JPH06120569A - Infrared detector - Google Patents

Infrared detector

Info

Publication number
JPH06120569A
JPH06120569A JP26720292A JP26720292A JPH06120569A JP H06120569 A JPH06120569 A JP H06120569A JP 26720292 A JP26720292 A JP 26720292A JP 26720292 A JP26720292 A JP 26720292A JP H06120569 A JPH06120569 A JP H06120569A
Authority
JP
Japan
Prior art keywords
infrared
substrate
infrared detector
detection unit
lower electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26720292A
Other languages
Japanese (ja)
Inventor
Yukihiko Shirakawa
幸彦 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP26720292A priority Critical patent/JPH06120569A/en
Publication of JPH06120569A publication Critical patent/JPH06120569A/en
Pending legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To provide a low-cost high-sensitivity infrared detector by using a substrate including a thermal isolation space opposed to an infrared sensor. CONSTITUTION:An infrared detecting element 11 is constituted of a laminated body consisting of a SiN insulating layer 2, formed on a substrate 1, an upper electrode 7, having infrared absorbing function, a thin film element 6, having pyroelectrical effect, and a lower electrode 5, having infrared reflecting function. The laminated body is provided with a thermal isolation space 3 in the part of the substrate. In the infrared detector 10, the infrared detecting elements 11 are arrayed on the substrate 1 on a matrix consisting of 5 elements in the axis of ordinate and 10 elements in the abscissa approximatedly with spaces respectively. The upper electrodes 7 and the lower electrodes 5 of respective infrared detecting elements 11 are connected in parallel. Further, a connecting part 13, functioning as a trimming zone, is provided in a wiring passage, in which the parallel connection is effected. According to this method, defective ones among the infrared detecting elements 11, which constitute the infrared detector 10, can be separated electrically.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、赤外線検出器に関し、
より詳しくは、工場、店舗、家屋等防犯の必要な箇所に
用いられ、人体検地等を目的とする焦電効果を利用した
赤外線検出器に関する
FIELD OF THE INVENTION The present invention relates to an infrared detector,
More specifically, the present invention relates to an infrared detector that is used in places where crime prevention is required, such as factories, stores, and houses, and that uses the pyroelectric effect for the purpose of human body inspection.

【0002】[0002]

【従来技術の説明】従来、焦電効果を利用した熱型赤外
線検出器は、図6に示すように、セラミックス焦電材料
や、単結晶焦電材料等のバルク材料を薄く加工した焦電
素子25の表裏に分割電極28A,28B及び共通電極
27を形成した検出素子20を接着剤22により基板2
1から浮かした状態で支持し、分割電極28A,28B
から電気信号を取り出すデュアル型の構成としている
(実開昭57−84447号)。
2. Description of the Related Art Conventionally, as shown in FIG. 6, a thermal infrared detector utilizing a pyroelectric effect is a pyroelectric element obtained by thinly processing a bulk material such as a ceramic pyroelectric material or a single crystal pyroelectric material. The detection element 20 in which the divided electrodes 28A and 28B and the common electrode 27 are formed on the front and back sides of the substrate 25 is attached to the substrate 2 by the adhesive 22
1. Supporting in a state of being floated from 1, split electrodes 28A, 28B
It has a dual-type configuration in which electric signals are taken out from the device (Actual No. 57-84447).

【0003】このようにすれば、周囲の温度変化に対し
て焦電素子25の分割電極28A、28Bに現れる出力
は極性が反対になり打ち消し合うため、移動する熱源の
みを検出することが可能となる。
In this way, the outputs appearing at the split electrodes 28A and 28B of the pyroelectric element 25 have opposite polarities and cancel each other out due to changes in ambient temperature, so that it is possible to detect only the moving heat source. Become.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
たバルク材料を用いた従来の赤外線検出器の場合、以下
に述べる2点の問題があった。
However, the conventional infrared detector using the above-mentioned bulk material has the following two problems.

