amount and K1, K2, K3, K4, and K5 are used as coefficients.
= K1 x TLO + K2 x TEO + K3 x TE + K4 x T
The graphite spheroidization rate SG is calculated from the relational expression with C + K5.

第4態様では、鋳鉄溶湯の冷却曲線から黒鉛球状化率と
相関関係をもつ特徴量を抽出し、予め多数のサンプルか
ら抽出した前記特徴量と前記黒鉛球状化率とから前記特
徴量を変数とする黒鉛球状化率を求める関係式を決定
し、該関係式から黒鉛球状化率を求める熱分析法を用い
た鋳鉄溶湯の黒鉛球状化率の測定方法において、 黒鉛球状化処理前の元湯の冷却曲線から抽出された前記
元湯の初晶温度TLO及び共晶温度TE0と、黒鉛球状
化処理後の溶湯の冷却曲線から抽出された前記溶湯の共
晶温度TE、初晶温度TL及び過冷温度TCとを前記特
徴量として抽出し、 K1、K2、K3、K4、K5、K6を係数とした場合
にSG=K1×TLO+K2×TEO+K3×TE+K
4×TL+K5×TC+K6とした前記関係式から前記
黒鉛球状化率SGを算出される。又、その他の特徴量と
して、過冷温度から共晶温度に達するまでに要した時
間、共晶温度と過冷温度との温度差、初晶温度から過冷
温度に達する時間、過冷温度継続時間、共晶温度の継続
時間等が考えられる。黒鉛の球状化率は第1の望ましい
実施態様においては、元湯の初晶温度、元湯の共晶温
度、処理後の溶湯の共晶温度の3つを特徴量として求め
るものである。即ち、1次近似によれば、次式で求める
ことができる。
In the fourth aspect, a characteristic amount having a correlation with the graphite spheroidizing rate is extracted from the cooling curve of the cast iron molten metal, and the characteristic amount is extracted as a variable from the characteristic amount and the graphite spheroidizing rate extracted from a large number of samples in advance. In the method of measuring the graphite spheroidization rate of the cast iron melt using the thermal analysis method to determine the relational expression to determine the graphite spheroidization rate from the relational expression, Primary crystal temperature TLO and eutectic temperature TE0 of the original melt extracted from the cooling curve, and eutectic temperature TE, primary crystal temperature TL and supercooling of the melt extracted from the cooling curve of the melt after the graphite spheroidization treatment. When the temperature TC and the characteristic amount are extracted and K1, K2, K3, K4, K5, and K6 are used as coefficients, SG = K1 × TLO + K2 × TEO + K3 × TE + K
The graphite spheroidization rate SG is calculated from the relational expression of 4 × TL + K5 × TC + K6. In addition, as other features, the time required to reach the eutectic temperature from the supercooling temperature, the temperature difference between the eutectic temperature and the supercooling temperature, the time to reach the supercooling temperature from the primary crystal temperature, the supercooling temperature continuation The time and the duration of the eutectic temperature may be considered. In the first preferred embodiment, the spheroidization rate of graphite is obtained by using three characteristics, namely, the primary crystal temperature of the original hot water, the eutectic temperature of the original hot water, and the eutectic temperature of the molten metal after the treatment. That is, according to the first-order approximation, it can be obtained by the following equation.

