JPH06120060A - Manufacture of iron-rare earth nitride magnet - Google Patents

Manufacture of iron-rare earth nitride magnet

Info

Publication number
JPH06120060A
JPH06120060A JP4263791A JP26379192A JPH06120060A JP H06120060 A JPH06120060 A JP H06120060A JP 4263791 A JP4263791 A JP 4263791A JP 26379192 A JP26379192 A JP 26379192A JP H06120060 A JPH06120060 A JP H06120060A
Authority
JP
Japan
Prior art keywords
powder
iron
rare earth
magnet
earth nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4263791A
Other languages
Japanese (ja)
Inventor
Takao Fujikawa
隆男 藤川
Kazuki Takahara
一樹 高原
Atsushi Hanaki
敦司 花木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4263791A priority Critical patent/JPH06120060A/en
Publication of JPH06120060A publication Critical patent/JPH06120060A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Ceramic Products (AREA)
  • Compounds Of Iron (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To restrain an iron.rare earth nitride magnet from being split in phase by a method wherein nitrified iron.rare earth alloy powder is put into a molding die and compressed, and a voltage is applied to alloy powder to heat and sinter. CONSTITUTION:In a molding die 1, iron.rare earth nitride powder 9 is put into a recess formed of a spacer 5, a side wall board 6, and an upper base wall board 2. After the powder 9 is put into a recess provided to the molding die 1, a punch is set, and a pulse magnetic field is applied. In succession, a voltage is applied between electrodes 4 and 4 as the powder 9 is uniaxially compressed in a vertical direction. At this point, the powder 9 is heated by resistance heating, electric power of 60J/sec or more is given to per g of powder for 15 seconds or below. By this manufacturing process, powder is sintered in a short time and restrained from being split in phase due to heating, so that an iron.rare earth nitride magnet can be manufactured by sintering without deteriorating in magnet characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、窒化された鉄・希土類
磁石粉末を焼結して、鉄・希土類窒化物のバルクな焼結
磁石を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a bulk sintered magnet of iron / rare earth nitride by sintering nitrided iron / rare earth magnet powder.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】鉄の窒
化物Fe162 が磁石材料として窒化前と比較して、飽
和磁化が著しく増加することが見出され、近年、鉄系の
窒化物系磁石が注目をあびるようになってきている。こ
れは窒素の導入により鉄と鉄との格子間距離が増大し
て、鉄の電子状態が変化したこと(磁気体積効果)に起
因するものである。また、Sm2 Fe17などの鉄・希土
類系の材料でも同様の効果を生じることが知られ、鉄・
希土類系磁石が実用性の観点から脚光を浴びるようにな
ってきている。このSm2 Fe17では、飽和磁化のほか
異方性磁場、キュリー点などの磁気特性の改善も可能と
されている。
2. Description of the Related Art It has been found that iron nitride Fe 16 N 2 as a magnet material has a significantly increased saturation magnetization as compared with that before nitriding. In recent years, iron-based nitriding has been performed. Material-based magnets are attracting attention. This is due to the fact that the interstitial distance between irons increased due to the introduction of nitrogen and the electronic state of iron changed (magneto-volume effect). It is also known that iron-rare earth materials such as Sm 2 Fe 17 produce similar effects.
Rare earth magnets have come into the limelight from the viewpoint of practicality. With this Sm 2 Fe 17 , it is possible to improve the magnetic properties such as the anisotropic magnetic field and the Curie point in addition to the saturation magnetization.

【0003】Fe−Sm−N系の磁石としては、現在、
Sm−Fe合金粉末を、窒素及び水素の混合ガス雰囲
気下で窒化して、エポキシ樹脂で固めたもの(旭化
成)、窒化したSmFe合金粉末を亜鉛で結合したも
の(ダブリン大学)などが知られている。これらは、い
ずれもボンド磁石と呼ばれているもので、磁気特性を有
していない結合剤で、磁石粉末を固めたものである。
At present, as an Fe-Sm-N magnet,
It is known that the Sm-Fe alloy powder is nitrided in a mixed gas atmosphere of nitrogen and hydrogen and hardened with an epoxy resin (Asahi Kasei), and the nitrided SmFe alloy powder is bonded with zinc (University of Dublin). There is. All of these are called bonded magnets, and are binders having no magnetic properties, which are obtained by hardening magnet powder.

