JPH0611929B2 - Acrylonitrile-based foam fiber manufacturing method - Google Patents

Acrylonitrile-based foam fiber manufacturing method

Info

Publication number
JPH0611929B2
JPH0611929B2 JP60215985A JP21598585A JPH0611929B2 JP H0611929 B2 JPH0611929 B2 JP H0611929B2 JP 60215985 A JP60215985 A JP 60215985A JP 21598585 A JP21598585 A JP 21598585A JP H0611929 B2 JPH0611929 B2 JP H0611929B2
Authority
JP
Japan
Prior art keywords
fiber
acrylonitrile
polymer
foaming agent
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60215985A
Other languages
Japanese (ja)
Other versions
JPS6278210A (en
Inventor
照一 村田
義法 渋川
宗刀 牧山
和也 楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP60215985A priority Critical patent/JPH0611929B2/en
Priority to DE8585113161T priority patent/DE3586032D1/en
Priority to EP85113161A priority patent/EP0180097B1/en
Priority to CN 85109642 priority patent/CN1011319B/en
Publication of JPS6278210A publication Critical patent/JPS6278210A/en
Priority to US07/082,916 priority patent/US4865786A/en
Publication of JPH0611929B2 publication Critical patent/JPH0611929B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明はアクリロニトリル系発泡繊維の製造法に関し、
更に詳しくは軽量性、嵩高性、発色性、剛性、保温性等
の優れた物理的性質を有し、また工程的にも特殊な乾燥
条件を必要とせず、排水による環境汚染の問題もなく、
品質並びに工程の両面において改良されたアクリロニト
リル系発泡繊維の製造法に関するものである。
The present invention relates to a method for producing an acrylonitrile-based expanded fiber,
More specifically, it has excellent physical properties such as lightness, bulkiness, color development, rigidity and heat retention, and does not require special drying conditions in the process, and there is no problem of environmental pollution due to drainage.
The present invention relates to a method for producing an acrylonitrile-based expanded fiber which is improved in terms of both quality and process.

本発明の目的とするところは、繊維横断面に多孔質を有
し、物理的特性の優れたアクリロニトリル系発泡繊維
を、湿式紡糸法によって工業的生産に優れた製造法を提
供することにある。
An object of the present invention is to provide a method for producing an acrylonitrile-based expanded fiber having a porous cross section and excellent physical properties by a wet spinning method, which is excellent in industrial production.

「従来技術と問題点」 従来、発泡繊維の製造法に関し、数多くの特許にその試
みが見られるが、品質及び工業的生産の面より未だ実用
化に至っていないのが現状である。かかる代表例として
特公昭40−21485や特公昭41−6297がある
が、いずれも連続性ある中空化を目的としたもので本発
明目的と本質的に異なる。その中で特公昭40−214
85には繊維横断面に多孔質を有する繊維が記載されて
いるが、該繊維は紡糸上りのため物理的特性を確固たる
ものにする延伸或いは乾燥、熱処理の工程がなく、得ら
れた繊維は実用に耐えない欠点を多く有している。特公
昭40−13698、特公昭41−6294や特公昭4
2−21300に見られる方法は、その点物理的特性の
改良を目的としたものであるが、実施例から察するに
は、発泡剤を分散させた紡糸原液を使用して中空化を図
っており、該繊維横断面の空洞部は大きくまばらで、ま
た繊維の製造工程においては乾燥条件に工夫が見られる
ものの特殊な雰囲気下を必要とし、工業的生産性からは
必ずしも有利とは云えない。また特公昭46−3649
1や特公昭51−210に見られる紡糸原液中に発泡剤
を分散させる方法では、一般に発泡剤の分散が不均一
で、発泡剤と重合体溶液の相分離と比重差により安定し
た工業的生産性が得られず、上記同様得られた繊維横断
面に存在する空洞部もまばらで満足できるものではな
い。更に上記分散性に係わる問題の予想を意識したと思
われる特公昭43−12626では、界面活性剤の併用
を試みているが、かかる製造法の欠点としては紡糸中に
おける浴への界面活性剤の溶出を来たし、溶剤の回収性
や工業排水中のCOD負荷等に対し多くの問題を残して
いる。また、かかる問題を意識したと思われる特公昭5
8−38527では重合体に界面活性作用のある原子団
の導入により浴への溶出防止を図っているが、逆に可紡
性や繊維束が単繊維にぶ勝できる分離性、繊維の物理的
特性が低下し、しかも得られた繊維の横断面に有する空
洞部は大きくまばらで満足できるものとは言い難い。
“Prior Art and Problems” Conventionally, many patents have been tried regarding the method for producing foamed fibers, but the present situation is that they have not yet been put to practical use in terms of quality and industrial production. Such representative examples include JP-B-40-21485 and JP-B-41-6297, both of which are intended for continuous hollowing and are essentially different from the object of the present invention. Among them
In 85, a fiber having a porous cross section is described. However, the fiber has no stretching, drying, or heat treatment steps to secure physical properties because it is spun up. It has many drawbacks that cannot withstand. Japanese Patent Publications 40-13698, 41-6294 and 4
The method found in No. 2-21300 is aimed at improving the physical properties in that respect. However, from the examples, a spinning stock solution in which a foaming agent is dispersed is used for hollowing. The cavities of the cross section of the fiber are large and sparse, and in the manufacturing process of the fiber, a special atmosphere is required although the drying condition is devised, which is not necessarily advantageous from the industrial productivity. In addition, Japanese Patent Publication No. 46-3649
In the method of dispersing the foaming agent in the spinning dope as described in No. 1 and Japanese Patent Publication No. 51-210, the dispersion of the foaming agent is generally non-uniform and stable industrial production due to phase separation between the foaming agent and the polymer solution and a difference in specific gravity. The properties are not obtained, and the hollow portions present in the fiber cross section obtained in the same manner as above are sparse and unsatisfactory. Further, Japanese Patent Publication No. 43-12626, which seems to have been conscious of the anticipation of the above-mentioned problems relating to dispersibility, attempts to use a surfactant together. However, a drawback of such a production method is that the surfactant is added to the bath during spinning. Elution has occurred, and many problems remain with respect to solvent recoverability and COD load in industrial wastewater. Also, Japanese Patent Publication Sho 5 that seems to have been aware of this problem.
8-38527 aims to prevent elution into the bath by introducing an atomic group having a surface-active action into the polymer, but on the contrary, spinnability and separability that allows fiber bundles to beat single fibers, physical properties of fibers. It is difficult to say that the properties are deteriorated and the cavities in the cross section of the obtained fiber are large and sparse.

「問題点を解決するための手段」 本発明者らはかかる実情に鑑み、発泡繊維の製造に関わ
る紡糸原液、凝固、延伸、乾燥、熱処理、クリンプ、カ
ットの一連の製造工程及び得られた繊維断面の多孔質の
形状につきそれぞれ着眼をおいて鋭意検討した結果、本
発明に至ったものである。
"Means for Solving Problems" In view of the above circumstances, the present inventors have made a series of production steps of spinning stock solution, coagulation, drawing, drying, heat treatment, crimping and cutting relating to the production of foamed fiber, and the obtained fiber. The present invention has been accomplished as a result of intensive studies on the porous shape of the cross section.

即ち、本発明は、アクリロニトリル系重合体の有機系溶
剤溶液に可溶且つ該重合体の湿式紡糸における凝固浴に
対して難溶性又は不溶性であり、常用圧力下で液体で且
つ120℃以下の沸点を有する化合物を繊維の発泡剤と
して、アクリロニトリル系重合体に対し3〜100重量
%添加してなる紡糸原液を、水系の凝固浴に紡出、水洗
を行い、次いで発泡剤の沸点以上且つ100℃以上の乾
燥温度雰囲気下で繊維成形させることを特徴とする繊維
横断面が多孔質状のアクリロニトリル系発泡繊維の製造
法を内容とするものである。
That is, the present invention is soluble in an organic solvent solution of an acrylonitrile polymer and sparingly soluble or insoluble in a coagulation bath in wet spinning of the polymer, which is a liquid under normal pressure and has a boiling point of 120 ° C. or lower. As a foaming agent for fibers, a compound having 3 to 100% by weight based on an acrylonitrile polymer is added to a spinning stock solution, which is spun into an aqueous coagulation bath and washed with water, and then the boiling point of the foaming agent or more and 100 ° C. The present invention relates to a method for producing an acrylonitrile-based expanded fiber having a porous fiber cross section, which is characterized in that the fiber is formed in the above drying temperature atmosphere.