SG=A・TLO+B・TEO+C・TE+P……
(1) ここで、SGは黒鉛球状化率であり、TLO、TEOは
それぞれ元湯の冷却曲線における初晶温度及び共晶温度
である。又TEは黒鉛の球状化処理を施した後の溶湯の
冷却曲線から得られる共晶温度である。更にA、B、
C、Pはそれぞれ各変数の系数である。これらの係数は
予め多数のサンプルについて測定した結果から求められ
る。即ち、この関数の係数は、他の方法(例えば日本鋳
物協会法[NIK法])で測定された黒鉛の球状化率
と、それぞれの上記変数との相関関数を測定し、重回帰
分析法により決定される。上記関数は、1次式を用いた
が、他の2次、3次等のn 次式を用いることもできる。
SG = A ・ TLO + B ・ TEO + C ・ TE + P ……
(1) Here, SG is the spheroidization ratio of graphite, and TLO and TEO are the primary crystal temperature and the eutectic temperature in the cooling curve of the original molten metal, respectively. Further, TE is a eutectic temperature obtained from the cooling curve of the molten metal after the graphite is spheroidized. Furthermore, A, B,
C and P are coefficients of each variable. These coefficients are obtained from the results obtained by measuring a large number of samples in advance. That is, for the coefficient of this function, the correlation function between the spheroidization rate of graphite measured by another method (for example, the Japan Foundry Association method [NIK method]) and each of the above variables was measured, and the multiple regression analysis method was used. It is determined. Although the above function uses a linear expression, other quadratic expressions such as quadratic and cubic may be used.

他の望ましい実施態様項においては、黒鉛の球状化率を
求めるのに、更に処理後の溶湯の冷却曲線における初晶
温度が加味される。即ち、球状化率を求める式は次式に
よって与えられる。
In another preferred embodiment, the primary crystal temperature in the cooling curve of the molten metal after the treatment is further taken into consideration in determining the spheroidization rate of graphite. That is, the formula for obtaining the spheroidization rate is given by the following formula.

SG=A・TLO+B・TEO+C・TE+D・TL+
P ……(2) ここでTLは処理後の溶湯の冷却曲線から得られる初晶
温度である。又Dはその係数である。更に他の望ましい
実施態様においては、球状化率は次式で与えられる。
SG = A ・ TLO + B ・ TEO + C ・ TE + D ・ TL +
P (2) Here, TL is the primary crystal temperature obtained from the cooling curve of the molten metal after the treatment. D is the coefficient. In yet another preferred embodiment, the spheroidization rate is given by:

SG=A・TLO+B・TEO+C・TE+D・TL+
E・TC+P……(3) ここでTCは処理後の溶湯の冷却曲線における過冷温度
であり、Eはその係数である。
SG = A ・ TLO + B ・ TEO + C ・ TE + D ・ TL +
E · TC + P (3) Here, TC is the supercooling temperature in the cooling curve of the molten metal after the treatment, and E is the coefficient thereof.

ここで、初晶温度、過冷温度、共晶温度の検出は、冷却
曲線の停滞点を求めることによって行なされる。この停
滞点とは冷却曲線の微分係数が一定の範囲に存在する区
間に存在する点である。以下、この区間を停滞区間とい
う。初晶、過冷、共晶の区別は、停滞区間の現れる順序
と、停滞時間と停滞区間を脱出した後、冷却曲線が上向
きか下向きか、いずれに変移するかによって決定され
る。例えば、取り出された溶湯250g、シェル型丸棒
35mmφ×40mmの条件で停滞区間は、冷却曲線の微分
係数が±2.5゜F/secの範囲に存在する時間が
2.4秒以上継続した範囲としている。又初晶温度は第
1番目の停滞区間であって停滞区間が16秒より小さ
く、停滞区間を脱出した後曲線が下向きに推移する停滞
区間の中間値として検出される。又、過冷温度は、第
1、又は第2番目の停滞区間であって、停滞区間を脱出
した後、曲線が上向きに推移する停滞区間の最小値、又
は、上記条件を満足しない場合には、共晶温度が検出さ
れる停滞区間のうち、共晶温度よりも先に現れる最小値
として検出される。
Here, the primary crystal temperature, the supercooling temperature, and the eutectic temperature are detected by obtaining the stagnation point of the cooling curve. The stagnation point is a point existing in a section where the differential coefficient of the cooling curve exists in a certain range. Hereinafter, this section is referred to as a stagnant section. The distinction between primary crystal, supercooling, and eutectic is determined by the order in which stagnant sections appear, the stagnant time, and whether the cooling curve changes upward or downward after exiting the stagnant section. For example, in the stagnant section under the condition of 250 g of molten metal taken out and 35 mmφ × 40 mm of shell type round bar, the time during which the differential coefficient of the cooling curve is within ± 2.5 ° F / sec continues for 2.4 seconds or more. It has a range. Further, the primary crystal temperature is the first stagnant section, the stagnant section is smaller than 16 seconds, and is detected as an intermediate value of the stagnant section in which the curve shifts downward after exiting the stagnant section. Further, the supercooling temperature is the first or second stagnation section, and the minimum value of the stagnation section where the curve moves upward after exiting the stagnation section, or when the above conditions are not satisfied , Of the stagnation sections where the eutectic temperature is detected, the eutectic temperature is detected as the minimum value that appears earlier than the eutectic temperature.