【0004】磁石には、ボンド磁石の他、磁石粉末を磁
場成形して高温下で焼固める焼結磁石があるが、現在の
ところ、鉄・希土類系の窒化物の焼結磁石が製造された
という報告はない。その理由は、鉄系の磁石材料粉末を
焼結する場合、通常、1000℃以上に加熱しなければ
ならないが、鉄・希土類系の窒化物を大気圧下で約60
0℃以上に加熱すると、鉄と希土類金属の窒化物とに変
化して分相してしまい、いわゆる磁石としての特性、硬
磁性を示さなくなってしまうからである。例えば、Sm
2 Fe172 では、次のように変化して、分相してしま
う。
In addition to bonded magnets, there are sintered magnets in which magnetic powder is magnetically molded and solidified at high temperature, but at present, iron / rare earth nitride sintered magnets have been manufactured. There is no report. The reason is that when iron-based magnet material powder is sintered, it is usually necessary to heat it to 1000 ° C. or higher, but iron-rare earth-based nitrides should be heated to about 60 at atmospheric pressure.
This is because when heated to 0 ° C. or higher, it changes into iron and a nitride of a rare earth metal to cause phase separation, and the so-called magnet characteristics and hard magnetism are not exhibited. For example, Sm
2 Fe 17 N 2 changes as follows and causes phase separation.

【0005】Sm2 Fe172 →2SmN+17Fe 従って、焼結温度まで徐々に昇温して、該温度で一定時
間保持するという通常の焼結方法では、鉄・希土類系の
窒化物材料からなる緻密な焼結磁石を製造することはで
きない。本発明者らは、鋭意検討した結果、鉄・希土類
窒化物の分相の度合いが、窒素原子の拡散に依存するこ
とを見出し、短時間で焼結することにより、分相を起こ
さずに鉄・希土類系の窒化物の焼結磁石を製造できる本
発明の完成に到った。
Sm 2 Fe 17 N 2 → 2SmN + 17Fe Therefore, in the usual sintering method in which the temperature is gradually raised to the sintering temperature and the temperature is maintained for a certain period of time, a dense material composed of an iron / rare earth nitride material is used. It is not possible to manufacture a good sintered magnet. As a result of diligent studies, the present inventors have found that the degree of phase separation of iron / rare earth nitride depends on the diffusion of nitrogen atoms, and by sintering in a short time, the phase separation of iron does not occur. -The present invention has been completed in which a sintered magnet of a rare earth nitride can be manufactured.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明の鉄・
希土類窒化物磁石の製造方法は、窒化された鉄・希土類
合金粉末を成形型内部に充填し、該粉末を加圧すると共
に、該粉末に電圧を印加して発熱させ、前記粉末を焼結
することを特徴とする。投入電力を粉末1g当たり60
J/sec以上とし、かつ印加時間を15秒未満として
焼結を行うことが好ましい。
[Means for Solving the Problems] That is, the iron of the present invention
A method for manufacturing a rare earth nitride magnet is to fill a mold with nitrided iron / rare earth alloy powder, pressurize the powder, apply a voltage to the powder to generate heat, and sinter the powder. Is characterized by. Input power 60 per 1g of powder
Sintering is preferably performed at J / sec or more and for an application time of less than 15 seconds.

【0007】[0007]

【作用】本発明において、窒化された鉄・希土類合金粉
末の焼結を、加圧下で、通電しながら行う。かかる状態
では、粉末自体が発熱するので、焼結内部まで所望の焼
結温度に達するまでの時間が短くて済む。従って、焼結
時間を従来よりも短縮できる。ここで、分相の発生は、
焼結体中の窒素原子の拡散速度に依存することから、焼
結を短時間で行うことにより、分相の発生を抑制でき
る。
In the present invention, the nitrided iron / rare earth alloy powder is sintered under pressure while applying electricity. In such a state, since the powder itself generates heat, it takes only a short time to reach the desired sintering temperature inside the sintered body. Therefore, the sintering time can be shortened as compared with the conventional case. Here, the occurrence of phase separation is
Since it depends on the diffusion rate of nitrogen atoms in the sintered body, the occurrence of phase separation can be suppressed by performing the sintering in a short time.