【0005】まず第1に、セラミック焦電材料や、単結
晶焦電材料を加工する場合、これらの材料は脆性材料で
あるため極めて加工が困難であり、実用的には厚さ約1
00μm程度が限度であった。 このため、検出素子2
0の熱容量が大きくなり、赤外線に対する応答が遅くな
り、さらに熱的ノイズが大きくなってしまう。 この結
果、十分な検出感度が得られないという問題があった。
First, when a ceramic pyroelectric material or a single crystal pyroelectric material is processed, it is extremely difficult to process these materials because they are brittle materials.
The limit was about 00 μm. Therefore, the detection element 2
The heat capacity of 0 becomes large, the response to infrared rays becomes slow, and thermal noise becomes large. As a result, there is a problem that sufficient detection sensitivity cannot be obtained.

【0006】第2に、バルク材料を加工してデュアル型
の赤外線検出器を構成する場合、検出素子20の加工精
度に限界があるため、デュアル型として機能する検出素
子20の素子特性に微妙なばらつきが生じ、周囲の温度
変化等に対して、十分な補償が出来ないため、周辺温度
等の外乱によるノイズレベルが高くなって、結果的に検
出感度が低下してしまう問題があった。
Secondly, when a bulk type material is processed to form a dual type infrared detector, since the processing accuracy of the detection element 20 is limited, the element characteristics of the detection element 20 that functions as a dual type are subtle. There is a problem in that variations occur, and sufficient compensation cannot be made for ambient temperature changes, etc., so that the noise level due to disturbances such as ambient temperature becomes high, and as a result the detection sensitivity decreases.

【0007】従来においても、上述した第1の問題を解
決するために、赤外線検出素子を薄膜として絶縁性基板
上に形成し、その後、赤外線検出部に当たる基板の一部
をこの基板裏部よりエッチングで除去する構造が提案さ
れている(特開昭60−30115)。
In the past, in order to solve the above-mentioned first problem, the infrared detecting element is formed as a thin film on an insulating substrate, and then a part of the substrate corresponding to the infrared detecting portion is etched from the back of the substrate. There has been proposed a structure to be removed by the method described in JP-A-60-30115.

【0008】しかしながら、この構造は、以下に述べる
問題点を有している。
However, this structure has the following problems.

【0009】まず、検出対象となる人体等の赤外線波長
が、約10μm程度と大きいため、赤外線集光光学系
上、現実的なデバイスを得るためには赤外線検出部を赤
外線の波長より十分大きく取らねばならない。 この
際、赤外線検出部の構造は大型になると、これを構成す
る部材間の熱膨張差等に起因する応力等の影響で、機械
的に脆弱になり、実際に作成する上で非常な困難を伴
う。
First, since the infrared wavelength of the human body or the like to be detected is as large as about 10 μm, in order to obtain a realistic device in the infrared focusing optical system, the infrared detecting section should be sufficiently larger than the infrared wavelength. I have to. At this time, if the structure of the infrared detector becomes large, it becomes mechanically fragile due to the influence of the stress caused by the difference in thermal expansion between the members that make up the infrared detector, which makes it extremely difficult to actually create. Accompany.

【0010】さらに、かりにこれらの構造を作成し得て
も、実際にデュアル型赤外線検出器を形成する場合、バ
ルク材料を加工して用いた場合と同様に、素子間のばら
つきに起因して結果的に高い検出感度が得られないとい
う問題がある。
Further, even if these structures can be formed, even when the dual type infrared detector is actually formed, the result due to the variation between the elements is the same as when the bulk material is processed and used. There is a problem that high detection sensitivity cannot be obtained.

【0011】そこで、本発明は、上述した問題点を解決
し、低コストで検出感度の良好な赤外線検出器を提供す
ることを目的とするものである。
Therefore, an object of the present invention is to solve the above-mentioned problems and to provide an infrared detector which has a low cost and a good detection sensitivity.

【0012】[0012]

【課題を解決するための手段】このような発明の目的
は、下記(1)〜(4)の発明により達成される。
The above objects of the invention are achieved by the inventions (1) to (4) below.

