JPH06120532A - Manufacture of solar cell - Google Patents

Manufacture of solar cell

Info

Publication number
JPH06120532A
JPH06120532A JP4271378A JP27137892A JPH06120532A JP H06120532 A JPH06120532 A JP H06120532A JP 4271378 A JP4271378 A JP 4271378A JP 27137892 A JP27137892 A JP 27137892A JP H06120532 A JPH06120532 A JP H06120532A
Authority
JP
Japan
Prior art keywords
forming
film
solar cell
antireflection film
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4271378A
Other languages
Japanese (ja)
Inventor
Nagayasu Yamagishi
長保 山岸
Takashi Ueda
孝 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP4271378A priority Critical patent/JPH06120532A/en
Publication of JPH06120532A publication Critical patent/JPH06120532A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To provide a method of manufacturing a solar cell, which prevents the generation of surface contamination, reduces ohmic resistance and at the same time, is capable of forming surface ohmic metallic electrodes without destroying the junction of a semiconductor element. CONSTITUTION:In a method of manufacturing a solar cell, a process for forming a p-type GaAs semiconductor layer 12 to form a p-n junction on an n-type GaAs semiconductor substrate 11, a process for forming an antireflection film (an SiO2 film) 13 on the layer 12, a process, for patterning the film 13 by a photolithography and opening parts are formed, a process for forming respectively surface electrodes on the opening parts, a process for selectively growing respectively p<+> high-concentration semiconductor films 14 on the opening parts and a process for forming respectively ohmic metallic electrodes 15 on the films 14 are performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、太陽電池の製造方法に
係り、特に、反射防止膜を受光面に形成した太陽電池へ
のオーミック電極形成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solar cell, and more particularly to a method for forming an ohmic electrode on a solar cell having an antireflection film formed on its light receiving surface.

【0002】[0002]

【従来の技術】従来、このような分野の技術としては、
例えば、「太陽電池ハンドブック」電気学会編 198
5年 P.2に開示されるものがあった。図2はかかる
従来の半導体接合型の太陽電池の製造工程断面図であ
る。まず、図2(a)に示すように、n型半導体層1上
へp型半導体層2を形成して、光電変換領域であるpn
接合を形成する。なお、n型とp型は逆になるように構
成してもよい。
2. Description of the Related Art Conventionally, as a technique in such a field,
For example, "Solar Cell Handbook" edited by The Institute of Electrical Engineers, 198.
5 years P. 2 was disclosed. FIG. 2 is a sectional view of a manufacturing process of such a conventional semiconductor junction solar cell. First, as shown in FIG. 2A, the p-type semiconductor layer 2 is formed on the n-type semiconductor layer 1, and a pn which is a photoelectric conversion region is formed.
Form a bond. The n-type and the p-type may be reversed.

【0003】次に、図2(b)に示すように、p型半導
体層2側に表面電極3及びn型半導体層1側に裏面電極
4を形成する。次に、図2(c)に示すように、p型半
導体層2及び表面電極3を覆うように、反射防止膜5を
形成する。このように、太陽電池は、光を電気に変換す
る領域(光電変換領域)を備えており、受光面部に、素
子中に太陽光を高効率で取り入れるための反射防止膜が
形成されている。また、発電電力を取り出すための集電
電極が受光面部と裏面部に形成されている。
Next, as shown in FIG. 2B, a front surface electrode 3 is formed on the p-type semiconductor layer 2 side and a back surface electrode 4 is formed on the n-type semiconductor layer 1 side. Next, as shown in FIG. 2C, an antireflection film 5 is formed so as to cover the p-type semiconductor layer 2 and the surface electrode 3. As described above, the solar cell includes a region (photoelectric conversion region) that converts light into electricity, and an antireflection film for taking in sunlight into the element with high efficiency is formed on the light receiving surface portion. Further, collector electrodes for taking out the generated power are formed on the light receiving surface and the back surface.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、以上述
べた従来の太陽電池の表面オーミック電極形成方法で
は、受光面となるp(n)層に直接オーミックコンタク
トを取っているため、オーミック抵抗が大きくなり、良
好な太陽電池の特性が得られないという問題点と、電極
形成時にp(n)層が大気中に晒されるため、空気中の
酸素やホトリソパターニング時のレジストなどによる炭
素が、p(n)層に付着して表面特性の劣化(表面再結
合速度の増大)を生じてしまい、良好な太陽電池特性を
得ることができないという問題点があった。
However, in the above-mentioned conventional method for forming the surface ohmic electrode of the solar cell, since the ohmic contact is directly made to the p (n) layer serving as the light receiving surface, the ohmic resistance increases. The problem is that good solar cell characteristics cannot be obtained, and because the p (n) layer is exposed to the atmosphere during electrode formation, oxygen in the air or carbon due to the resist during photolithography patterning may cause p (n) There is a problem in that it adheres to the n) layer and deteriorates the surface characteristics (increases the surface recombination rate), so that good solar cell characteristics cannot be obtained.