本発明に使用するアクリロニトリル系重合体としては、
アクリロニトリルを共重合してなる重合体は主成分とす
るが、重合体の組成としてはアクリロニトリル25重量
%以上の共重合体が好ましく、より好ましくはアクリロ
ニトリル35〜85重量%、更に好ましくはアクリロニ
トリル40〜60重量%である。アクリロニトリルが2
5重量%に満たない共重合体からなる繊維は一般に市中
に出回っていないために、仕上加工の面でいろいろな特
殊条件が加わって制約を受け取扱いが難しく好ましくな
い。
The acrylonitrile-based polymer used in the present invention,
A polymer obtained by copolymerizing acrylonitrile is the main component, but the composition of the polymer is preferably a copolymer having 25% by weight or more of acrylonitrile, more preferably 35 to 85% by weight of acrylonitrile, and further preferably 40 to 40% of acrylonitrile. It is 60% by weight. 2 acrylonitrile
Fibers composed of less than 5% by weight of copolymers are not generally available in the market, and various special conditions are added in terms of finishing, which makes them difficult to handle and is not preferable.

アクリロニトリルと共重合できるモノマーとしては、塩
化ビニル、臭化ビニル、弗化ビニル、塩化ビニリデン、
臭化ビニリデン等のハロゲン化ビニル及びハロゲン化ビ
ニリデン類;アクリル酸、メタクリル酸、マレイン酸、
イタコン酸等の不飽和カルボン酸およびこれらの塩類;
アクリル酸メチル、アクリル酸エチル、アクリル酸ブチ
ル、アクリル酸オクチル、オクリル酸メトキシエチル、
アクリル酸フエニル、アクリル酸シクロヘキシル等のア
クリル酸エステル類;メタクリル酸メチル、メタクリル
酸エチル、メタクリル酸ブチル、メタクリル酸オクチ
ル、メタクリル酸メトキシエチル、“メタクリル酸フエ
ニル”、メタクリル酸シクロヘキシル等のメタクリル酸
エステル類;メチルビニルケトン類;蟻酸ビニル、酢酸
ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビ
ニル等のビニルエステル類;メチルビニルエーテル、エ
チルビニルエーテル等のビニルエーテル類;アクリル酸
アミド、メタクリル酸アミド及びこれらのアルキル置換
体;スチレンスルホン酸、アリルスルホン酸、メタリル
スルホン酸等の不飽和スルホン酸およびそれらの塩類;
スチレン、α−メチルスチレン、クロロスチレン等のス
チレン及びそれらのアルキルまたはハロゲン置換体;ア
リルアルコールおよびそのエステルまたはエーテル
類;、ビニルピリジン、ビニルピロリドンおよびそれら
のアルキル置換;グリシジルアクリレート、グリシジル
メタクリレート等のグリシジル化合物;シアン化ビニリ
デン、アクロレイン、メタクリロニトリル等のビニル化
合物等があり、これらの1種あるいは2種以上が使用で
きる。
Monomers that can be copolymerized with acrylonitrile include vinyl chloride, vinyl bromide, vinyl fluoride, vinylidene chloride,
Vinyl halides such as vinylidene bromide and vinylidene halides; acrylic acid, methacrylic acid, maleic acid,
Unsaturated carboxylic acids such as itaconic acid and salts thereof;
Methyl acrylate, ethyl acrylate, butyl acrylate, octyl acrylate, methoxyethyl acrylate,
Acrylic esters such as phenyl acrylate and cyclohexyl acrylate; Methacrylic acid esters such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, octyl methacrylate, methoxyethyl methacrylate, "phenyl methacrylate", cyclohexyl methacrylate, etc. Methyl vinyl ketones; vinyl esters such as vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate and vinyl benzoate; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; acrylic acid amides, methacrylic acid amides and alkyl substitutions thereof. Body; unsaturated sulfonic acids such as styrene sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid and salts thereof;
Styrene such as styrene, α-methylstyrene and chlorostyrene and their alkyl or halogen-substituted products; allyl alcohol and its esters or ethers; vinylpyridine, vinylpyrrolidone and their alkyl substitution; glycidyl such as glycidyl acrylate and glycidyl methacrylate Compounds: vinyl compounds such as vinylidene cyanide, acrolein, methacrylonitrile, etc., and one or more of these can be used.

上記アクリロニトリル系重合体は重合開始剤として既知
の化合物、例えばパーオキシド系化合物、アゾ系化合
物、または各種のレドックス系化合物を用い、通常のビ
ニル重合方法により得ることができる。
The acrylonitrile polymer can be obtained by a conventional vinyl polymerization method using a known compound such as a peroxide compound, an azo compound, or various redox compounds as a polymerization initiator.

このアクリロニトリル系重合体を溶解でき、紡糸原液と
して一般に使用できる有機系溶剤としてジメチルホルム
アミド、ジメチルアセトアイド、ジメチルスルホキシ
ド、アセトニトリル、アセトン等が挙げられ、中でも本
発明の目的に最も好ましい溶剤はアセトンである。アク
リロニトリル系重合体の有機系溶剤溶液の濃度としては
15〜35重量%が好ましい。
Dimethylformamide, dimethylacetoide, dimethylsulfoxide, acetonitrile, acetone and the like can be mentioned as an organic solvent that can dissolve the acrylonitrile polymer and can be generally used as a spinning dope. Among them, the most preferable solvent for the purpose of the present invention is acetone. . The concentration of the organic solvent solution of the acrylonitrile polymer is preferably 15 to 35% by weight.