【0013】(1)基板と、前記基板上に形成された上
部電極、焦電効果を有する薄膜素子、下部電極及び機械
的支持絶縁性薄膜の積層体からなる赤外線検出部と、前
記赤外線検出部と基板の間の基板側に形成された熱分離
空間によって構成される赤外線検出単位素子を、前記基
板上に複数個近接して配列し、各赤外線検出単位素子の
上部電極、下部電極を並列接続したことを特徴とする赤
外線検出器。
(1) A substrate, an infrared detecting section comprising a laminated body of an upper electrode formed on the substrate, a thin film element having a pyroelectric effect, a lower electrode and a mechanical supporting insulating thin film; and the infrared detecting section. A plurality of infrared detection unit elements constituted by a heat separation space formed on the substrate side between the substrate and the substrate are arranged closely on the substrate, and the upper electrode and the lower electrode of each infrared detection unit element are connected in parallel. An infrared detector characterized in that

【0014】(2)前記上部電極は赤外線吸収能を有
し、前記下部電極は赤外線反射能を有する上記1に記載
の赤外線検出器 (3)前記上部電極及び/又は前記下部電極を並列接続
する配線路にトリミング領域を設けた上記(1)または
(2)に記載の赤外線検出器。
(2) The infrared detector according to the above item (1), wherein the upper electrode has an infrared absorbing ability and the lower electrode has an infrared reflecting ability. (3) The upper electrode and / or the lower electrode are connected in parallel. The infrared detector according to (1) or (2) above, wherein a trimming area is provided in the wiring path.

【0015】(4)前記赤外線検出器を、複数個用いて
構成した上記(1)ないし(3)のいずれかに記載の赤
外線検出器。
(4) The infrared detector according to any one of (1) to (3) above, which is configured by using a plurality of the infrared detectors.

【0016】[0016]

【作用】本発明の赤外線検出器は、基板上に形成され、
上部電極、焦電効果を有する薄膜素子、下部電極及び機
械的支持絶縁性薄膜の積層体からなる赤外線検出部と、
さらに、その赤外線検出部を熱的に基板から分離する目
的で基板と赤外線検出部の間の基板側に形成される熱分
離空間によって構成される赤外線検出単位素子を、前記
基板上に複数個近接して配列し、各赤外線検出単位素子
の上部電極、下部電極を並列接続した物である。
The infrared detector of the present invention is formed on a substrate,
An upper electrode, a thin film element having a pyroelectric effect, an infrared detecting section comprising a laminated body of a lower electrode and a mechanically supporting insulating thin film,
Further, a plurality of infrared detecting unit elements, which are constituted by a thermal separation space formed on the substrate side between the substrate and the infrared detecting unit, are provided close to the substrate for the purpose of thermally separating the infrared detecting unit from the substrate. And the upper electrode and the lower electrode of each infrared detection unit element are connected in parallel.

【0017】赤外線検出単位素子は、基板との間に熱分
離空間を持つため、熱応答性が良く、高感度の赤外線検
出が可能になる。
Since the infrared detection unit element has a heat separation space between the infrared detection unit element and the substrate, the infrared detection unit element has good thermal responsiveness and enables highly sensitive infrared detection.

【0018】また、実際の赤外線検出器を構成するため
に、前記赤外線検出器を複数個、好ましくは2次元平面
状に近接して配列し、それぞれの赤外線検出単位素子の
上部電極、下部電極を並列に接続することで、一個の赤
外線検出器を形成する。
In order to construct an actual infrared detector, a plurality of infrared detectors, preferably two-dimensionally arranged in close proximity to each other, are arranged, and the upper electrode and the lower electrode of each infrared detection unit element are arranged. By connecting in parallel, one infrared detector is formed.

【0019】このような並列構造により、赤外線検出単
位素子の大きさを、数10μmから数100μm程度の
寸法にとどめたまま、赤外線検出器としては、赤外線集
光光学系から要求される必要な面積を得ることが出来
る。 この結果、赤外線検出素子を十分小さな寸法で形
成でき、赤外線検出単位素子を構成する部材間の熱膨張
差等に起因する応力等で、熱分離構造を作製する上での
困難を最小限に抑えることが可能になる。
Due to such a parallel structure, the size of the infrared detection unit element is limited to a size of about several tens of μm to several hundreds of μm, and as an infrared detector, a necessary area required from the infrared focusing optical system is obtained. Can be obtained. As a result, the infrared detection element can be formed in a sufficiently small size, and the difficulty in manufacturing the thermal isolation structure due to the stress caused by the difference in thermal expansion between the members forming the infrared detection unit element can be minimized. It will be possible.