又、共晶温度は、第2番目、又は第3番目の停滞区間で
あって、停滞区間を脱出した後、曲線が下向きに推移す
る停滞区間の最大値、又は第1番目であって16秒以上
継続する停滞区間の最大値として検出される。
The eutectic temperature is the second or third stagnation section, the maximum value of the stagnation section in which the curve shifts downward after exiting the stagnation section, or the first value is 16 seconds. It is detected as the maximum value of the stagnation section that continues above.

[実施例] 本発明方法は、計算機装置により実施することができ
る。
[Example] The method of the present invention can be implemented by a computer device.

第1図は本発明を実施する測定装置の構成を示したブロ
ックダイヤグラムである。2は溶湯の一部を取出してそ
の冷却曲線を測定するためのカップであり、そのカップ
2の底部にはアルメルークロメルから成る熱電対4が設
けられ、熱電対4によって発生された起電力は導線を介
して温度計6に入力する。温度計6はアナログ量の起電
力を0.4秒ごとにサンプリングし、デジタル信号に変
換し、2進化+進数(BCD)で表わされた符号化コー
ドとしてパラレル/シリアル変換器8に出力する。パラ
レル/シリアル変換器8はBCDデータをシリアルデー
タに変換し、マイクロコンピュータ10のシリアルデー
タ入力ポートに出力する。マイクロコンピュータ10に
は所定の測定結果を出力するプリンタ12及びCRT1
6が接続され、所定のプログラム及び、計算式とその係
数を記憶したフロッピィディスク装置14が接続されて
いる。
FIG. 1 is a block diagram showing the configuration of a measuring apparatus for carrying out the present invention. Reference numeral 2 is a cup for taking out a part of the molten metal and measuring the cooling curve thereof. A thermocouple 4 made of alumel-chromel is provided at the bottom of the cup 2, and the electromotive force generated by the thermocouple 4 is Input to the thermometer 6 via a lead wire. The thermometer 6 samples an electromotive force of an analog amount every 0.4 seconds, converts it into a digital signal, and outputs it to the parallel / serial converter 8 as an encoded code represented by a binary code + a binary number (BCD). . The parallel / serial converter 8 converts the BCD data into serial data and outputs it to the serial data input port of the microcomputer 10. A printer 12 and a CRT 1 for outputting a predetermined measurement result to the microcomputer 10.
6 is connected, and a floppy disk device 14 storing a predetermined program, a calculation formula and its coefficient is connected.

本実施例においては、冷却曲線から測定される初晶温
度、過冷温度、共晶温度は、前述した条件よって決定し
た。第2図は黒鉛の球状化処理を施す前の元湯の冷却曲
線を示すものである。この冷却曲線から元湯の初晶温度
TLO=2077゜F、元湯の共晶温度TEO=204
1゜Fが得られた。
In this example, the primary crystal temperature, the supercooling temperature, and the eutectic temperature measured from the cooling curve were determined under the conditions described above. FIG. 2 shows the cooling curve of the hot water before the spheroidizing treatment of graphite. From this cooling curve, the primary temperature TLO of the hot water is 2077 ° F and the eutectic temperature TEO of the hot water is 204.
1 ° F. was obtained.