【0008】従って、磁石としての特性を低下させず
に、焼結により鉄・希土類窒化物系の磁石を製造でき
る。
Therefore, an iron / rare earth nitride-based magnet can be manufactured by sintering without deteriorating the characteristics of the magnet.

【0009】[0009]

【実施例】以下に、本発明の鉄・希土類窒化物磁石の製
造方法について、図1を参照しつつ、説明する。図1
は、一軸加圧タイプの通電焼結装置の成形型1の斜視図
である。図1において、成形型1は、積層された2つの
底壁板2、3、上層の底壁板2上の両側に取りつけられ
た一対の電極4、4及びスペーサ5、5を、一対の側壁
板6で挟持することにより構成されている。電極4、4
及び下層の底壁板3は、締結具7により側壁板6に一体
的に締結されている。なお、電極4、4の取付位置は、
通電方向により適宜選択される。また、スペーサ5、5
は、得ようとする磁石の寸法に応じて必要な場合に使用
される。
EXAMPLES A method for manufacturing an iron / rare earth nitride magnet according to the present invention will be described below with reference to FIG. Figure 1
[Fig. 3] is a perspective view of a molding die 1 of a uniaxial pressure type electric current sintering apparatus. In FIG. 1, the molding die 1 includes two laminated bottom wall plates 2 and 3, a pair of electrodes 4 and 4 and spacers 5 and 5 mounted on both sides of the upper bottom wall plate 2, and a pair of side walls. It is configured by being sandwiched by the plates 6. Electrodes 4, 4
The bottom wall plate 3 of the lower layer is integrally fastened to the side wall plate 6 by the fastener 7. The mounting positions of the electrodes 4 and 4 are
It is appropriately selected depending on the energizing direction. In addition, the spacers 5, 5
Are used where necessary depending on the size of the magnet to be obtained.

【0010】このような構成を有する成形型1におい
て、スペーサ5、側壁板6、及び上層の底壁板2により
形成される凹部に、鉄・希土類窒化物粉末9を充填す
る。該粉末を、パンチ10で紙面の上下方向(矢印方
向)に一軸加圧しつつ、電極4、4間に電圧を印加す
る。通電加熱は、粉末1gあたり60J/sec以上の
通電加熱エネルギーを加え、通電時間を15秒以下とす
ることが好ましい。本発明に用いられる磁石粉末たる鉄
・希土類の窒化物は、大気圧下で600℃以上の高温に
曝されると、容易に希土類の窒化物と鉄とに分相してし
まうので、加熱時間を極力短くする必要がある。 通常
の炉による加熱の場合には、成形型を通じて、焼結しよ
うとする粉末の塊(以下、これを「被処理物」という)
のうち、型に接している被処理物の外周部分がまず加熱
され、次いで粉末自体の熱伝導現象によって被処理物内
部が加熱昇温されるため、被処理物内部まで加熱するに
は、一定時間、炉内の温度を高温に保持しておく必要が
あった。しかし、本発明の通電による加熱では、被処理
物の外周部はもちろん、内部では粉末自体が発熱するた
め、熱伝導によって内部が加熱されるまで待つ必要がな
くなる。従って、15秒以下という短時間で、鉄・希土
類窒化物磁石粉末を焼結し得る。
In the molding die 1 having such a structure, the recess formed by the spacer 5, the side wall plate 6 and the upper bottom wall plate 2 is filled with iron / rare earth nitride powder 9. A voltage is applied between the electrodes 4 and 4 while uniaxially pressing the powder in the up-down direction (arrow direction) of the paper surface with the punch 10. For the electric heating, it is preferable to apply the electric heating energy of 60 J / sec or more per 1 g of the powder and set the electric conduction time to 15 seconds or less. The iron / rare earth nitride as the magnet powder used in the present invention is easily separated into the rare earth nitride and iron when exposed to a high temperature of 600 ° C. or higher under atmospheric pressure. Need to be as short as possible. In the case of heating in a normal furnace, a lump of powder to be sintered through the molding die (hereinafter referred to as "processed object")
Of these, the outer peripheral portion of the object to be treated that is in contact with the mold is first heated, and then the inside of the object to be heated is heated by the heat conduction phenomenon of the powder itself. It was necessary to keep the temperature in the furnace high for a time. However, in the heating by energization according to the present invention, not only the outer peripheral portion of the object to be treated but also the powder itself generates heat inside, so that it is not necessary to wait until the inside is heated by heat conduction. Therefore, the iron / rare earth nitride magnet powder can be sintered in a short time of 15 seconds or less.