【0005】本発明は、以上述べた、オーミック抵抗の
増大と表面汚染の問題点を除去するとともに、半導体素
子の接合を破壊することなく、表面オーミック金属電極
を形成できる太陽電池の製造方法を提供することを目的
とする。
The present invention provides a method of manufacturing a solar cell which eliminates the problems of increased ohmic resistance and surface contamination as described above, and can form a surface ohmic metal electrode without breaking the junction of semiconductor elements. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するために、太陽電池の製造方法において、第1導電
型の半導体基板上にpn接合を形成する第2導電型の半
導体層を形成する工程と、該第2導電型の半導体層上に
反射防止膜を形成する工程と、該反射防止膜をホトリソ
によりパターニングし、開口部を形成する工程と、該開
口部に第2導電型の高濃度半導体膜を選択成長する工程
と、該高濃度半導体膜上に金属電極を形成する工程を施
すようにしたものである。
In order to achieve the above object, the present invention provides a method of manufacturing a solar cell, wherein a second conductivity type semiconductor layer for forming a pn junction is formed on a first conductivity type semiconductor substrate. Forming step, forming an antireflection film on the semiconductor layer of the second conductivity type, patterning the antireflection film by photolithography to form an opening, and forming a second conductivity type in the opening The step of selectively growing the high concentration semiconductor film and the step of forming the metal electrode on the high concentration semiconductor film are performed.

【0007】また、前記反射防止膜及び表面電極を覆う
第2の反射防止膜を設けるようにしたものである。
Further, a second antireflection film for covering the antireflection film and the surface electrode is provided.

【0008】[0008]

【作用】本発明によれば、上記したように、太陽電池の
製造方法において、太陽電池の光電変換層を形成した
後、反射防止膜を形成して、これに表面電極形成のため
の窓開けを行った後、ここに表面側の光電変換層と同じ
導電型で高濃度にドープされた高濃度半導体膜を選択成
長した後、この上に表面電極用に金属をパターニング形
成して、シンタを行って、オーミック金属電極を形成す
る。
According to the present invention, as described above, in the method for manufacturing a solar cell, after forming the photoelectric conversion layer of the solar cell, an antireflection film is formed and a window for forming a surface electrode is formed on the antireflection film. Then, after selectively growing a high-concentration semiconductor film of the same conductivity type as that of the photoelectric conversion layer on the surface side and highly doped therein, a metal is patterned and formed on the surface electrode for the surface electrode, and the sintering is performed. Then, an ohmic metal electrode is formed.

【0009】したがって、太陽電池表面の不純物汚染や
外気の影響(特に湿気)を受け難く、太陽電池の安定な
動作と長寿命化、高信頼性化を図ることができる。
Therefore, the surface of the solar cell is less likely to be contaminated with impurities and is not easily affected by the outside air (particularly moisture), and stable operation of the solar cell, long life, and high reliability can be achieved.