第1実施例として、処理後の溶湯の冷却曲線から共晶温
度を抽出した場合を示す。又第3図は黒鉛の球状化処理
を施した後の冷却曲線の一例である。この冷却曲線から
処理後の溶湯の共晶温度TE=2094゜Fが得られ
た。これらの数値を用いて次式により、球状化率を求め
た。
As a first example, a case where the eutectic temperature is extracted from the cooling curve of the molten metal after the treatment is shown. FIG. 3 is an example of a cooling curve after the spheroidizing treatment of graphite. From this cooling curve, a eutectic temperature TE = 2094 ° F of the molten metal after the treatment was obtained. The spheroidization rate was calculated by the following equation using these numerical values.

SG=0.09701×TLO+1.23095×TE
O−2.66802×TE×2928.3……
(4) 上記の式から球状化率は82%が得られた。この測定誤
差は8%である。
SG = 0.09701 × TLO + 1.23095 × TE
O-2.66802 × TE × 2928.3 ……
(4) From the above formula, a spheroidization rate of 82% was obtained. This measurement error is 8%.

第2実施例として処理後の溶湯の冷却曲線から初晶温度
及び共晶温度を抽出した場合を示す。第4図は、1試料
について冷却曲線を測定したものである。この球状化処
理後の溶湯の冷却曲線から初晶温度TL=2117゜
F、共晶温度TE=2095゜Fが得られた。この結果
を用いて、次式により球状化率を求めた。
As a second example, a case where the primary crystal temperature and the eutectic temperature are extracted from the cooling curve of the molten metal after the treatment is shown. FIG. 4 shows the cooling curve measured for one sample. From the cooling curve of the molten metal after the spheroidizing treatment, the primary crystal temperature TL = 2117 ° F and the eutectic temperature TE = 2095 ° F were obtained. Using this result, the spheroidization rate was calculated by the following formula.

SG=0.95477×TLO+10.41974×T
EO−6.10634TL+6.79197×TE−2
4543.1 ……(5) この式から球状化率SGは47%が得られた。この測定
誤差は8%である。
SG = 0.95477 × TLO + 10.41974 × T
EO-610634TL + 6.79197 x TE-2
4543.1 (5) From this formula, a spheroidization rate SG of 47% was obtained. This measurement error is 8%.

第3実施例として、処理後の溶湯の冷却曲線から過冷温
度及び共晶温度を抽出した場合を示す。第5図は別の試
料の球状化処理を施した溶湯の冷却曲線である。この冷
却曲線から過冷温度TC=2074゜F、共晶温度TE
=2096゜Fが得られた。
As a third example, a case where the supercooling temperature and the eutectic temperature are extracted from the cooling curve of the molten metal after the treatment is shown. FIG. 5 is a cooling curve of a molten metal which has been subjected to spheroidizing treatment of another sample. From this cooling curve, the supercooling temperature TC = 2074 ° F., the eutectic temperature TE
= 2096 ° F was obtained.

SG=−0.49921×TLO+0.13294×T
EO+0.63908×TC−1.49792×TE+
2617.8 ……(6) この式から球状化率37%が得られた。この測定誤差は
8%である。
SG = −0.49921 × TLO + 0.13294 × T
EO + 0.63908 × TC-1.49792 × TE +
2617.8 (6) From this formula, a spheroidization rate of 37% was obtained. This measurement error is 8%.

次に第4実施例として、元湯の初晶温度TLO=212
3゜F、元湯の共晶温度TEO=2038゜F、であっ
て、処理後の溶湯の冷却曲線から初晶温度、過冷温度及
び共晶温度を検出した場合を示す。又第6図は別の球状
化処理を施した溶湯の冷却曲線である。この曲線から初
晶温度TL=2101゜F、過冷温度TC=2080゜
F、共晶温度TE=2083゜Fが得られた。
Next, as the fourth embodiment, the primary crystal temperature TLO of the original hot water is TLO = 212.
It shows the case where the eutectic temperature TEO of the original melt is TEO = 2038 ° F and the primary crystal temperature, the supercooling temperature and the eutectic temperature are detected from the cooling curve of the melt after the treatment. Further, FIG. 6 is a cooling curve of the molten metal subjected to another spheroidizing treatment. From this curve, a primary crystal temperature TL = 2101 ° F, a supercooling temperature TC = 2080 ° F, and a eutectic temperature TE = 2083 ° F were obtained.