紡糸原液に添加する発泡剤としては、該重合体の有機系
溶剤に可溶でかつ凝固浴に対して難溶性又は不溶性であ
り、常用圧力下で液体で且つ沸点が120℃以下である
化合物であるが、使用するアクリロニトリル系重合体や
該重合体の有機系溶剤に安定であることが好ましい。か
かる化合物としては、例えばブタン、ペンタン、ヘキサ
ン、ヘプタンまたはそれらの不飽和化合物である低級脂
肪族化合物類;シクロペタン、シクロヘキサンまたはそ
れらの不飽和化合物である低級脂環式化合物類;臭化エ
チル、塩化プロピル、臭化プロピル、塩化ブチル、臭化
ブチル、塩化アリル、臭化アクル、ジクロロエチレン、
ジクロロエタン、トリクロロエチレン、トリクロロエタ
ン等の低級ハロゲン化炭化水素類、ギ酸ブチル、酢酸ブ
チル、プロピオン酸メチル等の低級カルボン酸エステル
類;ベンゼン、トルエン等の芳香族炭化水素類、“トリ
クロロトリフルオロメタン”、トリクロロトルフルオロ
エタン、テトラクロロジフルオロエタン、ジブロモテト
ラフルオロエタン等のフロン類があり、これらの1種あ
るいは2種以上が使用できる。中でも低級脂肪族化合物
類や脂環式化合物類、フロン類が好ましく、とりわけペ
ンタン、ヘキサンあるいは石油エーテル、シクロペンタ
ン、トリクロロトリフルオロエタンの効果は特に優れて
いる。これら発泡剤の添加量は、発泡剤の種類及びアク
リロニトリル系重合体溶液に対する添加量全量の溶解性
にもよるが、該重合体に対し3〜100重量%であり、
好ましくは5〜50重量%である。添加量の設定に当た
っては上記の発泡剤の種類および発泡剤混合後の紡糸原
液状態以外の条件として、紡糸後の繊維形成状態や繊維
横断面状態により任意に選定できる。発泡剤の添加方法
としては、発泡剤単独或いは該重合体の有機系溶剤との
混合液を紡糸原液タンクに直接混合するか、紡糸ノズル
直前で混合するシステムを採用しても良い。
The foaming agent added to the spinning dope is a compound which is soluble in the organic solvent of the polymer and hardly soluble or insoluble in the coagulation bath, which is a liquid under normal pressure and has a boiling point of 120 ° C. or less. However, it is preferably stable to the acrylonitrile polymer used and the organic solvent of the polymer. Examples of such compounds include lower aliphatic compounds which are butane, pentane, hexane, heptane or unsaturated compounds thereof; lower alicyclic compounds which are cyclopetane, cyclohexane or unsaturated compounds thereof; ethyl bromide, chloride Propyl, propyl bromide, butyl chloride, butyl bromide, allyl chloride, acryl bromide, dichloroethylene,
Lower halogenated hydrocarbons such as dichloroethane, trichloroethylene and trichloroethane, lower carboxylic acid esters such as butyl formate, butyl acetate and methyl propionate; aromatic hydrocarbons such as benzene and toluene, "trichlorotrifluoromethane", trichlorotolu There are fluorocarbons such as fluoroethane, tetrachlorodifluoroethane, and dibromotetrafluoroethane, and one or more of them can be used. Among them, lower aliphatic compounds, alicyclic compounds, and freons are preferable, and especially pentane, hexane or petroleum ether, cyclopentane, and trichlorotrifluoroethane are particularly effective. The amount of these foaming agents added is 3 to 100% by weight with respect to the polymer, though it depends on the type of the foaming agent and the solubility of the total amount added to the acrylonitrile polymer solution.
It is preferably 5 to 50% by weight. In setting the amount to be added, as conditions other than the type of the foaming agent and the state of the spinning dope after mixing with the foaming agent, it can be arbitrarily selected depending on the fiber forming state and the fiber cross-sectional state after spinning. As a method of adding the foaming agent, a system in which a foaming agent alone or a mixed solution of the polymer with an organic solvent is directly mixed in a spinning stock solution tank or a mixture is prepared just before a spinning nozzle may be adopted.

発泡繊維の発泡状態及び製造上の理由から、必要に応じ
て造核剤を紡糸原液に添加しても差支えない。造核剤と
しては、平均粒径10μm以下、好ましくは5μm以
下、更に好ましくは2μm以下の無機粉体であり、かか
る物質としては、例えばホウ素酸化物、ケイ素酸化物等
の非金属酸化物;アルミニウム酸化物、アンチモン酸化
物、ジルコニウム酸化物、チタン酸化物、亜鉛酸化物、
スズ酸化物等の金属酸化物;水難溶性又は不溶性の金属
水酸化物や金属塩化合物、カオリン、タルク、ベントナ
イト等のケイ素化合物等があるが、これらに限られるも
のではなく、また1種或いは2種以上の混合使用も可能
である。更に有機化合物の造核剤も使用でき、例えば酢
酸セルロース、プロピオン酸セルロース、酪酸セルロー
ス等のセルロースエステルがあり、無機物粒子との併用
も可能である。これら造核剤の使用量も特に限定される
ものではない。
Depending on the foaming state of the foamed fiber and manufacturing reasons, a nucleating agent may be added to the spinning dope as needed. The nucleating agent is an inorganic powder having an average particle size of 10 μm or less, preferably 5 μm or less, more preferably 2 μm or less. Examples of such a substance include non-metal oxides such as boron oxide and silicon oxide; aluminum. Oxide, antimony oxide, zirconium oxide, titanium oxide, zinc oxide,
Metal oxides such as tin oxides; poorly water-soluble or insoluble metal hydroxides, metal salt compounds, silicon compounds such as kaolin, talc, bentonite, etc., but not limited to these, and one or two A mixed use of two or more species is also possible. Further, a nucleating agent of an organic compound can also be used, and examples thereof include cellulose esters such as cellulose acetate, cellulose propionate, and cellulose butyrate, which can be used in combination with inorganic particles. The amount of these nucleating agents used is also not particularly limited.

これら造核剤の効果としては、発泡繊維形成時の局所発
泡を抑制し、製造工程の安定化、特に乾燥工程以降の局
所発泡による単糸切れの減少に役立つ。またセルロース
エステルは上記の効果以外に、発泡繊維をパイル編織物
に利用した場合、パイル部の繊維の毛サバキを改良する
効果もある。
The effect of these nucleating agents is to suppress local foaming at the time of forming foamed fibers, to stabilize the manufacturing process, and particularly to reduce single yarn breakage due to local foaming after the drying process. In addition to the above effects, the cellulose ester also has the effect of improving the hair sackiness of the fibers in the pile portion when the expanded fibers are used in the pile knitted fabric.

かくして調整した紡糸原液を半乾式又は湿式紡糸法で凝
固浴に吐出して発泡繊維を作成するが、繊維に他の目的
を付与するための必要な添加剤、例えば安定剤、有機・
無機の着色剤、増白剤、艶消し剤、難燃剤も、本発明を
阻害しない範囲であれば使用可能である。
The spinning dope thus prepared is discharged into a coagulation bath by a semi-dry or wet spinning method to form a foamed fiber, and necessary additives such as a stabilizer and an organic
Inorganic colorants, brighteners, matting agents, and flame retardants can also be used as long as they do not interfere with the present invention.

次に紡糸方法であるが、上記の如く調整した紡糸原液は
ノズルを通して水系凝固浴へ吐出されるが、ノズルのス
リツト形状としては円形、長方形、その他異形があり、
目的に合ったものを使用することができる。凝固浴条件
としては繊維形成のための該重合体有機系溶剤の水溶液
の使用が好ましく、繊維形成のための凝固及び使用する
発泡剤の凝固浴への溶解性並びに繊維断面の形状を考慮
して、“発泡剤の沸点以下”の範囲で任意に温度及び濃
度を設定できる。但し、ここで発泡剤の凝固浴への溶解
性を考慮するとは、該発泡剤の有機系溶剤の水溶液への
溶解性が難溶又は不溶である条件にすることを意味す
る。具体的には発泡剤の凝固浴への溶解度は10重量%
以下、好ましくは5重量%以下である。凝固浴への発泡
剤の溶解度が10重量%を超えると、凝固した該重合体
糸条中における発泡剤の含有量が激減し、後の発泡工程
で不充分な発泡構造となり好ましくない。また凝固浴温
度が発泡剤の沸点を超えると該重合体の糸条は発泡しは
じめるが、発泡した繊維は後の繊維形成工程で発泡部が
潰れまたは融着し満足な発泡繊維は得にくい。
Next, regarding the spinning method, the spinning stock solution adjusted as described above is discharged to the water-based coagulation bath through the nozzle, and the slit shape of the nozzle may be circular, rectangular, or other irregular shape,
You can use the one that suits your purpose. As the coagulation bath conditions, it is preferable to use an aqueous solution of the polymer organic solvent for fiber formation. Considering the coagulation for fiber formation, the solubility of the foaming agent used in the coagulation bath, and the shape of the fiber cross section. , The temperature and concentration can be set arbitrarily within the range of "below the boiling point of the foaming agent". However, taking into consideration the solubility of the foaming agent in the coagulation bath means that the solubility of the foaming agent in the aqueous solution of the organic solvent is difficult or insoluble. Specifically, the solubility of the foaming agent in the coagulation bath is 10% by weight.
It is preferably 5% by weight or less. When the solubility of the foaming agent in the coagulation bath exceeds 10% by weight, the content of the foaming agent in the coagulated polymer yarn is drastically reduced, resulting in an insufficient foam structure in the subsequent foaming step, which is not preferable. When the coagulation bath temperature exceeds the boiling point of the foaming agent, the polymer filaments start to foam, but the foamed fiber is crushed or fused in the subsequent fiber forming step, and it is difficult to obtain a satisfactory foamed fiber.

