JPH06116771A - Production of ethanol - Google Patents

Production of ethanol

Info

Publication number
JPH06116771A
JPH06116771A JP4263841A JP26384192A JPH06116771A JP H06116771 A JPH06116771 A JP H06116771A JP 4263841 A JP4263841 A JP 4263841A JP 26384192 A JP26384192 A JP 26384192A JP H06116771 A JPH06116771 A JP H06116771A
Authority
JP
Japan
Prior art keywords
ethanol
electrode
soln
cuo
zno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4263841A
Other languages
Japanese (ja)
Inventor
Hiroshi Yoshida
弘 吉田
Akira Saji
明 佐治
Matsushige Sakai
松成 堺
Hidetomo Noda
英智 野田
Kaname Ito
要 伊藤
Shoichiro Ikeda
章一郎 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP4263841A priority Critical patent/JPH06116771A/en
Publication of JPH06116771A publication Critical patent/JPH06116771A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To convert CO2 to ethanol with good recovering efficiency and energy efficiency by electrolytically reducing the CO2 in an aq. electrolyte soln. by using a double oxide electrode composed of ZnO and CuO. CONSTITUTION:The stable aq. electrolyte soln. which consists of, for example, aq. phosphate soln., aq. carbonate soln., etc., and has a high degree of ionization is prepd. The hydroxide obtd. by dropping an alkali to an aq. soln. mixture composed of water-soluble salts of, for example zinc and copper, is calcined to obtain the double oxide composed of 8/2 to 4/6 ZnO/CuO. The CO2 is electrolytically reduced in the above-mentioned aq. electrolyte soln. by using the electrode consisting of such double oxide, by which the ethanol is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、二酸化炭素を還元する
ことによりエタノールを製造する方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing ethanol by reducing carbon dioxide.

【0002】[0002]

【従来の技術】発電用ボイラ、産業用ボイラ、等化石燃
料の燃焼に対し、発生する排ガス中の二酸化炭素は、従
来、ほとんど無処理のままで大気中に放出されていた
が、昨今、地球環境保全の見地から、二酸化炭素を回収
・工業的利用することが要望されるようになってきた。
2. Description of the Related Art Conventionally, carbon dioxide in exhaust gas generated by combustion of power generation boilers, industrial boilers, and fossil fuels has been released into the atmosphere without any treatment. From the viewpoint of environmental protection, there has been a demand for carbon dioxide recovery and industrial use.

【0003】そして例えば、化石燃料から発生する二酸
化炭素を回収して、電気化学的手法により、有機化合物
に変換しリサイクル利用する技術が種々提案されている
(「地球温暖下の対策技術」オーム社発行、公害資源研
究所地球環境特別研究室編、245〜249頁参照)。
For example, various technologies have been proposed for recovering carbon dioxide generated from fossil fuels, converting them into organic compounds by an electrochemical method and recycling them (“Countermeasures against global warming”, Ohmsha Co., Ltd.). Published, Special Research Laboratory for Global Environment, Institute for Pollution Resources, pp. 245-249).

【0004】[0004]

【発明が解決しようとする課題】しかし、これら技術
は、製造物の利用価値及び/又は反応選択性(回収効
率)が低いものがほとんどである。反応選択性が高く、
利用価値があるものとして、メタノールに変換する技術
があるのみである。
However, most of these techniques have low utility value and / or reaction selectivity (recovery efficiency) of products. High reaction selectivity,
The only technology that has utility is the technology for converting to methanol.

【0005】そこで、電気化学的手法により、二酸化炭
素を有機化合物に変換しリサイクル利用するに際して、
メタノールより利用価値が高いエタノールに変換する技
術の出現が要請されている。
Therefore, when converting carbon dioxide to an organic compound by an electrochemical method for recycling,
The emergence of a technology that converts methanol into ethanol, which has a higher utility value, is required.

【0006】本発明は上記にかんがみて、電気化学的手
法により、二酸化炭素をエタノールに反応選択性良好に
変換可能な、エタノールの製造方法を提供することを目
的とする。
In view of the above, it is an object of the present invention to provide a method for producing ethanol capable of converting carbon dioxide into ethanol with good reaction selectivity by an electrochemical method.

【0007】[0007]

【課題を解決するための手段】本発明は、上記課題を解
決するために、鋭意開発に努力をした結果、下記構成の
エタノールの製造方法に想到した。
In order to solve the above-mentioned problems, the present invention has devised an intensive development effort, and as a result, has conceived an ethanol production method having the following constitution.

【0008】二酸化炭素を電気化学的に還元することに
よりエタノールを製造するに際して、酸化亜鉛(Zn
O)と酸化銅(CuO)との複合酸化物電極を還元電極
に用いて、電解液水溶液中で、二酸化炭素を電気化学的
に還元してエタノールを製造することを特徴とする。
In producing ethanol by electrochemically reducing carbon dioxide, zinc oxide (Zn oxide) is used.
It is characterized in that a compound oxide electrode of O) and copper oxide (CuO) is used as a reduction electrode to electrochemically reduce carbon dioxide in an aqueous electrolytic solution to produce ethanol.

【0009】[0009]

【実施の態様】Embodiments

A.以下、本発明のエタノールの製造方法を、図例に基
づいて説明する。
A. Hereinafter, the method for producing ethanol of the present invention will be described with reference to the drawings.