【0010】[0010]

【実施例】以下、本発明の実施例について図面を参照し
ながら詳細に説明する。図1は本発明の実施例を示す太
陽電池の製造工程断面図である。まず、図1(a)に示
すように、例えば、n型GaAs半導体基板11上にp
型GaAs半導体層12を形成して、光電変換領域であ
るpn接合を形成する。ここで、GaAsに代えて、S
iを用いるようにしてもよい。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a sectional view of a solar cell manufacturing process showing an embodiment of the present invention. First, as shown in FIG. 1A, for example, p is formed on the n-type GaAs semiconductor substrate 11.
The type GaAs semiconductor layer 12 is formed to form a pn junction which is a photoelectric conversion region. Here, instead of GaAs, S
You may make it use i.

【0011】次いで、図1(b)に示すように、反射防
止膜として、例えばSiO2 膜13(厚さ数100n
m)を形成し、p型GaAs半導体層12に対する電極
形成のためのレジスト(図示なし)を塗布し、パターニ
ングして、これをマスクとして、SiO2 膜13への穴
開けを行う。ここで、反射防止膜はSiO2 膜に限ら
ず、Si3 4 膜等を用いるようにしてもよい。また、
その形成方法もスパッタ法、CVD法のいずれの方法で
もよい。
Next, as shown in FIG. 1B, as an antireflection film, for example, a SiO 2 film 13 (thickness: 100 n) is used.
m) is formed, a resist (not shown) for forming an electrode on the p-type GaAs semiconductor layer 12 is applied and patterned, and the SiO 2 film 13 is perforated using this as a mask. Here, the antireflection film is not limited to the SiO 2 film, and a Si 3 N 4 film or the like may be used. Also,
The forming method may be either a sputtering method or a CVD method.

【0012】次いで、図1(c)に示すように、pn接
合の表面側のp型GaAs半導体層12と同じ導電型で
高濃度にドープされた高濃度半導体膜(p+ 膜)14
を、例えば、厚さ100nm、MOCVD法により選択
的に成長する。この時、基板温度は接合を破壊しない程
度の温度(Siの場合は〜800℃)以下であることが
望ましい。
Then, as shown in FIG. 1C, a high-concentration semiconductor film (p + film) 14 of the same conductivity type as the p-type GaAs semiconductor layer 12 on the surface side of the pn junction and heavily doped.
Are selectively grown, for example, with a thickness of 100 nm by the MOCVD method. At this time, it is desirable that the substrate temperature is not higher than the temperature (˜800 ° C. in the case of Si) that does not destroy the junction.

【0013】その後、図1(d)に示すように、選択成
長した高濃度半導体膜14上に再びホトリソを行ってオ
ーミック金属電極15をリフトオフにより形成する。更
に、オーミックコンタクト形成のためのシンタ(熱処
理)を、例えば400℃で1分程度行って形成する。な
お、ここに述べた実施例中のプロセス条件等は一例であ
ってこれらに限定されるものではないことは明らかであ
り、処理条件は適宜選択することができる。
After that, as shown in FIG. 1D, photolithography is performed again on the selectively grown high-concentration semiconductor film 14 to form the ohmic metal electrode 15 by lift-off. Further, sintering (heat treatment) for forming an ohmic contact is performed, for example, at 400 ° C. for about 1 minute to form. It should be noted that the process conditions and the like in the embodiments described here are merely examples and are not limited to these, and the process conditions can be appropriately selected.

【0014】図3は本発明の他の実施例を示す太陽電池
の製造工程断面図である。まず、前記実施例と同様に、
図3(a)に示すように、例えば、n型GaAs半導体
基板11上にp型GaAs半導体層12を形成して、光
電変換領域であるpn接合を形成する。ここで、GaA
sに代えて、Siを用いるようにしてもよい。
FIG. 3 is a sectional view of a solar cell manufacturing process showing another embodiment of the present invention. First, similar to the above embodiment,
As shown in FIG. 3A, for example, the p-type GaAs semiconductor layer 12 is formed on the n-type GaAs semiconductor substrate 11 to form a pn junction which is a photoelectric conversion region. Where GaA
Si may be used instead of s.