【0020】また焦電効果を有する薄膜素子の上部電
極、下部電極を、赤外線吸収層と赤外線反射層として機
能する構成とする事で、赤外線検出単位素子の赤外線に
対する実効感度を向上させることが出来る。
Further, by making the upper electrode and the lower electrode of the thin film element having the pyroelectric effect function as an infrared absorbing layer and an infrared reflecting layer, the effective sensitivity of the infrared detecting unit element to infrared rays can be improved. .

【0021】更に、赤外線検出単位素子の上部電極もし
くは下部電極を接続する配線路の一方、又は上部電極及
び下部電極を接続する配線路の両方にはトリミングによ
り切断可能な部分、即ち、トリミング領域を設けること
により、赤外線検出器を構成する赤外線検出単位素子中
の不良素子を電機的に分離することが可能となり、赤外
線検出器の製造歩留まりを向上させ、且つ赤外線検出器
の感度の調整が可能となる。
Furthermore, one of the wiring paths connecting the upper electrode or the lower electrode of the infrared detection unit element or both the wiring paths connecting the upper electrode and the lower electrode is provided with a portion that can be cut by trimming, that is, a trimming area. By providing, it becomes possible to electrically separate the defective elements in the infrared detection unit elements constituting the infrared detector, improve the manufacturing yield of the infrared detector, and adjust the sensitivity of the infrared detector. Become.

【0022】更に、この赤外線検出器を複数個用いた構
成とすれば、各赤外線検出器間の特性のばらつきを、各
赤外線検出器の赤外線検出単位素子の数をこれらの特性
が同一になるようにトリミングする事で調整でき、これ
により、周辺温度等の外乱の影響を完全に補償できるた
め、熱分離空間を持つ薄膜赤外線検出器の高い検出感度
を損なうことなく、実用価値の高い高感度の赤外線検出
器を得ることが出来る。
Furthermore, if a plurality of infrared detectors are used, variations in characteristics among the infrared detectors can be controlled so that the number of infrared detection unit elements in each infrared detector is the same. It can be adjusted by trimming it to completely compensate for the influence of disturbances such as ambient temperature, so it does not impair the high detection sensitivity of the thin film infrared detector with a thermal separation space, and it has high practical value and high sensitivity. An infrared detector can be obtained.

【0023】[0023]

【実施例】以下に、本発明の実施例を詳細に説明する。EXAMPLES Examples of the present invention will be described in detail below.

【0024】図1に示す赤外線検出器10は、シリコン
単結晶基板からなる基板1上に形成したSiN絶縁層2
とその上に赤外線吸収能を有する上部電極7,焦電効果
を有する薄膜素子6及び赤外線反射能を有する下部電極
5の積層体と、それに相当する基板部分に形成された熱
分離空間3を持って構成される赤外線検出単位素子11
を、前記基板1上に縦5素子、横10素子のマトリック
ス上にそれぞれ縦約30μm、横約30μmの間隔をお
いて近接して配列し、各赤外線検出単位素子11の上部
電極7、下部電極5を並列接続したものである。
The infrared detector 10 shown in FIG. 1 comprises a SiN insulating layer 2 formed on a substrate 1 made of a silicon single crystal substrate.
And a laminated body of an upper electrode 7 having an infrared absorbing ability, a thin film element 6 having a pyroelectric effect and a lower electrode 5 having an infrared reflecting ability, and a heat separation space 3 formed in a substrate portion corresponding to the laminated body. Infrared detection unit element 11
Are arranged on the substrate 1 in a matrix of 5 elements in the vertical direction and 10 elements in the horizontal direction and are closely arranged at intervals of about 30 μm in the vertical direction and about 30 μm in the horizontal direction, respectively. 5 are connected in parallel.

【0025】前記赤外線検出単位素子11の下部電極5
は、列(縦方向)毎に形成した共通電極8に接続され、
各列毎の共通電極8はさらに赤外線検出単位素子11の
マトリックス外部にある行(横方向)に沿った共通電極
9aに接続され、赤外線検出器10の一方の出力として
いる。
Lower electrode 5 of the infrared detection unit element 11
Is connected to the common electrode 8 formed in each column (vertical direction),
The common electrode 8 for each column is further connected to a common electrode 9a along a row (horizontal direction) outside the matrix of the infrared detection unit elements 11 and serves as one output of the infrared detector 10.