凝固した該重合体の糸条は必要により再度該重合体の有
機系溶剤水溶液中又は空中で延伸することができ、次の
水洗工程を経る。ここで水洗工程の温度は発泡剤の沸点
に関係なく任意に設定できるが、繊維形成上、発泡剤を
繊維内部に残した状態で繊維からの該重合体の溶剤を脱
溶媒することが好ましく、脱溶媒を促進するため水洗温
度は高くした方がよい。また必要により水洗工程で延伸
してもよい。この水洗工程でもあまり急激な発泡は繊維
形成上問題が多いため、使用する発泡剤の種類と繊維か
らの脱溶媒を考慮して水洗温度は適宜設定した方が良
い。
If necessary, the coagulated yarn of the polymer can be drawn again in an aqueous solution of the polymer in an organic solvent or in the air, and undergoes the next washing step. Here, the temperature of the water washing step can be arbitrarily set regardless of the boiling point of the foaming agent, but on fiber formation, it is preferable to desolvate the solvent of the polymer from the fiber in a state where the foaming agent is left inside the fiber, It is better to raise the water washing temperature to promote desolvation. If necessary, stretching may be performed in the water washing step. Even in this water washing step, too rapid foaming has many problems in fiber formation, so it is preferable to appropriately set the water washing temperature in consideration of the type of the foaming agent used and desolvation from the fibers.

かくして得られた糸条に油剤付着を行って乾燥させ、繊
維形成を更に促進させる。又この時、乾燥工程に入る水
洗糸に該重合体の溶剤がある程度以上存在すると単繊維
間の融着が生じて開繊性が低下するため、更に工程で発
生する静電気障害を減少させるため静電防止効果のある
油剤を付着させた方がよい。特に発泡剤の添加量が多い
場合は紡糸上がりの水洗糸内の溶剤の含有量が高くな
り、乾燥工程での単繊維間の融着が多くなる。これを解
消するには離型作用の大きい油剤を併用することが好ま
しく、中でもシリコン系油剤の効果は良好である。シリ
コン系油剤としては通常ジメチルポリシロキサン、メチ
ルハイドロジェンポリシロキサンやアルコキシポリシロ
キサンの他にエポキシ基含有ポリシロキサンやアミノ基
含有ポリシロキサン等の変性ポリシロキサン等があり、
一般に乳化して使用される。特にエポキシ基変性やアミ
ノ基変性のシリコン系油剤は発泡繊維の風合改良の面か
らも好ましい。
The yarn thus obtained is attached with an oil agent and dried to further promote fiber formation. Further, at this time, if the solvent of the polymer is present in the washing thread entering the drying step to a certain extent or more, fusion between the single fibers occurs and the openability is lowered, and thus electrostatic damage caused in the step is further reduced. It is better to attach an oil agent that has an antistatic effect. In particular, when the amount of the blowing agent added is large, the content of the solvent in the washed yarn after spinning is high, and fusion between the single fibers in the drying step is increased. In order to solve this, it is preferable to use an oil agent having a large releasing action together, and among them, the effect of the silicone oil agent is good. As the silicone-based oil agent, there are usually dimethylpolysiloxane, methylhydrogenpolysiloxane, alkoxypolysiloxane, and modified polysiloxane such as epoxy group-containing polysiloxane and amino group-containing polysiloxane.
Generally, it is emulsified and used. Particularly, an epoxy group-modified or amino group-modified silicone oil agent is preferable from the viewpoint of improving the feel of the foamed fiber.

乾燥工程は発泡剤の沸点以上で且つ100℃以上の乾燥
温度雰囲気下にする必要がある。乾燥温度が100℃に
達しない場合は繊維は内部に水分を残し、繊維物性の低
下や後の繊維加工工程で支障を来たす。又、水洗或いは
乾燥の工程間に発泡剤の沸点以上に繊維の温度が達しな
ければ、発泡不充分な繊維となり好ましくない。次いで
必要に応じ、延伸、熱処理を行ったことにより、繊維物
性に優れた発泡繊維にすることができる。
The drying step needs to be performed under an atmosphere of a drying temperature which is not lower than the boiling point of the foaming agent and is not lower than 100 ° C. If the drying temperature does not reach 100 ° C., the fibers will retain moisture inside, which will impair the physical properties of the fibers and interfere with the subsequent fiber processing steps. Further, if the temperature of the fibers does not reach the boiling point of the foaming agent or higher during the washing or drying process, the fibers will be insufficiently foamed, which is not preferable. Then, if necessary, drawing and heat treatment are performed to obtain a foamed fiber having excellent fiber physical properties.

又、後の繊維加工を行う上にも繊維にクランプを付与す
る必要があり、所定長のカット後梱包されてユーザーに
渡る。この開発泡繊維に種々の形で外力を受けるが、そ
の大きさによっては発泡構造部は潰れを来すことがあ
る。そのため外力を受ける工程では特に注意を払う必要
がある。
In addition, it is necessary to apply a clamp to the fiber in performing the subsequent fiber processing, and the fiber is cut to a predetermined length and then packed and delivered to the user. The developed foam fiber is subjected to external forces in various forms, but the foam structure may be crushed depending on its size. Therefore, it is necessary to pay particular attention in the process of receiving external force.

得られた発泡繊維は繊維横断面が多孔質状の発泡構造を
有する。発泡倍率は3%以上が好ましく、更に好ましく
は5%以上である。その理由として、発泡倍率が3%に
満たない繊維では、不充分な発泡構造により非発泡繊維
と比較して何ら目立った特徴がなく、即ち発泡構造によ
る軽量感、嵩高性、発色性、剛性、保温性等の効果が期
待できないからである。
The foamed fiber obtained has a foamed structure in which the cross section of the fiber is porous. The expansion ratio is preferably 3% or more, more preferably 5% or more. The reason for this is that when the expansion ratio is less than 3%, the fibers do not have any outstanding features due to the insufficient expansion structure compared to the non-expansion fibers, that is, due to the expansion structure, the feeling of lightness, bulkiness, color developability, rigidity, This is because effects such as heat retention cannot be expected.

「作用・効果」 かくの如き本発明によれば、アクリロニトリル系重合体
の有機系溶剤溶液に可溶で且つ凝固浴に対し難溶性又は
不溶性の発泡剤を使用することにより、繊維内部を多孔
質化することができ、得られた発泡繊維は物性に優れて
いるため加工性が良好であり、且つ曲げ剛性が向上する
ため嵩性に優れている。また、均一に溶解した紡糸原液
を使用するため長時間に亘って液安定性に優れ、界面活
性剤を併用していないため工場排水にも何ら問題なく、
工程並びに品質共に安定化したものとなる。
According to the present invention as described above, the inside of the fiber is made porous by using a foaming agent that is soluble in the organic solvent solution of the acrylonitrile polymer and hardly soluble or insoluble in the coagulation bath. The resulting foamed fiber has excellent physical properties and thus has good processability, and since it has improved bending rigidity, it has excellent bulkiness. In addition, since a spinning stock solution that has been uniformly dissolved is used, it has excellent liquid stability over a long period of time, and since it does not use a surfactant together, there is no problem with factory wastewater.
Both the process and the quality are stabilized.