【0011】図2は、鉄・サマリウム系の窒化物磁石粉
末を100J/g/secの条件で通電焼結した場合に
おける通電焼結時間と分相による鉄の発生量の変化を示
したグラフである。鉄の発生量の算定には、便宜上Cu
Kαを線源とするX線回折法により、44.5度にでる
ピークと41.5度近傍にでる鉄・サマリウム系の窒化
物のピーク値の比を用いた。このグラフからわかるよう
に、10秒経過した時点から、分相に伴う鉄のピークが
出始めている。10〜15秒間通電すると、鉄が少量発
生することなるが、この程度の分相であれば、磁石とし
て実用上問題ない。
FIG. 2 is a graph showing changes in the amount of iron generation due to the current-assisted sintering time and phase separation when the iron-samarium-based nitride magnet powder was subjected to current-assisted sintering under the condition of 100 J / g / sec. is there. For the calculation of the amount of iron generated, Cu is used for convenience.
By the X-ray diffraction method using Kα as a radiation source, the ratio of the peak value at 44.5 degrees and the peak value of the iron-samarium-based nitride peak near 41.5 degrees was used. As can be seen from this graph, the iron peak associated with the phase separation begins to appear after 10 seconds. When a current is applied for 10 to 15 seconds, a small amount of iron is generated, but if the phase separation is in this order, there is no practical problem as a magnet.

【0012】なお、実際の焼結においては、成形型を通
じて放熱現象が起こるため、焼結の進行度は、被処理物
の形状や成形型の構成材料の影響を受ける。特に、被処
理物の外周部は、放熱現象によって温度が低下しがちで
ある。この温度低下を防止するために、通電焼結装置に
おける成形型において、電極以外の被処理物との接触部
材(図1に示す成形型の場合には、底壁板及び側壁板)
を、耐熱性に優れた電気絶縁物、例えば、石英系のファ
イバを組み合わせたようなセラミックスで構成すること
ことが推奨される。
In actual sintering, a heat radiation phenomenon occurs through the forming die, so the progress of sintering is influenced by the shape of the object to be treated and the constituent material of the forming die. Particularly, the temperature of the outer peripheral portion of the object to be processed tends to decrease due to the heat radiation phenomenon. In order to prevent this temperature decrease, in a forming die in an electric sintering apparatus, a contact member with an object to be processed other than the electrode (in the case of the forming die shown in FIG. 1, a bottom wall plate and a side wall plate)
Is recommended to be made of an electrically insulating material having excellent heat resistance, for example, a ceramic such as a combination of silica fibers.

【0013】次に、鉄・希土類系の窒化物からなる異方
性磁石の製造方法について説明する。図1に示す装置に
おいて、成形型1の凹部に原料粉末9を充填してパンチ
10をセットした後、パルス磁場を付加する。次いで、
パンチ10により加圧すると共に、通電加熱する。
Next, a method of manufacturing an anisotropic magnet made of iron / rare earth nitride will be described. In the apparatus shown in FIG. 1, after the raw material powder 9 is filled in the concave portion of the molding die 1 and the punch 10 is set, a pulse magnetic field is applied. Then
The punch 10 applies pressure and heats by energization.

【0014】このような一連の操作において、まず、パ
ルス磁場が付与されると、成形型1に充填された粉末は
一方向に配向して異方性を示すようになる。次に行われ
る加圧により粉末の位置が変化させられるため、粉末の
配向性が乱されるが、大きな粉末粒子には異方性が残留
しており、焼結過程においては、比較的大きな粉末粒子
が核となって粒子成長が進行することから、加圧により
低下した異方性が若干回復する。このようにして、異方
性磁石が得られる。
In such a series of operations, first, when a pulsed magnetic field is applied, the powder filled in the mold 1 is oriented in one direction and exhibits anisotropy. Since the position of the powder is changed by the next pressurization, the orientation of the powder is disturbed, but the anisotropy remains in the large powder particles, and during the sintering process, the relatively large powder Since the particles serve as nuclei and the particle growth proceeds, the anisotropy lowered by the pressurization is slightly recovered. In this way, an anisotropic magnet is obtained.