【0015】次に、図3(b)に示すように、反射防止
膜として、例えばSi3 4 膜21(厚さ概ね100n
m)を形成し、p型GaAs半導体層12に対する電極
形成のためのレジスト(図示なし)を塗布し、パターニ
ングして、これをマスクとして、Si3 4 膜21への
穴開けを行う。ここで、反射防止膜はSiO2 膜であっ
ても良い。また、その形成方法もスパッタ法、CVD法
のいずれの方法でもよい。
Next, as shown in FIG. 3B, for example, a Si 3 N 4 film 21 (having a thickness of about 100 n) is used as an antireflection film.
m) is formed, a resist (not shown) for forming an electrode on the p-type GaAs semiconductor layer 12 is applied, patterning is performed, and using this as a mask, the Si 3 N 4 film 21 is perforated. Here, the antireflection film may be a SiO 2 film. Further, the forming method thereof may be either a sputtering method or a CVD method.

【0016】次に、図3(c)に示すように、その穴開
けされた開口部に、pn接合の表面側のp型GaAs半
導体層12と同じ導電型で高濃度にドープされた高濃度
半導体膜(p+ 膜)14を、例えば、厚さ100nm、
MOCVD法により選択的に成長する。その後、図3
(d)に示すように、選択成長した高濃度半導体膜14
上に再びホトリソを行って、オーミック金属電極15及
び裏面電極16をリフトオフにより形成する。更に、オ
ーミックコンタクト形成のためのシンタ(熱処理)を、
例えば400℃で1分程度行って形成する。
Next, as shown in FIG. 3 (c), a high concentration of the same conductivity type as the p-type GaAs semiconductor layer 12 on the surface side of the pn junction and a high concentration is doped in the opened opening. The semiconductor film (p + film) 14 is, for example, 100 nm thick,
It grows selectively by the MOCVD method. After that, FIG.
As shown in (d), the selectively grown high-concentration semiconductor film 14
Photolithography is performed again on the upper surface to form the ohmic metal electrode 15 and the back surface electrode 16 by lift-off. Furthermore, sintering (heat treatment) for forming ohmic contact is performed.
For example, it is formed at 400 ° C. for about 1 minute.

【0017】次に、図3(e)に示すように、その上
に、反射防止膜としての、例えばSiO2 膜22(厚さ
数100nm)を全面に形成する。なお、オーミックコ
ンタクトのシンタは反射防止膜22の形成プロセスの前
でも後でもよい。更に、反射防止膜22の形成条件(特
に、基板温度)によっては、シンタ工程を省略すること
も可能である。
Next, as shown in FIG. 3E, a SiO 2 film 22 (having a thickness of several 100 nm), for example, as an antireflection film is formed on the entire surface. The ohmic contact sintering may be performed before or after the process of forming the antireflection film 22. Further, depending on the conditions for forming the antireflection film 22 (particularly, the substrate temperature), the sintering process can be omitted.

【0018】また、この実施例において、反射防止膜2
1と22を同じ材料、例えば、SiO2 膜、Si3 4
膜とすることも可能である。また、第2の反射防止膜2
2は一層または多層に形成してもよい。図4は本発明の
更なる他の実施例を示す太陽電池の断面図である。この
実施例においては、n型GaAs半導体基板11上にp
型GaAs半導体層12を形成して、光電変換領域であ
るpn接合を形成する。ここで、GaAsに代えて、S
iを用いるようにしてもよい。
In this embodiment, the antireflection film 2 is also used.
1 and 22 are made of the same material, for example, SiO 2 film, Si 3 N 4
It can also be a membrane. In addition, the second antireflection film 2
2 may be formed in a single layer or multiple layers. FIG. 4 is a sectional view of a solar cell showing still another embodiment of the present invention. In this embodiment, p is formed on the n-type GaAs semiconductor substrate 11.
The type GaAs semiconductor layer 12 is formed to form a pn junction which is a photoelectric conversion region. Here, instead of GaAs, S
You may make it use i.