この場合には次式より球状化率を求めることができる。In this case, the spheroidization rate can be calculated from the following equation.

SG=0.06177×TLO+3.30033×TE
O−0.39156TL+2.08197×TC−4.
13459×TE−1680.3……
(7) 上式により球状化率72.4%が得られた。測定誤差8
%である。
SG = 0.06177 × TLO + 3.30033 × TE
O-0.39156TL + 2.08197xTC-4.
13459 × TE-1680.3 ……
(7) A spheroidization rate of 72.4% was obtained from the above equation. Measurement error 8
%.

[発明の効果] 以上要するに本発明は、黒鉛の球状化率を求める熱分析
法において、黒鉛の球状化処理を施す前の元湯の冷却曲
線から得られる初晶温度及び共晶温度を少なくとも必須
の変数として含む関係式により黒鉛の球状化率を測定す
る方法である。従って本発明によれば、元湯の成分の違
いによる球状化率の変化を正確に補償することができ
る。これらの方法は、鋳造前の溶湯の状態で測定してい
るために不良品の発生が未然に防止でき、従って製造効
率が向上するという効果がある。
[Effects of the Invention] In summary, according to the present invention, in the thermal analysis method for determining the spheroidization rate of graphite, at least the primary crystal temperature and the eutectic temperature obtained from the cooling curve of the hot water before the spheroidization treatment of graphite are essential. Is a method of measuring the spheroidization rate of graphite by a relational expression including as a variable of. Therefore, according to the present invention, it is possible to accurately compensate for the change in the spheroidization rate due to the difference in the components of the hot water. Since these methods measure the molten metal before casting, the production of defective products can be prevented in advance, and therefore the manufacturing efficiency can be improved.

例えば、今、あるロットについて、元湯のTLO、TE
Oと黒鉛球状化処理後の溶湯のTEなどを計測し、黒鉛
球状化率SGを求めた後、他のロットにおいてその元湯
のTLO、TEOだけを再度、測定し、上式にあてはめ
れば、鋳鉄溶湯については再度、検査しなくても元湯の
成分のばらつきによる黒鉛球状化率SGの変動を補正す
ることができる。
For example, for a certain lot, TLO and TE of Motoyu
After measuring TE and TE of the molten metal after spheroidizing graphite and obtaining the graphite spheroidizing rate SG, in other lots, only TLO and TEO of the original molten metal are measured again, and if applied to the above formula With respect to the cast iron molten metal, it is possible to correct the variation of the graphite spheroidization ratio SG due to the variation of the components of the original molten metal without inspecting it again.