【0015】パルス磁場の印加方向は、付与しようとす
る異方性の方向によるが、図1の被処理物において、長
手方向に異方性を付与する場合には、パルス磁場の磁界
方向は長手方向(加圧方向と直角方向)になる。この場
合、加圧時でも、パルス磁場の付加により形成された異
方性はあまり損なわれずに済む。近年需要が増大してい
るボイスコイルモータ用の磁石のように、薄くて且つ厚
さ方向に磁化させる場合には、図1に示す装置におい
て、加圧方向と同方向に磁界を印加する。
The direction of application of the pulsed magnetic field depends on the direction of anisotropy to be applied, but when anisotropy is applied in the longitudinal direction in the object to be processed in FIG. 1, the magnetic field direction of the pulsed magnetic field is the longitudinal direction. Direction (direction perpendicular to the pressing direction). In this case, the anisotropy formed by the addition of the pulsed magnetic field is not so much damaged even during pressurization. When magnetizing in a thin and thickness direction like a magnet for a voice coil motor, which has been in increasing demand in recent years, a magnetic field is applied in the same direction as the pressurizing direction in the apparatus shown in FIG.

【0016】パルス磁場の方向が加圧方向と同方向の場
合には、パルス磁場の付与をプレス機にて行ってもよ
い。この場合、磁場発生コイル及び磁場を発生させるた
めの電流が流れるリード線が成形型の周囲に位置し、原
料粉末や焼結後の製品のハンドリングが行いにくくなる
ので、成形型全体をプレス機から取り出して、粉末の充
填、パルス磁場の付与、焼結後の製品の取り出し操作等
を、加圧するプレス機等の外部で行える様に構成するこ
とが好ましい。
When the direction of the pulsed magnetic field is the same as the pressing direction, the application of the pulsed magnetic field may be performed by a press machine. In this case, the magnetic field generating coil and the lead wire through which the current for generating the magnetic field flows are located around the forming die, and it becomes difficult to handle the raw material powder and the product after sintering. It is preferable to configure so that the operation of taking out the powder, filling the powder, applying the pulsed magnetic field, taking out the product after sintering and the like can be performed outside a press machine or the like for applying pressure.

【0017】なお、成形型の形状は、磁石の形状により
適宜選択する。図3は、円柱状の磁石を製造する場合に
用いられる通電焼結装置の一例である。図3において、
円筒状の電気絶縁体からなる型20内部に粉末21を充
填し、成形型20の上下部に設けられた導電性材料から
なるパンチ22で加圧しつつ、通電焼結を行う。また、
加圧方法はパンチに限らず、水等の流体圧力による加圧
であってもよい。図4は、静水圧加圧しつつ、通電焼結
を行う装置の一例である。弾性体からなる円筒状の成形
型30の内部に鉄・希土類窒化物粉末31を充填し、成
形型30の外周に設けられた加圧室32に圧入された流
体により、弾性膜体33を介して加圧する。通電は、成
形型30の上下部に設けられたの通電用電極プラグ34
に電圧を印加することによりなされる。パルス磁場を印
加する場合には、高圧容器35を非磁性材料、通電用電
極プラグ34を軟磁性材料で各々構成し、高圧容器35
外部に取り付けたコイル(図示せず)で磁界を発生させ
て容器35内部に導くとよい。
The shape of the mold is appropriately selected depending on the shape of the magnet. FIG. 3 is an example of an electric sintering apparatus used when manufacturing a columnar magnet. In FIG.
Powder 21 is filled in a mold 20 made of a cylindrical electric insulator, and electric current sintering is performed while pressing with a punch 22 made of a conductive material provided at the upper and lower portions of the molding die 20. Also,
The pressurizing method is not limited to punching, and may be pressurizing by fluid pressure such as water. FIG. 4 shows an example of an apparatus for performing electric current sintering while applying hydrostatic pressure. A cylindrical molding die 30 made of an elastic body is filled with iron / rare earth nitride powder 31 and the fluid is press-fitted into a pressure chamber 32 provided on the outer periphery of the molding die 30 through an elastic film body 33. Pressurize. The energization is performed by the energizing electrode plug 34 provided on the upper and lower parts of the molding die 30.
This is done by applying a voltage to. When a pulsed magnetic field is applied, the high pressure container 35 is made of a non-magnetic material and the energizing electrode plug 34 is made of a soft magnetic material.
A magnetic field may be generated by a coil (not shown) attached to the outside and guided to the inside of the container 35.