また本発明の応用として、通常の収縮性繊維の製造法と
組合せて収縮性発泡繊維の製造、繊維横断面の中心部に
多孔質部を有する人毛に酷似したウイッグの製造、更に
は藺草状繊維の製造がある。また得られた繊維を親水化
することにより吸水性の高い繊維の製造も可能となり、
得られた繊維の用途が広くなる。これらの繊維の用途と
しては、パイル用品、衣料、インテリヤ、ウイッグ、人
形やぬいぐるみなどの玩具、畳表等がある。
In addition, as an application of the present invention, the production of shrinkable foamed fibers in combination with a conventional shrinkable fiber production method, the production of wigs having a porous portion at the center of the fiber cross section, which closely resembles human hair, and further the shape of strawberries There is fiber manufacturing. In addition, by making the obtained fibers hydrophilic, it is possible to manufacture highly absorbent fibers,
The use of the obtained fiber is widened. Applications of these fibers include pile articles, clothing, interiors, wigs, toys such as dolls and stuffed animals, tatami mats, and the like.

尚、本発明における繊維の特性及び繊維横断面観察は、
下記の方法によって測定または写真撮映を行った。
Incidentally, the characteristics of the fiber and the fiber cross-section observation in the present invention are
Measurement or photography was performed by the following method.

(i)繊維比重 試料(開繊糸)約0.3gを取り、自動比重計(東洋精
機製作所製)を使用して見掛け繊維比重を求めた。尚、
比重測定時に使用した水には蒸溜水に少量のフッ素系界
面活性剤を添加し、試料の浸漬に際しては、浸漬速度を
試料の毛管現象による濡れ速度より遅くして、気泡が繊
維間に存在しないように注意して測定を行った。
(I) Fiber Specific Gravity About 0.3 g of a sample (open fiber) was taken and the apparent fiber specific gravity was determined using an automatic densimeter (manufactured by Toyo Seiki Seisakusho). still,
Distilled water with a small amount of fluorine-based surfactant added to the water used for specific gravity measurement. When dipping the sample, make the dipping speed slower than the wetting speed of the sample due to capillary action so that no bubbles are present between the fibers. The measurement was performed carefully.

(ii)たわみ角 第14図に図示した如く、片持はり(等分布荷重)にお
ける弾性線の方程式より、たわみ角を測定して剛性を判
断した。但し、ここで単繊維の片持はりに要する試料長
は50mmとし、サンプル数n=25のたわみ角の平均値
を使用した。
(Ii) Deflection angle As shown in FIG. 14, the deflection angle was measured from the equation of the elastic line in cantilever (equal load distribution) to determine the rigidity. However, here, the sample length required for cantilevering the single fiber was 50 mm, and the average value of the deflection angles of the sample number n = 25 was used.

(iii)繊度 オートバイブロ式繊度測定器「Denier computer DC-1
1」(サーチ制御電気製)を使用し、サンプル数n=2
5の平均価を使用した。
(Iii) Fineness Motorcycle Bro-type fineness measuring instrument “Denier computer DC-1
1 ”(manufactured by Search Control Electric Co., Ltd.) and sample number n = 2
An average value of 5 was used.

(iv)繊維物性 万能型引張圧縮試験機「Model:UTM-IIIL」(東洋ボー
ルウイン製)を使用し、サンプル数n=25における強
度、伸度、ヤング率のそれぞれの平均値を使用した。
(Iv) Fiber Physical Properties A universal tension / compression tester “Model: UTM-IIIL” (manufactured by Toyo Ballwin) was used, and the respective average values of strength, elongation and Young's modulus at the sample number n = 25 were used.

(v)繊維断面観察 S−510形走査電子顕微鏡(日立製作所製)を使用し
て繊維断面の写真撮映を行って観察した。
(V) Observation of fiber cross section Using a scanning electron microscope S-510 (manufactured by Hitachi Ltd.), a cross section of the fiber was photographed and observed.

実施例1 アクリロニトリル46重量%、塩化ビニル34重量%、
塩化ビニリデン19重量%、スチレンスルホン酸ナトリ
ウム1重量%共重合してなる重合体をアセトンに溶解
し、重合体重量当たり20%のn−ペンタン及び0.2
%の二酸化チタンを加え最終の該重合体濃度が25重量
%となるように調整後、32℃に保ちながら2時間撹拌
溶解し紡糸原液とした。該紡糸原液を孔径0.10mm、
孔数1000コ紡糸口金を用いて30℃、20重量%の
アセトン水溶液からなる1浴へ吐出し、次いで同一温
度、濃度からなる2浴で浴中延伸(第1延伸)後75℃
の水洗浴でドラフト1.03倍に延伸し、さらにノニオ
ン系静電防止剤及びジメチルポリシロキサン乳化液から
なる液に浸漬して油剤を付着させた。その後110℃の
雰囲気下で乾燥させ、同温度で最終ドラフト5.0倍に
なるように延伸し、更に145℃の熱処理を経て3dの
第1表に示すような比重を有する発泡繊維を得た。
Example 1 46% by weight of acrylonitrile, 34% by weight of vinyl chloride,
A polymer obtained by copolymerizing 19% by weight of vinylidene chloride and 1% by weight of sodium styrenesulfonate was dissolved in acetone, and 20% of n-pentane and 0.2% by weight of the polymer were dissolved.
% Titanium dioxide was added to adjust the final polymer concentration to 25% by weight, and the mixture was stirred and dissolved for 2 hours while maintaining at 32 ° C. to prepare a spinning dope. The spinning solution was added with a pore size of 0.10 mm,
Discharge into one bath consisting of 20 wt% acetone aqueous solution at 30 ° C. using a co-spinner with a hole number of 1000, and then draw in the bath with two baths having the same temperature and concentration (first drawing) and then at 75 ° C.
Was drawn 1.03 times in the washing bath of No. 1 and further immersed in a liquid consisting of a nonionic antistatic agent and a dimethylpolysiloxane emulsion to deposit an oil agent. Thereafter, it was dried in an atmosphere of 110 ° C., stretched at the same temperature so that the final draft was 5.0 times, and further heat-treated at 145 ° C. to obtain a foamed fiber 3d having a specific gravity as shown in Table 1. .

試料No.5の電子顕微鏡写真を第1図に示した。An electron micrograph of Sample No. 5 is shown in FIG.

実施例2 アクリロニトリル50重量%、塩化ビニル49重量%及
び及びメタリルスルホン酸ナトリウム1重量%共重合し
てなる重合体をアセトンに溶解し、重合体重量当たり2
0%の1,1,2−トリクロロ−1,2,2−トリフル
オロエタン及び0.2%の二酸化チタンを加え、最終の
該重合体濃度が24重量%となるように調整後、40℃
に保ちながら1時間撹拌溶解し紡糸原液とした。該紡糸
原液を孔径0.18mm、孔数200コの紡糸口金を用い
てアセトン水溶液からなる1浴へ吐出し、次いで2浴で
1.8倍に延伸後75℃の水洗浴でドラフト1.03倍
に延伸し、さらにノニオン系及びアニオン系を含む静電
防止剤及びエポキシ基含有ポリシロキサン乳化液からな
る液に浸漬して油剤を付着させた。その後120℃の雰
囲気下で乾燥させ、同温度において2.75倍のドラフ
ト比で延伸を行い、145℃の熱処理を経て15dの第
2表に示すような比重を有する発泡繊維を得た。
Example 2 A polymer obtained by copolymerizing 50% by weight of acrylonitrile, 49% by weight of vinyl chloride, and 1% by weight of sodium methallylsulfonate was dissolved in acetone to give 2% by weight of the polymer.
After addition of 0% 1,1,2-trichloro-1,2,2-trifluoroethane and 0.2% titanium dioxide to adjust the final polymer concentration to 24% by weight, 40 ° C.
The solution was stirred and dissolved for 1 hour while maintaining the above temperature to prepare a spinning dope. The spinning dope was discharged into one bath of an aqueous acetone solution using a spinneret having a pore size of 0.18 mm and a number of holes of 200, then stretched 1.8 times in 2 baths and then drafted in a washing bath at 75 ° C. to 1.03. The film was stretched twice and further dipped in a liquid consisting of an antistatic agent containing nonionic and anionic compounds and an epoxy group-containing polysiloxane emulsion to deposit an oil agent. Then, it was dried in an atmosphere of 120 ° C., stretched at a draft ratio of 2.75 times at the same temperature, and heat-treated at 145 ° C. to obtain a foamed fiber having a specific gravity of 15d as shown in Table 2.