すなわち、元湯の成分がばらつけばTLO、TEOが変
化するので、TLO、TEOを再度計測して算出式から
再度黒鉛球状化率SGを算出すれば、元湯の成分のばら
つきによる黒鉛球状化率SGの変動を低減することがで
き、黒鉛球状化処理前に黒鉛球状化率SGが不良という
ことを推定して、資材、工数の無駄を防止できる。
That is, since TLO and TEO will change if the components of the source water vary, if TLO and TEO are measured again and the graphite spheroidization rate SG is calculated again from the calculation formula, the graphite spheroidization due to the variation of the components of the source water will occur. The fluctuation of the rate SG can be reduced, and it can be estimated that the graphite spheroidization rate SG is poor before the graphite spheroidization treatment, and waste of materials and man-hours can be prevented.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法を実施するための測定装置の構成を
示したブロックダイヤグラムである。第2図は黒鉛の球
状化処理を施す前の元湯の冷却曲線を測定したグラフで
ある。第3図、第4図、第5図及び第6図は黒鉛の球状
化処理を施した後の溶湯の冷却曲線を測定したグラフで
ある。
FIG. 1 is a block diagram showing the configuration of a measuring apparatus for carrying out the method of the present invention. FIG. 2 is a graph in which the cooling curve of the hot water before the spheroidizing treatment of graphite is measured. FIG. 3, FIG. 4, FIG. 5 and FIG. 6 are graphs of measured cooling curves of the molten metal after the spheroidizing treatment of graphite.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】鋳鉄溶湯の冷却曲線から黒鉛球状化率と相
関関係をもつ特徴量を抽出し、予め多数のサンプルから
抽出した前記特徴量と前記黒鉛球状化率とから前記特徴
量を変数とする黒鉛球状化率を求める関係式を決定し、
該関係式から黒鉛球状化率を求める熱分析法を用いた鋳
鉄溶湯の黒鉛球状化率の測定方法において、 黒鉛球状化処理前の元湯の冷却曲線から抽出された前記
元湯の初晶温度TLO及び共晶温度TE0と、黒鉛球状
化処理後の溶湯の冷却曲線から抽出された前記溶湯の共
晶温度TEとを前記特徴量として抽出し、 K1、K2、K3、K4を係数とした場合にSG=K1
×TLO+K2×TEO+K3×TE+K4とした前記
関係式から前記黒鉛球状化率SGを算出することを特徴
とする鋳鉄溶湯の黒鉛球状化率の測定方法。
1. A feature quantity having a correlation with a graphite spheroidization rate is extracted from a cooling curve of a cast iron molten metal, and the feature quantity is set as a variable from the feature quantity extracted from a large number of samples and the graphite spheroidization rate. Determine the relational expression to obtain the graphite spheroidization rate,
In the method for measuring the graphite spheroidization rate of a cast iron melt using a thermal analysis method for obtaining the graphite spheroidization rate from the relational expression, the primary crystal temperature of the original hot water extracted from the cooling curve of the original hot water before the graphite spheroidization treatment When TLO and the eutectic temperature TE0 and the eutectic temperature TE of the molten metal extracted from the cooling curve of the molten metal after the graphite spheroidizing treatment are extracted as the characteristic amounts, and K1, K2, K3, and K4 are used as coefficients. SG = K1
A method for measuring the spheroidization rate of graphite in a cast iron melt, comprising calculating the spheroidization rate SG of the graphite from the above relational expression of × TLO + K2 × TEO + K3 × TE + K4.
【請求項2】鋳鉄溶湯の冷却曲線から黒鉛球状化率と相
関関係をもつ特徴量を抽出し、予め多数のサンプルから
抽出した前記特徴量と前記黒鉛球状化率とから前記特徴
量を変数とする黒鉛球状化率を求める関係式を決定し、
該関係式から黒鉛球状化率を求める熱分析法を用いた鋳
鉄溶湯の黒鉛球状化率の測定方法において、 黒鉛球状化処理前の元湯の冷却曲線から抽出された前記
元湯の初晶温度TLO及び共晶温度TE0と、黒鉛球状
化処理後の溶湯の冷却曲線から抽出された前記溶湯の共
晶温度TE及び初晶温度TLとを前記特徴量として抽出
し、 K1、K2、K3、K4、K5を係数とした場合にSG
=K1×TLO+K2×TEO+K3×TE+K4×T
L+K5とした前記関係式から前記黒鉛球状化率SGを
算出することを特徴とする鋳鉄溶湯の黒鉛球状化率の測
定方法。
2. A feature quantity having a correlation with a graphite spheroidization rate is extracted from a cooling curve of a cast iron molten metal, and the feature quantity is extracted from a large number of samples in advance and the graphite spheroidization rate is used as a variable. Determine the relational expression to obtain the graphite spheroidization rate,
In the method for measuring the graphite spheroidization rate of a cast iron melt using a thermal analysis method for obtaining the graphite spheroidization rate from the relational expression, the primary crystal temperature of the original hot water extracted from the cooling curve of the original hot water before the graphite spheroidization treatment TLO and eutectic temperature TE0, and eutectic temperature TE and primary crystal temperature TL of the melt extracted from the cooling curve of the melt after the graphite spheroidization treatment are extracted as the characteristic amounts, and K1, K2, K3, and K4 are extracted. , SG when K5 is a coefficient