【0018】以下に、具体的実施例に基づいて、本発明
を説明する。 実施例1;図1に示す構成を有する通電焼結装置におい
て、凹部の寸法が10mm×40mmのアルミナ製成形
型に、粒度325メッシュ以下の調製したSm2 Fe17
2 の磁石粉末15gを充填した。充填された粉末の高
さは約12mmであった。次いで、アルミナ製のパンチ
で、粉末を1000kg/cm2 まで加圧すると、粉末
の高さは約5mmとなった。このような加圧状態で、平
均約1000Aの電流(約106J/g/sec)を1
0秒間流し、通電焼結を行った。通電後、成形型から取
り出した焼結体の相対密度は約87%であった。X線回
折法によりFeの発生量を前述の方法により測定した結
果、鉄のピークはほとんど認められず、鉄・希土類窒化
物の分相が発生する前に焼結できたことが確認された。
The present invention will be described below based on specific examples.
Will be explained. Example 1; In an electric current sintering apparatus having the configuration shown in FIG.
Molding of alumina with the dimensions of the recess being 10 mm x 40 mm
In the mold, the prepared Sm with a grain size of 325 mesh or less2Fe17
N 215 g of the magnetic powder of Filled powder high
The length was about 12 mm. Then the punch made of alumina
And powder 1000kg / cm2Pressurize to powder
Height was about 5 mm. With such a pressure,
Current of about 1000 A (about 106 J / g / sec) 1
It was made to flow for 0 seconds to carry out electric sintering. After energizing, remove from the mold
The relative density of the extruded sintered body was about 87%. X-ray times
The amount of Fe generated by the folding method was measured by the above method.
As a result, almost no iron peak was observed, and iron / rare earth nitriding
It was confirmed that the material could be sintered before phase separation occurred.

【0019】実施例2;凹部の寸法が実施例1と同じセ
ラミックス製の成形型及び銅合金製のパンチを備えた通
電焼結装置において、通電方向を上下方向とし、通電時
間を5秒間とした以外は実施例1と同様の条件で通電焼
結して、Sm2 Fe172 の焼結磁石を製造した。
Example 2; In an electric current sintering apparatus equipped with a ceramic mold and a copper alloy punch in which the dimensions of the recess were the same as in Example 1, the current flow direction was vertical and the current flow time was 5 seconds. Except for the above, electric current sintering was performed under the same conditions as in Example 1 to produce a Sm 2 Fe 17 N 2 sintered magnet.

【0020】得られた焼結体磁石の相対密度は約84%
であった。X線回折法により分相有無の調査を行った結
果、ほとんど分相は生じていないことが確認された。ま
た、この磁石の磁気特性を測定したところ、最大エネル
ギー積(BHmax)29MGOe、残留磁束密度(B
r)11kG、保持力(bHc)6.9kGOeであっ
た。
The relative density of the obtained sintered magnet is about 84%
Met. As a result of investigating the presence or absence of phase separation by the X-ray diffraction method, it was confirmed that almost no phase separation occurred. Moreover, when the magnetic characteristics of this magnet were measured, the maximum energy product (BHmax) 29 MGOe and the residual magnetic flux density (B
r) was 11 kG and holding power (bHc) was 6.9 kGOe.