【0026】また赤外線検出単位素子11の上部電極7
は、前記共通電極9と反対側の上部電極7用の共通電極
9bに、それぞれ個別の配線でもって接続され、赤外線
検出器10の他方の出力としている。 赤外線検出器1
0の特性を調整するときには、この共通電極9bへの接
続部13をレーザー光で焼き切ることにより行う。
The upper electrode 7 of the infrared detection unit element 11
Are connected to the common electrode 9b for the upper electrode 7 on the side opposite to the common electrode 9 by individual wirings, and serve as the other output of the infrared detector 10. Infrared detector 1
When adjusting the characteristic of 0, the connection portion 13 to the common electrode 9b is burnt out by laser light.

【0027】即ち、接続部13は、トリミング領域とし
て機能するようになっている。
That is, the connecting portion 13 functions as a trimming area.

【0028】図2、図3は、前記赤外線検出単位素子1
1の構造を示すものである。
2 and 3 show the infrared detection unit element 1 described above.
1 shows the structure of 1.

【0029】この赤外線検出単位素子11の製造工程を
以下に説明する。
The manufacturing process of the infrared detection unit element 11 will be described below.

【0030】まず、シリコン単結晶の基板1の表面に、
CVD法で、Si34膜を約1μmの厚さに形成し、絶
縁支持層2とした。 次に赤外線反射層を兼ねるPt膜
を約3000オングストロームの厚さに蒸着法にて形成
し、イオンミリングにより約30μm角の下部電極5と
した。 この下部電極5の上に、チタン酸ジルコン酸鉛
薄膜をスパッタ法により約2μmの厚さに形成し、下部
電極5を覆う部分を残してエッチングで除去し、これを
焦電効果を有する薄膜素子6とした。 この後、上部電
極7としてスパッタ法によりNiCr薄膜を約100オ
ングストロームの厚さに形成し、所定の形状にパターニ
ングした。
First, on the surface of the silicon single crystal substrate 1,
A Si 3 N 4 film having a thickness of about 1 μm was formed by the CVD method to form an insulating support layer 2. Next, a Pt film also serving as an infrared reflection layer was formed to a thickness of about 3000 angstroms by an evaporation method, and ion milling was performed to form a lower electrode 5 of about 30 μm square. A thin film of lead zirconate titanate having a thickness of about 2 μm was formed on the lower electrode 5 by a sputtering method, and the thin film element having a pyroelectric effect was removed by etching except a portion covering the lower electrode 5. It was set to 6. After that, a NiCr thin film was formed as the upper electrode 7 by a sputtering method to a thickness of about 100 Å, and patterned into a predetermined shape.

【0031】次に赤外線検出効果を持つ薄膜素子6の外
周部に当たる部分のSi34膜をスリット状にドライエ
ッチングにより除去し、この部分を通して薄膜素子6の
位置に相当する基板1を異方性エッチング法にて除去
し、熱分離空間3を作製した。
Next, the Si 3 N 4 film in the portion corresponding to the outer peripheral portion of the thin film element 6 having the infrared detecting effect is removed by dry etching in a slit shape, and the substrate 1 corresponding to the position of the thin film element 6 is anisotropically passed through this portion. Was removed by a reactive etching method to prepare a heat separation space 3.

【0032】以上の工程により、図2、図3に示す赤外
線検出単位素子11を得た。
Through the above steps, the infrared detection unit element 11 shown in FIGS. 2 and 3 was obtained.

【0033】焦電効果を有する薄膜素子6の上部電極
7、下部電極5は、赤外線吸収層と赤外線反射層として
機能するため、赤外線検出単位素子11の赤外線に対す
る実効感度を向上させることが出来る。
Since the upper electrode 7 and the lower electrode 5 of the thin film element 6 having the pyroelectric effect function as an infrared absorption layer and an infrared reflection layer, the infrared detection unit element 11 can improve its effective sensitivity to infrared rays.