試料No.6,No.10の電子顕微鏡写真をそれぞれ第2
図、第3図に示した。
Second electron micrographs of samples No. 6 and No. 10, respectively
It is shown in FIG.

実施例3 アクリロニトリル48重量%、塩化ビニル51重量%、
p−スチレンスルホン酸ナトリウム1重量%共重合して
なる重合体をアセトンに溶解し、該重合体重量当たり
0.2%の二酸化チタン及び第3表に示す発泡剤とその
添加量を添加し、最後の該重合体濃度が23.5重量%
となるよう調整後、それぞれの沸点より4℃低い温度あ
るいは50℃を超える場合は50℃で2時間撹拌溶解し
て紡糸原液とした。該紡糸原液を目的の繊度に利用でき
る紡糸口金を用いて25℃、20重量%のアセトン水溶
液からなる1浴へ吐出し、次いで同一温度、濃度からな
る2浴で1.8倍に延伸後75℃の水洗浴でドラフト
1.03倍に延伸し、さらにノニオン系静電防止剤及び
アミノ基含有ポリシロキサン乳化液からなる液に浸漬し
て油剤を付着させた。その後、発泡剤の沸点以上であ
る、130℃の雰囲気下で乾燥させ、同温度において
2.5倍のドラフト比で延伸を行ない、145℃の熱処
理を経て第3表に示す発泡繊維を得た。
Example 3 48% by weight of acrylonitrile, 51% by weight of vinyl chloride,
A polymer obtained by copolymerizing 1% by weight of p-sodium styrenesulfonate was dissolved in acetone, and 0.2% of titanium dioxide based on the weight of the polymer, a blowing agent shown in Table 3 and the addition amount thereof were added. The final polymer concentration is 23.5% by weight
After adjustment so that the boiling point was 4 ° C. lower than the respective boiling points or when it exceeded 50 ° C., the mixture was stirred and dissolved at 50 ° C. for 2 hours to prepare a spinning dope. The spinning dope was discharged into one bath consisting of an aqueous solution of 20% by weight of acetone at 25 ° C. using a spinneret capable of utilizing the desired fineness, and then stretched 1.8 times in two baths of the same temperature and concentration, and then stretched 75 times. A draft was drawn 1.03 times in a water washing bath at 0 ° C., and further immersed in a liquid consisting of a nonionic antistatic agent and an amino group-containing polysiloxane emulsion to deposit an oil agent. Then, it was dried in an atmosphere of 130 ° C., which is higher than the boiling point of the foaming agent, and stretched at a draft ratio of 2.5 times at the same temperature, and heat treated at 145 ° C. to obtain foamed fibers shown in Table 3. .

試料No.12,No.17,No.21の電子顕微鏡写真をそ
れぞれ第4図、第5図、第6図に示した。
Electron micrographs of Samples No. 12, No. 17, and No. 21 are shown in FIGS. 4, 5, and 6, respectively.

実施例4 実施例3で使用した重合体のアセトン液に、第4表で示
す発泡剤及び造核剤を添加して、実施例3と同様の条件
で第4表に示す発泡繊維を得た。
Example 4 The foaming agent and the nucleating agent shown in Table 4 were added to the acetone solution of the polymer used in Example 3 to obtain the expanded fiber shown in Table 4 under the same conditions as in Example 3. .

試料No.36、No.31、No.33の電子顕微鏡写真をそ
れぞれ第7図、第8図、第9図に示した。
Electron micrographs of Samples No. 36, No. 31, and No. 33 are shown in FIGS. 7, 8, and 9, respectively.

実施例5 実施例3で使用した重合体をアセトンに溶解し、該重合
体重量当たり40%の1,1,2 −トリクロロ−1,2,2 −ト
リフルオロエタン、0.2%の二酸化チタン、2%のポ
リグリシジルメタクリレートを加え最終の該重合体を濃
度が22.7重量%となるよう調整後、45℃に保ちな
がら3時間撹拌溶解し紡糸原液とした。該紡糸原液を孔
径0.15mm、孔数10000コの紡糸口金を用いて2
5℃、20重量%のアセトン水溶液からなる1浴へ吐出
し、次いで同一温度、濃度からなる2浴で1.2倍に延
伸後、65℃の水洗(3浴)75℃の水洗(4浴)を経
て80℃の水洗(5浴)で2.1倍に延伸してノニオン
系静電防止剤及びアミノ基変性ポリシロキサン乳化液か
らなる液に浸漬して油剤を付着させた。その後110℃
で乾燥後、130℃の雰囲気下で2.5倍のドラフト比
で延伸を行い、145℃の熱処理条件下で0.9倍に緩
和して7dの発泡繊維を作成し、該繊維をスタッファー
式クリンパーを使用してクリンプを付与し、繊維長51
mmにカットした。得られら繊維のクリンプ付与面の単繊
維はたわみ角を測定すると40゜を示し、次に記す比較
例1で作成したサンプルよりたわみ角が小さく剛性が強
くなっていることを示している。尚、繊維特性値は第5
表に示す。電子顕微鏡写真を第10図に示した。
Example 5 The polymer used in Example 3 is dissolved in acetone and 40% by weight of the polymer 1,1,2-trichloro-1,2,2-trifluoroethane, 0.2% titanium dioxide. The final polymer was adjusted to a concentration of 22.7% by weight by adding 2% of polyglycidyl methacrylate, and then dissolved by stirring for 3 hours while maintaining the temperature at 45 ° C to prepare a spinning dope. The spinning solution was prepared by using a spinneret with a hole diameter of 0.15 mm and 10000 holes.
Discharge to 1 bath consisting of 20 wt% acetone aqueous solution at 5 ° C, then draw 1.2 times in 2 baths of the same temperature and concentration, then wash at 65 ° C (3 baths) at 75 ° C (4 baths) ), Washed with water at 80 ° C. (5 baths), stretched 2.1 times and immersed in a liquid consisting of a nonionic antistatic agent and an amino group-modified polysiloxane emulsion to deposit an oil agent. Then 110 ° C
After being dried at 130 ° C., it is stretched at a draft ratio of 2.5 times in an atmosphere of 130 ° C. and relaxed to 0.9 times under a heat treatment condition of 145 ° C. to form a foamed fiber of 7d, and the fiber is a stuffer type. A crimp is applied using a crimper, and a fiber length of 51
Cut to mm. The bending angle of the single fiber on the crimping surface of the obtained fiber was 40 ° when measured, showing that the bending angle was smaller and the rigidity was higher than that of the sample prepared in Comparative Example 1 described below. The fiber characteristic value is the fifth
Shown in the table. An electron micrograph is shown in FIG.

比較例1 実施例5で使用した紡糸原液組成において発泡剤を添加
していない紡糸原液を使用し、同様の方法で繊維を作成
した。得られた繊維のたわみ角を測定したところ61゜
を示した。
Comparative Example 1 A fiber was prepared in the same manner by using a spinning dope containing no foaming agent in the spinning dope composition used in Example 5. The deflection angle of the obtained fiber was measured and found to be 61 °.