【0021】実施例3;実施例2で用いた通電焼結装置
を用いて、通電電流を6000A(約60J/g/se
c)、通電時間を5秒間に変えた以外は実施例2と同様
にして、Sm2Fe172 の焼結磁石を製造した。得ら
れた焼結体磁石の相対密度は約98%で、非常に高密度
に焼結されていることが確認された。X線回折法により
分相有無の調査を行った結果、鉄と鉄・サマリウム窒化
物の回折強度の比で、約10%の鉄が発生していること
が確認された。磁気特性を測定したところ、最大エネル
ギー積(BHmax)28MGOe、残留磁束密度(B
r)10kG、保持力(bHc)6.4kGOeで、磁
石として十分使用に耐える特性を有していた。
Example 3 Using the electro-sintering apparatus used in Example 2, the energizing current was 6000 A (about 60 J / g / se).
c) A sintered magnet of Sm 2 Fe 17 N 2 was produced in the same manner as in Example 2 except that the energization time was changed to 5 seconds. The relative density of the obtained sintered magnet was about 98%, and it was confirmed that the magnet was sintered to a very high density. As a result of investigating the presence or absence of phase separation by the X-ray diffraction method, it was confirmed that about 10% of iron was generated in the ratio of the diffraction intensities of iron and iron / samarium nitride. When the magnetic characteristics were measured, the maximum energy product (BHmax) was 28 MGOe and the residual magnetic flux density (B
r) 10 kG and coercive force (bHc) of 6.4 kGOe, and had properties sufficient for use as a magnet.

【0022】[0022]

【発明の効果】本発明の製造方法は、短時間で焼結を完
了することができるので、加熱による分相の発生を防止
できる。従って、本発明の製造方法によれば、鉄・希土
類系窒化物粉末を用いて、磁石としての特性を低下させ
ることなく、焼結による鉄・希土類系窒化物系の磁石を
製造できる。
According to the manufacturing method of the present invention, since the sintering can be completed in a short time, the phase separation due to heating can be prevented. Therefore, according to the manufacturing method of the present invention, it is possible to manufacture an iron / rare earth nitride based magnet by sintering using the iron / rare earth based nitride powder without deteriorating the characteristics of the magnet.

【0023】そして、本発明により製造される鉄・希土
類系窒化物の焼結磁石は、従来の最強の磁石材である鉄
・ネオジ・ホウ素系と同等以上の磁石特性を有し得るの
で、種々のモータ、スピーカ等の音響機器の部品として
用いれば、音響機器製品の性能向上にも繋がる。また、
本発明における焼結時間は15秒以下と短いことから、
生産性にも優れている。
Since the iron / rare earth nitride sintered magnet produced according to the present invention can have magnetic characteristics equal to or higher than those of the conventional strongest magnet material, iron / neodymium / boron magnet, If it is used as a component of an audio device such as a motor or a speaker, the performance of the audio device product will be improved. Also,
Since the sintering time in the present invention is as short as 15 seconds or less,
It has excellent productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法を説明するための図である。FIG. 1 is a diagram for explaining a manufacturing method of the present invention.

【図2】通電時間と分相の発生度合いの関係を示すグラ
フである。
FIG. 2 is a graph showing the relationship between the energization time and the degree of phase separation.

【図3】本発明の他の実施例で用いられる通電焼結装置
の構成を示す図である。
FIG. 3 is a diagram showing a configuration of an electric sintering apparatus used in another embodiment of the present invention.

【図4】本発明の他の実施例で用いられる通電焼結装置
の構成を示す図である。
FIG. 4 is a diagram showing a configuration of an electric current sintering apparatus used in another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 成形型 4 電極 9 粉末 10 パンチ 20 成形型 21 粉末 22 パンチ 30 成形型 31 粉末 32 加圧室 34 通電用電極プラグ 1 Mold 4 Electrode 9 Powder 10 Punch 20 Mold 21 Powder 22 Punch 30 Mold 31 Powder 32 Pressurizing Chamber 34 Energizing Electrode Plug

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // H01F 7/02 C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location // H01F 7/02 C