= K1 x TLO + K2 x TEO + K3 x TE + K4 x T
A method for measuring the spheroidization rate of graphite in molten cast iron, comprising calculating the spheroidization rate SG of the graphite from the relational expression L + K5.
【請求項3】鋳鉄溶湯の冷却曲線から黒鉛球状化率と相
関関係をもつ特徴量を抽出し、予め多数のサンプルから
抽出した前記特徴量と前記黒鉛球状化率とから前記特徴
量を変数とする黒鉛球状化率を求める関係式を決定し、
該関係式から黒鉛球状化率を求める熱分析法を用いた鋳
鉄溶湯の黒鉛球状化率の測定方法において、 黒鉛球状化処理前の元湯の冷却曲線から抽出された前記
元湯の初晶温度TLO及び共晶温度TE0と、黒鉛球状
化処理後の溶湯の冷却曲線から抽出された前記溶湯の共
晶温度TE及び過冷温度TCとを前記特徴量として抽出
し、 K1、K2、K3、K4、K5を係数とした場合にSG
=K1×TLO+K2×TEO+K3×TE+K4×T
C+K5とした前記関係式から前記黒鉛球状化率SGを
算出することを特徴とする鋳鉄溶湯の黒鉛球状化率の測
定方法。
3. A feature quantity having a correlation with a graphite spheroidization rate is extracted from a cooling curve of a cast iron molten metal, and the feature quantity is a variable from the feature quantity and the graphite spheroidization rate extracted in advance from a large number of samples. Determine the relational expression to obtain the graphite spheroidization rate,
In the method for measuring the graphite spheroidization rate of a cast iron melt using a thermal analysis method for obtaining the graphite spheroidization rate from the relational expression, the primary crystal temperature of the original hot water extracted from the cooling curve of the original hot water before the graphite spheroidization treatment The TLO and the eutectic temperature TE0, and the eutectic temperature TE and the supercooling temperature TC of the melt extracted from the cooling curve of the melt after the graphite spheroidizing treatment are extracted as the characteristic amounts, and K1, K2, K3, and K4 are extracted. , SG when K5 is a coefficient
= K1 x TLO + K2 x TEO + K3 x TE + K4 x T
A method for measuring the graphite spheroidization rate of a cast iron molten metal, which comprises calculating the graphite spheroidization rate SG from the above relational expression where C + K5.
【請求項4】鋳鉄溶湯の冷却曲線から黒鉛球状化率と相
関関係をもつ特徴量を抽出し、予め多数のサンプルから
抽出した前記特徴量と前記黒鉛球状化率とから前記特徴
量を変数とする黒鉛球状化率を求める関係式を決定し、
該関係式から黒鉛球状化率を求める熱分析法を用いた鋳
鉄溶湯の黒鉛球状化率の測定方法において、 黒鉛球状化処理前の元湯の冷却曲線から抽出された前記
元湯の初晶温度TLO及び共晶温度TE0と、黒鉛球状
化処理後の溶湯の冷却曲線から抽出された前記溶湯の共
晶温度TE、初晶温度TL及び過冷温度TCとを前記特
徴量として抽出し、 K1、K2、K3、K4、K5、K6を係数とした場合
にSG=K1×TLO+K2×TEO+K3×TE+K
4×TL+K5×TC+K6とした前記関係式から前記
黒鉛球状化率SGを算出することを特徴とする鋳鉄溶湯
の黒鉛球状化率の測定方法。
4. A feature quantity having a correlation with a graphite spheroidization rate is extracted from a cooling curve of a cast iron molten metal, and the feature quantity is extracted from a large number of samples in advance and the graphite spheroidization rate is used as a variable. Determine the relational expression to obtain the graphite spheroidization rate,
In the method for measuring the graphite spheroidization rate of a cast iron melt using a thermal analysis method for obtaining the graphite spheroidization rate from the relational expression, the primary crystal temperature of the original hot water extracted from the cooling curve of the original hot water before the graphite spheroidization treatment TLO and the eutectic temperature TE0, and the eutectic temperature TE, the primary crystal temperature TL and the supercooling temperature TC of the melt extracted from the cooling curve of the melt after the graphite spheroidizing treatment are extracted as the characteristic amounts, K1, SG = K1 × TLO + K2 × TEO + K3 × TE + K when K2, K3, K4, K5, and K6 are used as coefficients.
A method for measuring the spheroidization rate of graphite in a cast iron melt, comprising calculating the spheroidization rate SG of the graphite from the relational expression of 4 × TL + K5 × TC + K6.
JP59101360A 1984-05-18 1984-05-18 Method for measuring the spheroidization rate of graphite in molten cast iron Expired - Lifetime JPH0612346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59101360A JPH0612346B2 (en) 1984-05-18 1984-05-18 Method for measuring the spheroidization rate of graphite in molten cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59101360A JPH0612346B2 (en) 1984-05-18 1984-05-18 Method for measuring the spheroidization rate of graphite in molten cast iron