【0034】また、実際の赤外線検出器10を構成する
ために、前記赤外線検出単位素子11を図1に示すよう
に、基板1上に縦5素子、横10素子のマトリックス状
にそれぞれ約30μmの間隔をおいて近接して配列し、
各赤外線検出素子11の上部電極7、下部電極5を並列
接続することで、赤外線検出単位素子11の大きさを約
30μm角程度の寸法にとどめたまま、赤外線検出器1
0としては赤外線集光光学系から要求される必要な面積
を得ることが出来る。 この結果、赤外線検出単位素子
11を十分小さな面積で形成でき、赤外線検出単位素子
11を構成する部材間の熱膨張係数差等に起因する応力
等により赤外線検出単位素子11に生じる支障を最小限
に抑えることが可能になる。
In order to construct the actual infrared detector 10, the infrared detecting unit elements 11 are arranged on the substrate 1 in a matrix of 5 elements in the vertical direction and 10 elements in the horizontal direction as shown in FIG. Arrange closely and at intervals,
By connecting the upper electrode 7 and the lower electrode 5 of each infrared detection element 11 in parallel, the infrared detection unit 1 can be used while keeping the size of the infrared detection unit element 11 at about 30 μm square.
As 0, it is possible to obtain a necessary area required from the infrared light condensing optical system. As a result, the infrared detection unit element 11 can be formed in a sufficiently small area, and the trouble caused in the infrared detection unit element 11 due to stress or the like caused by the difference in thermal expansion coefficient between members forming the infrared detection unit element 11 can be minimized. It becomes possible to suppress.

【0035】図4に、前記赤外線検出器10を用いたい
わゆる2素子型と称される移動熱源を検出する赤外線検
出器10Aを示す。
FIG. 4 shows an infrared detector 10A using the infrared detector 10 for detecting a so-called two-element type moving heat source.

【0036】この赤外線検出器10Aは、前記赤外線検
出器10を左右それぞれ5素子づつ並列に接続して赤外
線検出器10Bとし、さらに、左右の赤外線検出器10
Bにおける素子群の分極方位が打ち消し合うようにこれ
らを直列に接続して、図示しないインピーダンス変換用
FETに出力するようにしたものである。 この赤外線
検出器10Aの等価回路を図5に示す。
In this infrared detector 10A, the infrared detector 10 is connected in parallel to each of the left and right 5 elements to form an infrared detector 10B.
These elements are connected in series so that the polarization orientations of the element group in B cancel each other out, and are output to an impedance conversion FET (not shown). An equivalent circuit of this infrared detector 10A is shown in FIG.

【0037】この移動熱源検出用の赤外線検出器10A
は、各赤外線検出単位素子11が薄膜素子6で形成され
ているため、極めて応答性が良く、かつ熱的ノイズレベ
ルが低い上、左右の素子群の電機的特性を前記接続部1
3のトリミングにより非常に高い精度で一致させること
が出来るため、実効的な検出感度を非常に高くすること
が出来る。
Infrared detector 10A for detecting the moving heat source
Since each infrared detection unit element 11 is formed of the thin film element 6, the response is extremely good, the thermal noise level is low, and the electrical characteristics of the left and right element groups are the same as those of the connection portion 1.
Since the trimming of 3 enables matching with extremely high accuracy, the effective detection sensitivity can be extremely increased.

【0038】なお、本実施例においては、赤外線検出単
位素子11を形成する基板1として、シリコン単結晶基
板を用いた場合に付いて説明したが、この場合、シリコ
ン基板上に赤外線検出器からの出力信号を増幅する出力
増幅回路及びその信号処理回路を搭載して、同一基板上
に赤外線検出器と信号増幅回路、信号処理回路を集積し
たセンサとすることも容易である。
In this embodiment, the case where the silicon single crystal substrate is used as the substrate 1 for forming the infrared detection unit element 11 has been described, but in this case, the infrared detector from the infrared detector is mounted on the silicon substrate. It is also easy to mount an output amplifier circuit for amplifying an output signal and its signal processing circuit to form a sensor in which an infrared detector, a signal amplifier circuit, and a signal processing circuit are integrated on the same substrate.