【0019】次いで、p型GaAs半導体層12上に、
厚めの第1の反射防止膜31、例えばSiO2 膜を厚さ
概ね1000nmを形成し、p型GaAs半導体層12
に対する電極形成のためのレジスト(図示なし)を塗布
し、パターニングして、これをマスクとして、第1の反
射防止膜31への穴開けを行う。次に、その穴開けされ
た開口部に前記したように、p型GaAs半導体層12
と同じ導電型で高濃度にドープされた高濃度半導体膜
(p+ 膜)14を、更にその上に、オーミック金属電極
15と裏面電極16をそれぞれ形成する。
Next, on the p-type GaAs semiconductor layer 12,
A thicker first antireflection film 31, for example, a SiO 2 film is formed to a thickness of about 1000 nm, and the p-type GaAs semiconductor layer 12 is formed.
A resist (not shown) for forming an electrode is applied and patterned, and a hole is formed in the first antireflection film 31 using this as a mask. Next, as described above, the p-type GaAs semiconductor layer 12 is formed in the punched opening.
A high-concentration semiconductor film (p + film) 14 having the same conductivity type as that of the above and highly-doped is further formed thereon, and an ohmic metal electrode 15 and a back electrode 16 are respectively formed thereon.

【0020】このように、第1の反射防止膜31の厚さ
を高濃度半導体膜14とオーミック金属電極15と和の
厚さよりも厚くなるように形成する。次に、その全面を
第2の反射防止膜32で被覆する。このような構成する
と、その被覆形状は、図4に示すように、オーミック金
属電極15のところで落ち込んだ形状33となり、レン
ズ効果によって、より多くの太陽光を半導体pn接合面
に集光することが可能となり、太陽電池の特性の向上を
図ることができる。
As described above, the thickness of the first antireflection film 31 is formed to be thicker than the sum of the high-concentration semiconductor film 14 and the ohmic metal electrode 15. Next, the entire surface thereof is covered with the second antireflection film 32. With such a configuration, as shown in FIG. 4, the covering shape becomes a shape 33 that is depressed at the ohmic metal electrode 15, and more sunlight can be condensed on the semiconductor pn junction surface by the lens effect. This makes it possible to improve the characteristics of the solar cell.

【0021】更に、第1の反射防止膜の厚さを調整する
ことにより、第2の反射防止膜の形状を凸状にする〔図
3(e)参照〕ことができ、オーミック金属電極上に入
射する(太陽)光をも、レンズ効果によって太陽電池の
半導体pn接合面の受光表面に導くことが可能である。
したがって、表面電極の幅を微細化しなくても、入射光
の有効利用が可能となると同時に、オーミック配線抵抗
を低減することができる。
Furthermore, by adjusting the thickness of the first antireflection film, the shape of the second antireflection film can be made convex (see FIG. 3 (e)), and the second antireflection film can be formed on the ohmic metal electrode. The incident (sun) light can also be guided to the light receiving surface of the semiconductor pn junction surface of the solar cell by the lens effect.
Therefore, it is possible to effectively use the incident light without reducing the width of the surface electrode, and at the same time, it is possible to reduce the ohmic wiring resistance.

【0022】よって、太陽電池の特性の向上を図ること
ができる。また、反射防止膜を多層として、最終的に太
陽電池を全面被覆するようにすることにより、先述のパ
ッシベーション効果を、さらに高めることもできる。な
お、本発明は上記実施例に限定されるものではなく、本
発明の趣旨に基づいて種々の変形が可能であり、これら
を本発明の範囲から排除するものではない。
Therefore, the characteristics of the solar cell can be improved. Further, by forming the antireflection film as a multi-layer so as to cover the entire surface of the solar cell finally, the passivation effect described above can be further enhanced. The present invention is not limited to the above-mentioned embodiments, and various modifications can be made based on the spirit of the present invention, and these modifications are not excluded from the scope of the present invention.

【0023】[0023]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、半導体基板上にpn接合が形成される半導体層
を設け、その上に反射防止膜を形成した後、表面電極を
形成するようしたので、太陽電池表面の不純物汚染や外
気の影響(特に湿気)を受け難く、太陽電池の安定な動
作と長寿命化、高信頼性化を図ることができる。
As described above in detail, according to the present invention, a semiconductor layer on which a pn junction is formed is provided on a semiconductor substrate, an antireflection film is formed thereon, and then a surface electrode is formed. As a result, the solar cell surface is less likely to be contaminated with impurities and is not easily affected by outside air (particularly moisture), and stable operation of the solar cell, longer life, and higher reliability can be achieved.