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 窒化された鉄・希土類合金粉末を成形型
内部に充填し、該粉末を加圧すると共に、該粉末に電圧
を印加して発熱させ、前記粉末を焼結することを特徴と
する鉄・希土類窒化物磁石の製造方法。
1. A method of filling a nitrided iron / rare earth alloy powder into a mold, pressurizing the powder, applying a voltage to the powder to generate heat, and sintering the powder. Method for manufacturing iron / rare earth nitride magnet.
【請求項2】 投入電力が粉末1g当たり60J/se
c以上で、かつ印加時間が15秒以下であることを特徴
する請求項1に記載の鉄・希土類窒化物磁石の製造方
法。
2. The applied power is 60 J / se per 1 g of powder.
The method for producing an iron / rare earth nitride magnet according to claim 1, wherein the application time is not less than c and the application time is not more than 15 seconds.
【請求項3】 前記粉末を充填した後、加圧及び電圧印
加に先立って、該粉末にパルス磁場を付与することを特
徴とする請求項1又は2に記載の鉄・希土類窒化物磁石
の製造方法。
3. The manufacture of an iron / rare earth nitride magnet according to claim 1, wherein after the powder is filled, a pulsed magnetic field is applied to the powder before pressurization and voltage application. Method.
JP4263791A 1992-10-01 1992-10-01 Manufacture of iron-rare earth nitride magnet Pending JPH06120060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4263791A JPH06120060A (en) 1992-10-01 1992-10-01 Manufacture of iron-rare earth nitride magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4263791A JPH06120060A (en) 1992-10-01 1992-10-01 Manufacture of iron-rare earth nitride magnet

Publications (1)

Publication Number Publication Date
JPH06120060A true JPH06120060A (en) 1994-04-28

Family

ID=17394309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4263791A Pending JPH06120060A (en) 1992-10-01 1992-10-01 Manufacture of iron-rare earth nitride magnet

Country Status (1)

Country Link
JP (1) JPH06120060A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1241687A1 (en) * 2001-03-14 2002-09-18 Shin-Etsu Chemical Co., Ltd. Bulk anisotropic rare earth permanent magnet and preparation method
KR100589738B1 (en) * 2004-10-28 2006-06-19 주식회사 테슬라 A Manufacture Method of NdFeB Permanent Magnets
JP2011042844A (en) * 2009-08-21 2011-03-03 Hitachi Powdered Metals Co Ltd Powder molding method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1241687A1 (en) * 2001-03-14 2002-09-18 Shin-Etsu Chemical Co., Ltd. Bulk anisotropic rare earth permanent magnet and preparation method
US6863742B2 (en) 2001-03-14 2005-03-08 Shin-Etsu Chemical Co., Ltd. Bulk anisotropic rare earth permanent magnet and preparation method
KR100589738B1 (en) * 2004-10-28 2006-06-19 주식회사 테슬라 A Manufacture Method of NdFeB Permanent Magnets
JP2011042844A (en) * 2009-08-21 2011-03-03 Hitachi Powdered Metals Co Ltd Powder molding method

Similar Documents

Publication Publication Date Title
KR100518067B1 (en) Permanent magnet manufacturing method and press apparatus
JPH02139907A (en) Manufacture of pole anisotropic rare earth magnet
JPH06120060A (en) Manufacture of iron-rare earth nitride magnet
JP4302498B2 (en) Method for manufacturing isotropic magnet and magnet thereof
JPH06302417A (en) Permanent magnet and its manufacture
JP2003203818A (en) Method of manufacturing permanent magnet and pressing apparatus
WO2003056583A1 (en) Production method for permanent magnet and press device
JP4370877B2 (en) Method for orienting permanent magnet powder and method for producing permanent magnet
JP3357421B2 (en) Method for forming magnetic field of magnet powder and method for manufacturing magnet
JP3051906B2 (en) Rare earth magnet
KR20200069132A (en) Yoke for speaker, Method form manufacturing the same And Speaker device including the same
JPH0935977A (en) Manufacture of anisotropic sintered magnet
JP3164811B2 (en) Manufacturing method of isotropic permanent magnet
JPH05135976A (en) Manufacture of permanent magnet
JP2746111B2 (en) Alloy for permanent magnet
JP2573865B2 (en) Manufacturing method of permanent magnet
JP4790933B2 (en) Solid material for magnet and method for producing the same
JP2003151809A (en) Method of manufacturing rare-earth magnet
JP2679272B2 (en) Rare earth / iron permanent magnet manufacturing method
JPH023203A (en) Permanent magnet and its manufacture
JPH09306767A (en) Manufacturing anisotropic permanent magnet
JP2006180607A (en) Sheet-shaped rare earth bond magnet, its manufacturing method, and motor
JPH05217722A (en) Manufacture of material for rare earth-iron-boron permanent magnet
JPH023209A (en) Permanent magnet and its manufacture
JPS63260009A (en) Manufacture of resin magnet