【0039】[0039]

【発明の効果】以上詳述した本発明によれば、赤外線検
出単位素子を構成する部材間の熱膨張係数差等に起因す
る応力などにより赤外線単位素子構造に生じる支障を最
小限に抑えることが出来、生産性が良く、低コスト化が
可能になると共に、赤外線の集光面積が広く検出感度の
良好な赤外線検出器を提供することが出来る。
According to the present invention described in detail above, it is possible to minimize the trouble caused in the structure of the infrared unit element due to the stress caused by the difference in thermal expansion coefficient between the members constituting the infrared detecting unit element. It is possible to provide an infrared detector which has a good production efficiency, a low cost and a wide infrared condensing area and a good detection sensitivity.

【0040】また、焦電効果を有する薄膜素子の上部電
極、下部電極を、赤外線吸収層と赤外線反射層として機
能させることで、赤外線検出単位素子の赤外線に対する
実効感度を向上させることが出来る。
Further, by making the upper electrode and the lower electrode of the thin film element having the pyroelectric effect function as an infrared absorption layer and an infrared reflection layer, the effective sensitivity of the infrared detection unit element to infrared rays can be improved.

【0041】更に、配線路にトリミング領域を設けたこ
とで、製造歩留まりの向上、検出感度の調整も可能とな
る。
Furthermore, by providing the trimming area in the wiring path, it is possible to improve the manufacturing yield and adjust the detection sensitivity.

【0042】更に、赤外線検出器を複数個の構成とし、
配線路にトリミング領域を設けることで、各赤外線検出
器間の特性調整による高精度の電機的特性を得ることが
出来実効的な検出感度の向上を図ることが出来る。
Furthermore, a plurality of infrared detectors are provided,
By providing the trimming area in the wiring path, highly accurate electrical characteristics can be obtained by adjusting the characteristics between the infrared detectors, and the effective detection sensitivity can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の赤外線検出器の実施例を示す回路図FIG. 1 is a circuit diagram showing an embodiment of an infrared detector of the present invention.

【図2】 本実施例における赤外線検出単位素子の構造
を示す断面図
FIG. 2 is a cross-sectional view showing the structure of an infrared detection unit element in this example.

【図3】 本実施例における赤外線検出単位素子の構造
を示す平面図
FIG. 3 is a plan view showing the structure of an infrared detection unit element in the present embodiment.

【図4】 本実施例における赤外線検出器を用いた移動
熱源を検出する赤外線検出器の構成図
FIG. 4 is a configuration diagram of an infrared detector that detects a moving heat source using the infrared detector in this embodiment.

【図5】 図4に示す赤外線検出器の等価回路図5 is an equivalent circuit diagram of the infrared detector shown in FIG.

【図6】 従来の赤外線検出器の断面図FIG. 6 is a sectional view of a conventional infrared detector.

【符号の説明】[Explanation of symbols]

1 基板 2 絶縁層 3 熱分離空間 5 下部電極 6 薄膜赤外線検出素子 7 上部電極 10 赤外線検出器 11 赤外線検出単位素子 1 Substrate 2 Insulating Layer 3 Thermal Separation Space 5 Lower Electrode 6 Thin Film Infrared Detector 7 Upper Electrode 10 Infrared Detector 11 Infrared Detector Unit Element

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板と、前記基板上に形成された上部電
極、焦電効果を有する薄膜素子、下部電極及び機械的支
持絶縁性薄膜の積層体からなる赤外線検出部と、前記赤
外線検出部と基板の間の基板側に形成された熱分離空間
によって構成される赤外線検出単位素子を、前記基板上
に複数個近接して配列し、各赤外線検出単位素子の上部
電極、下部電極をそれぞれ並列接続したことを特徴とす
る赤外線検出器。
1. An infrared detection unit comprising a substrate, an upper electrode formed on the substrate, a thin film element having a pyroelectric effect, a lower electrode and a mechanical supporting insulating thin film, and the infrared detection unit. A plurality of infrared detection unit elements constituted by a heat separation space formed on the substrate side between the substrates are arranged closely on the substrate, and the upper electrode and the lower electrode of each infrared detection unit element are connected in parallel. An infrared detector characterized in that
【請求項2】 前記上部電極は赤外線吸収能を有し、前
記下部電極は赤外線反射能を有する請求項1に記載の赤
外線検出器
2. The infrared detector according to claim 1, wherein the upper electrode has an infrared absorbing ability and the lower electrode has an infrared reflecting ability.
【請求項3】 前記上部電極及び/又は前記下部電極を
並列接続する配線路にトリミング領域を設けた請求項1
または2に記載の赤外線検出器。
3. A trimming region is provided in a wiring path connecting the upper electrode and / or the lower electrode in parallel.
Alternatively, the infrared detector described in 2.
【請求項4】 前記赤外線検出器を、複数個用いて構成
した請求項1ないし3のいずれかに記載の赤外線検出
器。
4. The infrared detector according to claim 1, wherein a plurality of the infrared detectors are used.
JP26720292A 1992-10-06 1992-10-06 Infrared detector Pending JPH06120569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26720292A JPH06120569A (en) 1992-10-06 1992-10-06 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26720292A JPH06120569A (en) 1992-10-06 1992-10-06 Infrared detector