【0024】また、表面オーミック電極を形成するにあ
たり、形成部分に表面側と同じ導電型で高濃度の半導体
膜を選択成長した後、表面金属電極をパターニングした
ので、低抵抗のオーミック電極を形成することができ
る。更に、パターニングを微細化しても、選択成長によ
り、高アスペクトの高濃度層を形成することができるの
で、オーミック特性の劣化を生ずることなく、良好なオ
ーミック電極を形成することができる。
In forming the surface ohmic electrode, a low resistance ohmic electrode is formed because the surface metal electrode is patterned after selectively growing a high-concentration semiconductor film having the same conductivity type as the surface side on the formation portion. be able to. Further, even if the patterning is miniaturized, a high-concentration high-concentration layer can be formed by selective growth, so that a good ohmic electrode can be formed without deterioration of ohmic characteristics.

【0025】また、反射防止膜の厚さを調整することに
より、反射防止膜の形状が凸状となり、オーミック金属
電極上に入射する(太陽)光をもレンズ効果によって、
太陽電池の受光表面に導くことが可能であり、電極幅を
微細化しなくても、入射光の有効利用が可能となると同
時に、オーミック配線抵抗を低減することができる。し
たがって、太陽電池の特性の向上を図ることができる。
Further, by adjusting the thickness of the antireflection film, the shape of the antireflection film becomes convex, and the (sun) light incident on the ohmic metal electrode is also made by the lens effect.
It is possible to lead to the light receiving surface of the solar cell, and it is possible to effectively utilize the incident light without reducing the electrode width, and at the same time, it is possible to reduce the ohmic wiring resistance. Therefore, the characteristics of the solar cell can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す太陽電池の製造工程断面
図である。
FIG. 1 is a sectional view of a solar cell manufacturing process showing an embodiment of the present invention.

【図2】従来の太陽電池の製造工程断面図である。FIG. 2 is a cross-sectional view of manufacturing steps of a conventional solar cell.

【図3】本発明の他の実施例を示す太陽電池の製造工程
断面図である。
FIG. 3 is a sectional view of a solar cell manufacturing process showing another embodiment of the present invention.

【図4】本発明の更なる実施例を示す太陽電池の断面図
である。
FIG. 4 is a cross-sectional view of a solar cell showing a further embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 n型GaAs半導体基板 12 p型GaAs半導体層 13,22 SiO2 膜(反射防止膜) 14 高濃度半導体膜(p+ 膜) 15 オーミック金属電極 21 Si3 4 膜(反射防止膜) 31 第1の反射防止膜 32 第2の反射防止膜 33 落ち込んだ形状11 n-type GaAs semiconductor substrate 12 p-type GaAs semiconductor layer 13, 22 SiO 2 film (antireflection film) 14 high-concentration semiconductor film (p + film) 15 ohmic metal electrode 21 Si 3 N 4 film (antireflection film) 31 First antireflection film 32 Second antireflection film 33 Depressed shape