実施例6 実施例3で使用した重合体をアセトンに溶解し、該重合
体重量当たり45%の1,1,2 −トリクロロ−1,2,2 −ト
リフルオロエタン、0.2%の二酸化チタン、2%のポ
リグリシジルメタクリレートを加え最終の該重合体を濃
度が22.5重量%となるよう調整した以外は実施例5
と同様の方法で発泡繊維を作成した。但し、使用した紡
糸口金はたて0.05mm、横0.42mmの長方形スリツ
トを7000孔を有したものである。得られた繊維のク
リンプ付与前の単繊維はたわみ角70゜を示し、次に記
す比較例2で作成したサンプルよりたわみ角が小さく剛
性が強くなっていることを示している。尚、繊維特性値
は第5表に示す。電子顕微鏡写真を第11図に示した。
Example 6 The polymer used in Example 3 is dissolved in acetone and 45% by weight of the polymer 1,1,2-trichloro-1,2,2-trifluoroethane, 0.2% titanium dioxide. Example 5 except that 2% polyglycidyl methacrylate was added to adjust the final polymer to a concentration of 22.5% by weight.
Foamed fibers were prepared in the same manner as in. However, the spinneret used was a rectangular slit having a length of 0.05 mm and a width of 0.42 mm and having 7,000 holes. The single fiber of the obtained fiber before crimping has a deflection angle of 70 °, which shows that the deflection angle is smaller and the rigidity is stronger than the sample prepared in Comparative Example 2 described below. The fiber characteristic values are shown in Table 5. An electron micrograph is shown in FIG.

比較例2 実施例6で使用した紡糸原液組成において発泡剤を添加
していない紡糸原液を使用し、同様の方法で繊維を作成
した。得られた繊維のたわみ角を測定したところ73゜
を示した。
Comparative Example 2 A fiber was prepared in the same manner by using a spinning dope containing no blowing agent in the spinning dope composition used in Example 6. The deflection angle of the obtained fiber was measured and found to be 73 °.

実施例7 実施例6で使用した紡糸原液を孔径0.11mm、孔数1
3333コの紡糸口金を用いて23℃、20重量%のア
セトン水溶液からなる1浴へ吐出し、次いで同一温度、
濃度からなる2浴で1.2倍に延伸後、80℃の水洗
(3浴)を経て84℃の水洗(4浴)で2.1倍に延伸
し、以下実施例5と同様にして作成し、クリンプを付与
した発泡繊維を作成し、繊維長3.8mmにカットした。
得られた繊維の特性値は第5表に示す。電子顕微鏡写真
を第12図に示した。
Example 7 The spinning dope used in Example 6 was prepared with a pore size of 0.11 mm and a pore number of 1.
Using 3333 spinnerets, the mixture was discharged into one bath consisting of 20 wt% acetone aqueous solution at 23 ° C., then at the same temperature,
After being drawn 1.2 times in two baths of different concentrations, washed with water at 80 ° C. (3 baths) and then drawn with water at 84 ° C. (4 baths) 2.1 times, and prepared in the same manner as in Example 5 below. Then, a crimped foamed fiber was prepared and cut into a fiber length of 3.8 mm.
The characteristic values of the obtained fibers are shown in Table 5. An electron micrograph is shown in FIG.

実施例8 実施例3で使用した重合体をアセトンに溶解し、該重合
体重量当たり18%の1,1,2 −トリクロロ−1,2,2 −ト
リフルオロエタン、0.2%の二酸化チタン、1.7%
のポリグリシジルメタクリレートを加え最終の該重合体
を濃度が23.0重量%となるよう調整後、45℃に保
ちながら3時間撹拌溶解し紡糸原液とした。該紡糸原液
をたて0.08mm、よこ0.60mmの長方形スリツトを
3333孔を有するノズル口金を用いて30℃、20重
量%のアセトン水溶液からなる1浴へ吐出し、次いで同
一温度、濃度からなる2浴で1.2倍に延伸後、80℃
の水洗(3浴)、85℃の水洗(4浴)を経て90℃の
水洗(5浴)で2.1倍に延伸し、以下実施例5と同様
にしてクリンプを付与した発泡繊維を作成し、繊維長5
1mmにカットした。得られた繊維のクリンプ付与前の単
繊維は、たわみ角を測定すると43゜を示し、次に記す
比較例3で作成したサンプルよりたわみ角が小さく剛性
が強くなっていることを示している。尚、繊維特性値は
第5表に示す。電気顕微鏡写真を第13図に示した。
Example 8 The polymer used in Example 3 is dissolved in acetone and 18% by weight of the polymer 1,1,2-trichloro-1,2,2-trifluoroethane, 0.2% titanium dioxide. 1.7%
The final polymer was adjusted to have a concentration of 23.0% by weight, and then dissolved by stirring for 3 hours while maintaining it at 45 ° C. to prepare a spinning dope. A rectangular slit having a length of 0.08 mm and a width of 0.60 mm was discharged into one bath composed of a 20 wt% acetone aqueous solution at 30 ° C. using a nozzle die having 3333 holes, and then the same temperature and concentration were applied. After stretching 1.2 times in 2 baths,
Was washed (3 baths), washed at 85 ° C. (4 baths), and then washed at 90 ° C. (5 baths) by 2.1 times to prepare crimped foamed fibers in the same manner as in Example 5 below. And fiber length 5
Cut to 1 mm. The bending angle of the obtained single fiber before crimping was 43 ° when measured, which shows that the bending angle was smaller and the rigidity was higher than that of the sample prepared in Comparative Example 3 described below. The fiber characteristic values are shown in Table 5. An electric micrograph is shown in FIG.

比較例3 実施例8で使用した紡糸原液組成において発泡剤を添加
していない紡糸原液を使用し、同様の方法で繊維を作成
した。得られた繊維のたわみ角を測定したところ60゜
を示した。
Comparative Example 3 A fiber was prepared in the same manner by using a spinning dope containing no foaming agent in the spinning dope composition used in Example 8. The deflection angle of the obtained fiber was measured and found to be 60 °.

実施例9 実施例3で使用したアクリロニトリル系重合体のアセト
ン溶液に、該重合体重量当たり0.2%の二酸化チタン
及び20%のn−ペンタンを添加し、最終該重合体濃度
が23.0重量%となるよう調整後、32℃で2時間の
撹拌溶解を行い紡糸原液とした。該紡糸原液を孔径0.
1mm、孔数1000コの紡糸口金を用いて30℃、20
重量%のアセトン水溶液からなる1浴への吐出し、次い
で同一温度、濃度からなる2浴で1.16倍に延伸後7
0℃の水洗浴からなる3浴、80℃の水洗浴からなる4
浴で1.04倍に延ばし実施例3で使用した油剤を付着
させた。その後120℃の雰囲気下で乾燥させ、同温度
で4.17倍のドラフト比延伸を行い145℃の熱処理
を経て、繊度3dを有する発泡繊維を得た。第6表に本
実施例で作成した繊維比重の変化を示す。
Example 9 To the acetone solution of the acrylonitrile-based polymer used in Example 3, 0.2% titanium dioxide and 20% n-pentane were added based on the weight of the polymer, and the final polymer concentration was 23.0. After adjusting the content to be wt%, the mixture was stirred and dissolved at 32 ° C. for 2 hours to prepare a spinning dope. The spinning solution was added with a pore size of 0.
Using a spinneret with 1 mm and 1000 holes, 30 ℃, 20
Discharge into one bath consisting of an aqueous solution of acetone by weight% and then draw it 1.16 times in two baths of the same temperature and concentration.
3 baths consisting of 0 ° C washing bath, 4 consisting of 80 ° C washing bath
The oil solution used in Example 3 was applied by spreading the solution 1.04 times in a bath. After that, it was dried in an atmosphere of 120 ° C., draft ratio stretched 4.17 times at the same temperature, and heat-treated at 145 ° C. to obtain a foamed fiber having a fineness of 3d. Table 6 shows changes in the specific gravity of the fibers prepared in this example.