Publications (1)

Publication Number Publication Date
JPH06120569A true JPH06120569A (en) 1994-04-28

Family

ID=17441549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26720292A Pending JPH06120569A (en) 1992-10-06 1992-10-06 Infrared detector

Country Status (1)

Country Link
JP (1) JPH06120569A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2359192A (en) * 1999-09-16 2001-08-15 Sharp Kk Infra red detector cell and image capture device
EP1178294A1 (en) * 2000-08-04 2002-02-06 Ecole Polytechnique Federale De Lausanne Pyroelectric sensor with reduced parasitic thermal coupling between its pixels
JP2008244173A (en) * 2007-03-27 2008-10-09 Matsushita Electric Works Ltd Divided substrate and manufacturing method thereof and infrared detector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2359192A (en) * 1999-09-16 2001-08-15 Sharp Kk Infra red detector cell and image capture device
US6489614B1 (en) 1999-09-16 2002-12-03 Sharp Kabushiki Kaisha Thermal-type infrared radiation detector cell and image capture device incorporating the same
GB2359192B (en) * 1999-09-16 2004-03-31 Sharp Kk Thermal-type infrared radiation detector cell and image capture device incorporating the same
EP1178294A1 (en) * 2000-08-04 2002-02-06 Ecole Polytechnique Federale De Lausanne Pyroelectric sensor with reduced parasitic thermal coupling between its pixels
WO2002012848A1 (en) * 2000-08-04 2002-02-14 Ecole Polytechnique Federale De Lausanne (Epfl) Pyroelectric sensor having reduced stray thermal coupling between its pixels
JP2008244173A (en) * 2007-03-27 2008-10-09 Matsushita Electric Works Ltd Divided substrate and manufacturing method thereof and infrared detector

Similar Documents

Publication Publication Date Title
US5021663A (en) Infrared detector
EP0611443B1 (en) Thin film pyroelectric imaging array
US6667479B2 (en) Advanced high speed, multi-level uncooled bolometer and method for fabricating same
EP1022551A2 (en) Thermal infrared array sensor for detecting a plurality of infrared wavelength bands
JPH07218648A (en) Infrared-ray sensor array device
EP0354369B1 (en) Infrared detector
US4532424A (en) Pyroelectric thermal detector array
JP2001156277A (en) Infrared detector
JPH09500234A (en) Pyro detector with oriented and grown pyroelectric layer and method of making
WO2011111099A1 (en) Infrared ray detection element and infrared ray detection device equipped therewith
JPH06120569A (en) Infrared detector
US5602392A (en) Thermal crosstalk reduction for infrared detectors with common electrodes
US5286975A (en) Pyro-electric type infrared-ray sensor
RU2634805C2 (en) Dual-spectrum matrix infrared radiation array detector for optoelectronic sensors
JPS637611B2 (en)
JPH0637361A (en) Infrared detector
JPH06120570A (en) Infrared detector
JPH08271345A (en) Pyroelectric infrared detecting element
JPH08184514A (en) Pressure sensor
KR100339395B1 (en) pile bolometer sensor and fabrication methode of the same
JPH11148868A (en) Heat detecting element and its manufacture
JP3175321B2 (en) Pyroelectric array sensor
JPH06160175A (en) Infrared ray detecting element
JPH0337132B2 (en)
JP2000230860A (en) Thermal infrared sensor, manufacture thereof and thermal infrared array element

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010724