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】(a)第1導電型の半導体基板上にpn接
合を形成する第2導電型の半導体層を形成する工程と、 (b)該第2導電型の半導体層上に反射防止膜を形成す
る工程と、 (c)該反射防止膜をホトリソによりパターニングし、
開口部を形成する工程と、 (d)該開口部に第2導電型の高濃度半導体膜を選択成
長する工程と、 (e)該高濃度半導体膜上に金属電極を形成する工程を
施すことを特徴とする太陽電池の製造方法。
1. A step of: (a) forming a second conductivity type semiconductor layer for forming a pn junction on a first conductivity type semiconductor substrate; and (b) antireflection on the second conductivity type semiconductor layer. A step of forming a film, and (c) patterning the antireflection film by photolithography,
Performing a step of forming an opening, (d) a step of selectively growing a second conductivity type high-concentration semiconductor film in the opening, and (e) a step of forming a metal electrode on the high-concentration semiconductor film A method for manufacturing a solar cell, comprising:
【請求項2】(a)第1導電型の半導体基板上にpn接
合を形成する第2導電型の半導体層を形成する工程と、 (b)該第2導電型の半導体層上に第1の反射防止膜を
形成する工程と、 (c)該第1の反射防止膜をホトリソによりパターニン
グし、開口部を形成する工程と、 (d)該開口部に第2導電型の高濃度半導体膜を選択成
長する工程と、 (e)該高濃度半導体膜上に金属電極を形成する工程
と、 (f)その上に第2の反射防止膜を施すことを特徴とす
る太陽電池の製造方法。
2. (a) a step of forming a second conductivity type semiconductor layer for forming a pn junction on a first conductivity type semiconductor substrate; and (b) a first step on the second conductivity type semiconductor layer. And (c) patterning the first antireflection film by photolithography to form an opening, and (d) forming a second conductivity type high-concentration semiconductor film in the opening. And (e) a step of forming a metal electrode on the high-concentration semiconductor film, and (f) a second antireflection film formed on the metal electrode.
【請求項3】 前記第1の反射防止膜の厚さが、前記高
濃度半導体膜と前記金属電極の厚さの和よりも大きく形
成されていることを特徴とする請求項2記載の太陽電池
の製造方法。
3. The solar cell according to claim 2, wherein the thickness of the first antireflection film is larger than the sum of the thicknesses of the high-concentration semiconductor film and the metal electrode. Manufacturing method.
JP4271378A 1992-10-09 1992-10-09 Manufacture of solar cell Withdrawn JPH06120532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4271378A JPH06120532A (en) 1992-10-09 1992-10-09 Manufacture of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4271378A JPH06120532A (en) 1992-10-09 1992-10-09 Manufacture of solar cell

Publications (1)

Publication Number Publication Date
JPH06120532A true JPH06120532A (en) 1994-04-28

Family

ID=17499241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4271378A Withdrawn JPH06120532A (en) 1992-10-09 1992-10-09 Manufacture of solar cell

Country Status (1)

Country Link
JP (1) JPH06120532A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044996A1 (en) * 2007-10-05 2009-04-09 Electronics And Telecommunications Research Institute High-efficiency solar cell and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044996A1 (en) * 2007-10-05 2009-04-09 Electronics And Telecommunications Research Institute High-efficiency solar cell and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP3553997B2 (en) Gallium arsenide / aluminum gallium arsenide photocell with environmentally sealed ohmic contact grid and method of manufacturing the cell
US4971919A (en) Semiconductor photoelectric conversion device and method of making the same
US4781765A (en) Photovoltaic device
JPH0878659A (en) Semiconductor device and its manufacture
JP3646940B2 (en) Solar cell
JP2002368238A (en) Tandem solar cell and manufacturing method therefor
US6333456B1 (en) Solar cell device and method of producing the same
JPH03503466A (en) High temperature photovoltaic device
JPH06120532A (en) Manufacture of solar cell
JPS5910593B2 (en) Method of manufacturing photovoltaic device
JP3448098B2 (en) Crystalline silicon solar cells
JP3657096B2 (en) GaAs solar cell
JPH09181343A (en) Photoelectric conversion device
JP4886116B2 (en) Field effect solar cell
JP3158028B2 (en) Solar cell and method of manufacturing the same
JPH03160763A (en) Manufacture of photovoltaic device
US20100139751A1 (en) Photovoltaic device and manufacturing method thereof
JPH11307796A (en) Solar cell and its manufacture
JP3167604B2 (en) Solar cell and method of manufacturing the same
JP2003158275A (en) Photoelectric conversion element and its manufacturing method
JP2833924B2 (en) Crystal solar cell and method of manufacturing the same
JPH06120531A (en) Manufacture of solar cell
JPH08111537A (en) Solar battery
JP2508060B2 (en) Photoelectric conversion device
JP2951057B2 (en) Photovoltaic device and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000104