Publications (2)

Publication Number Publication Date
JPS60244845A JPS60244845A (en) 1985-12-04
JPH0612346B2 true JPH0612346B2 (en) 1994-02-16

Family

ID=14298663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59101360A Expired - Lifetime JPH0612346B2 (en) 1984-05-18 1984-05-18 Method for measuring the spheroidization rate of graphite in molten cast iron

Country Status (1)

Country Link
JP (1) JPH0612346B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE466059B (en) * 1990-02-26 1991-12-09 Sintercast Ltd PROCEDURES FOR CONTROL AND ADJUSTMENT OF PRIMARY NUCLEAR FORM
CN104049069B (en) * 2014-06-13 2016-02-10 清华大学 A kind of microstructure of grey cast iron performance stokehold fast assessing method
CN106127821A (en) * 2016-07-01 2016-11-16 昆明理工大学 A kind of method based on form factor quantitative Analysis spheroidal graphite cast-iron Oxygen potential

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2929693C2 (en) * 1979-07-21 1981-05-07 Ströhlein GmbH & Co, 4000 Düsseldorf Device for taking a molten sample of metal or metal alloys and for measuring the cooling curve of the sample
JPS596385A (en) * 1982-07-04 1984-01-13 Sankyo Alum Ind Co Ltd Method and apparatus for subjecting conveying object to surface treatment

Also Published As

Publication number Publication date
JPS60244845A (en) 1985-12-04

Similar Documents

Publication Publication Date Title
US4333512A (en) Method of quickly predicting the degree of nodularity of spheroidal graphite cast iron from a molten iron sample
CA1114196A (en) Method and apparatus for predicting metallographic structure
JPH0612346B2 (en) Method for measuring the spheroidization rate of graphite in molten cast iron
Grosman Application of a flow stress function in programmes for computer simulation of plastic working processes
JPS60177116A (en) Method and device for measuring graphite spheroidization rate of molten cast iron
JPH0376410B2 (en)
JPH068451B2 (en) Converter molten steel carbon estimation method
JPS6348300B2 (en)
KR20000045516A (en) Method and device for predicting concentration of carbon in molten metal in electric furnace work
JPH0462461A (en) Quantitative determination of phosphorus in copper melt
SU1558875A1 (en) Specimen for study of phase transformations in cast metal
JPH07128328A (en) Method for predicting deterioration and residual life of metallic material
SU711445A1 (en) Method of joint determining of the content of silicium and manganese in alloys
Sommer et al. Rapid determination of small oxygen contents and aluminium-bound oxygen in steels
SU550567A1 (en) Device for automatic determination of the degree of purity of metals
RU1772167C (en) Method for expressive ferrous oxide assay in slag
JP3390813B2 (en) Method for measuring iron content in aluminum alloys
SU1497231A1 (en) Method of quick test of ferrous oxide in slag
JPH0516540B2 (en)
SU454465A1 (en) The method of determining the chemical composition and structure of metals
JPS6230806A (en) Method for controlling desiliconization of molten iron
CA1115553A (en) Method and apparatus for predicting metallographic structure
SU926539A1 (en) Device for checking aluminium concentration
JPS608740B2 (en) Method for detecting the amount of calcium in lead-calcium alloys
Jenkins et al. Sampling and analysis for an oxygen steel shop