【図面の簡単な説明】[Brief description of drawings]

第1図乃至第13図はいずれも繊維の形状を示すもの
で、繊維横断面の走査電子顕微鏡写真である。 第1図は実施例1における資料No.5の写真、第2図、
第3図は実施例2におけるそれぞれ資料No.6、No.10
の写真、第4図、第5図、第6図は実施例3におけるそ
れぞれ資料No.12、No.17、No.21の写真、第7
図、第8図、第9図は実施例4におけるそれぞれ資料N
o.36、No.31、No.33の写真、第10図は実施例5
の写真、第11図は実施例6の写真、第12図の実施例
7の写真、第13図は実施例8の写真である。 第14図はたわみ角の算出法を示す概略図である。
1 to 13 show the shape of the fiber, and are scanning electron micrographs of the cross section of the fiber. Figure 1 is a photograph of Material No. 5 in Example 1, Figure 2
FIG. 3 shows materials No. 6 and No. 10 in Example 2, respectively.
No. 12, No. 17, and No. 21 in Example 3, respectively, and FIG. 4, FIG. 5, and FIG.
Figures 8, 8 and 9 are Material N in Example 4, respectively.
Photographs of o.36, No. 31, and No. 33, and FIG.
11 is a photograph of Example 6, FIG. 12 is a photograph of Example 7 and FIG. 13 is a photograph of Example 8. FIG. 14 is a schematic diagram showing a method of calculating the deflection angle.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭55−1321(JP,A) 特開 昭55−152865(JP,A) 特開 昭57−199810(JP,A) 特開 昭57−139512(JP,A) 特開 昭58−149313(JP,A) 特公 昭51−210(JP,B1) ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-55-1321 (JP, A) JP-A-55-152865 (JP, A) JP-A-57-199810 (JP, A) JP-A-57- 139512 (JP, A) JP 58-149313 (JP, A) JP 51-210 (JP, B1)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】アクリロニトリル系重合体の有機系溶剤溶
液に可溶且つ該重合体の湿式紡糸における凝固浴に対し
て難溶性又は不溶性であり、常用圧力下で液体で且つ1
20℃以下の沸点を有する化合物を繊維の発泡剤として
アクリロニトリル系重合体に対し3〜100重量%添加
してなる紡糸原液を、水系の凝固浴に紡出、水洗を行
い、次いで発泡剤の沸点以上且つ100℃以上の乾燥温
度雰囲気下で繊維成形させることを特徴とする繊維横断
面が多孔質状のアクリロニトリル系発泡繊維の製造法。
1. An acrylonitrile-based polymer which is soluble in an organic solvent solution and hardly soluble or insoluble in a coagulation bath in wet spinning of the polymer, and is liquid under normal pressure and 1
A spinning stock solution obtained by adding a compound having a boiling point of 20 ° C. or less to acrylonitrile polymer as a foaming agent for fibers in an amount of 3 to 100% by weight is spun into an aqueous coagulation bath and washed with water, and then the boiling point of the foaming agent. A method for producing an acrylonitrile-based expanded fiber having a porous fiber cross section, which is characterized in that the fiber is formed in a dry temperature atmosphere of 100 ° C. or more.
【請求項2】アクリロニトリル系重合体がアクリロニト
リル25重量%以上を共重合してなる重合体を主成分と
する特許請求の範囲第1項記載の製造法。
2. The production method according to claim 1, wherein the acrylonitrile-based polymer comprises a polymer obtained by copolymerizing 25% by weight or more of acrylonitrile as a main component.
【請求項3】紡糸原液が、造核剤として無機粉体及び/
又はセルロースエステルを含有する特許請求の範囲第1
項記載の製造法。
3. A spinning dope containing an inorganic powder and / or a nucleating agent.
Or claim 1 containing a cellulose ester
The manufacturing method described in the item.
【請求項4】凝固浴が、発泡剤の大気圧下における沸点
の温度以下に保持される特許請求の範囲第1項記載の製
造法。
4. The method according to claim 1, wherein the coagulation bath is maintained at a temperature equal to or lower than the boiling point of the foaming agent under atmospheric pressure.
JP60215985A 1984-10-19 1985-09-28 Acrylonitrile-based foam fiber manufacturing method Expired - Lifetime JPH0611929B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60215985A JPH0611929B2 (en) 1985-09-28 1985-09-28 Acrylonitrile-based foam fiber manufacturing method
DE8585113161T DE3586032D1 (en) 1984-10-19 1985-10-17 FOAMED SYNTHESIS FIBER AND METHOD FOR PRODUCING THE SAME.
EP85113161A EP0180097B1 (en) 1984-10-19 1985-10-17 Foamed synthetic fiber and its manufacturing method
CN 85109642 CN1011319B (en) 1984-10-19 1985-10-19 Foamed synthetic fiber and its manufanturing method
US07/082,916 US4865786A (en) 1984-10-19 1987-08-10 Foamed synthetic fiber and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60215985A JPH0611929B2 (en) 1985-09-28 1985-09-28 Acrylonitrile-based foam fiber manufacturing method

Publications (2)

Publication Number Publication Date
JPS6278210A JPS6278210A (en) 1987-04-10
JPH0611929B2 true JPH0611929B2 (en) 1994-02-16

Family

ID=16681498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60215985A Expired - Lifetime JPH0611929B2 (en) 1984-10-19 1985-09-28 Acrylonitrile-based foam fiber manufacturing method

Country Status (1)

Country Link
JP (1) JPH0611929B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9702061B2 (en) 2012-09-24 2017-07-11 Kaneka Corporation Method for manufacturing pile fabric
CN115233328B (en) * 2022-09-23 2022-12-06 中山大学 Preparation method of superfine fluororubber fiber

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51210A (en) * 1974-06-18 1976-01-05 Matsushita Electric Ind Co Ltd Denshikantaagetsuto oyobi sonoseizohoho
JPS551321A (en) * 1978-06-12 1980-01-08 Japan Exlan Co Ltd Manufacture of acrylic rush-like structure
JPS55152865A (en) * 1979-05-18 1980-11-28 Sumitomo Chemical Co Production of acrylonitrile rush like
JPS57139512A (en) * 1981-02-24 1982-08-28 Asahi Chem Ind Co Ltd Preparation of foamed acrylic fiber
JPS57199810A (en) * 1981-05-28 1982-12-07 Asahi Chem Ind Co Ltd Production of acrylic foamed fiber
JPS58149313A (en) * 1982-03-02 1983-09-05 Asahi Chem Ind Co Ltd Expanded polyacrylonitrile type fiber and preparation thereof

Also Published As

Publication number Publication date
JPS6278210A (en) 1987-04-10

Similar Documents

Publication Publication Date Title
KR930007819B1 (en) Pile composition having expanded fiber
JPWO2006008990A1 (en) Acrylic shrinkable fiber and method for producing the same
EP1270774A1 (en) Porous acrylic fiber and fabric comprising the same, and method of producing the same
JPH0611929B2 (en) Acrylonitrile-based foam fiber manufacturing method
JP3879244B2 (en) Acrylic synthetic fiber with animal hair-like texture
JP4420819B2 (en) Acrylic synthetic fibers with improved stability
JP3364099B2 (en) Dividable acrylic synthetic fiber and method for producing the same
JPS6018332B2 (en) Manufacturing method of acrylic hollow fiber
JPH0822934B2 (en) Method for producing polyacrylonitrile-based porous body
JPH05148709A (en) Acrylic modified cross section fiber and its production
JP2001131821A (en) Foamed fiber and method for producing the same
JP3359397B2 (en) Core-sheath composite fiber
JPH0129888B2 (en)
JP2007231449A (en) Acrylic fiber and method for producing the same
JPS62177255A (en) Pile composition containing foamed fiber
JPH02169711A (en) Flat dry spun acrylic fiber and production thereof
JP5014799B2 (en) Hollow acrylic synthetic fiber
JP2002013029A (en) Lightweight conjugate acrylic fiber and method for producing the same
JPS61138710A (en) Production of acrylic yarn having improved durability
JP2000290832A (en) Porous fiber and its production
JPS61102409A (en) Flat yarn
JP3278228B2 (en) Flat acrylic fiber and method for producing the same
JP3008951B2 (en) Highly water-retaining acrylic fiber and method for producing the same
JPH0673608A (en) Flat acrylic synthetic fiber and its production
JP3326012B2 (en) Body towel with excellent lathering properties