【0010】(1) 本発明の方法に使用する還元電極は、
酸化亜鉛と酸化銅との複合酸化物からなるものを使用す
る。この複合酸化物における、酸化亜鉛と酸化銅のモル
比は、酸化亜鉛/酸化銅=8/2〜4/6、望ましく
は、略7/3とする。
(1) The reducing electrode used in the method of the present invention is
A composite oxide of zinc oxide and copper oxide is used. In this composite oxide, the molar ratio of zinc oxide and copper oxide is zinc oxide / copper oxide = 8/2 to 4/6, and preferably about 7/3.

【0011】酸化銅の比率が過少では、エタノールの反
応選択性(触媒作用)が低く、酸化銅が過多では、エタ
ノールのファラデー効率(電流効率)が低く実際的でな
い。
If the proportion of copper oxide is too small, the reaction selectivity (catalysis) of ethanol is low, and if the proportion of copper oxide is too large, the faradaic efficiency (current efficiency) of ethanol is low and not practical.

【0012】なお、該複合酸化物は上記の如く触媒作用
を奏するもので、還元電極全体を当該複合酸化物で形成
する必要はなく、カーボン(活性炭等)、アルミナ、シ
リカ、チタニア、ジルコニア、ゼオライト等の無機物
を、還元電極における触媒担体の材料とすることもでき
る。
Since the complex oxide exhibits the catalytic action as described above, it is not necessary to form the entire reduction electrode with the complex oxide, and carbon (activated carbon etc.), alumina, silica, titania, zirconia, zeolite. Inorganic substances such as can be used as the material of the catalyst carrier in the reduction electrode.

【0013】(2) そして、この複合酸化物の製造方法
は、例えば、下記の如く行う。
(2) Then, the method for producing the composite oxide is performed as follows, for example.

【0014】硝酸亜鉛及び硝酸銅(II)の混合水溶液に
アンモニア水等を滴下して各金属の水酸化物を共沈させ
る。そして、当該共沈物を濾過・乾燥後(例えば、11
0℃一昼夜)、仮焼(例えば、360℃×24h)し
て、ZnO/CuO粉末を調製する。当該ZnO/Cu
O粉末を加圧成形(例えば、プレス圧:147 MPa )後、
焼成(例えば、900℃×4h)して還元電極用のZn
O/CuO複合酸化物(例えば、板状:1.2 cm2×1.5
mmt)を得る。
Ammonia water or the like is dropped into a mixed aqueous solution of zinc nitrate and copper (II) nitrate to coprecipitate hydroxides of the respective metals. Then, the coprecipitate is filtered and dried (for example, 11
A ZnO / CuO powder is prepared by calcining (for example, 360 ° C. × 24 h) at 0 ° C. overnight. ZnO / Cu
After pressure molding of O powder (for example, pressing pressure: 147 MPa),
Zn for reduction electrode after firing (eg, 900 ° C x 4h)
O / CuO composite oxide (for example, plate-shaped: 1.2 cm 2 × 1.5
mmt) is obtained.

【0015】(3) そして、エタノール製造用の電解槽
は、下記の如く構成とする。
(3) The electrolytic cell for ethanol production is constructed as follows.

【0016】作用電極(カソード)1は、電極となる
上記ZnO/CuO複合酸化物3の裏面に、導電性低融
点金属(In−Ga合金)5及び銀ペースト7を介して
リード線(銅線)9を接続し、ZnO/CuO複合酸化
物3の不要部分(周囲)を絶縁体(エポキシ樹脂等)1
1で囲繞する(図1参照)。なお、リード線9は、耐熱
性ガラス12で途中まで被覆されている 対極13は、慣用の白金電極を、参照電極15は、慣
用の、塩化カリウム飽和・銀/塩化銀電極を用いる。
The working electrode (cathode) 1 is provided with a lead wire (copper wire) on the back surface of the ZnO / CuO composite oxide 3 serving as an electrode via a conductive low melting point metal (In-Ga alloy) 5 and a silver paste 7. ) 9 is connected, and an unnecessary portion (around) of the ZnO / CuO composite oxide 3 is made into an insulator (epoxy resin etc.) 1
Surround with 1 (see FIG. 1). The lead wire 9 is partially covered with the heat-resistant glass 12, the counter electrode 13 is a conventional platinum electrode, and the reference electrode 15 is a conventional potassium chloride saturated / silver / silver chloride electrode.

【0017】そして、上記各電極を図2に示す如く、
作用極1がセットされる第一槽(負極側)17、対応電
極13がセットされる第二槽(正極側)19とが、中間
に陽イオン交換膜21が組み込まれた導管21で接続さ
れている。なお、参照電極は第一槽17の側面にセット
される。この図例中、23はガス入口、25はガス出口
である。
Then, as shown in FIG.
The first tank (negative electrode side) 17 in which the working electrode 1 is set and the second tank (positive electrode side) 19 in which the corresponding electrode 13 is set are connected by a conduit 21 in which a cation exchange membrane 21 is incorporated. ing. The reference electrode is set on the side surface of the first tank 17. In this example, 23 is a gas inlet and 25 is a gas outlet.

【0018】(4) 電解に使用する溶液は、電解質水溶液
であれば特に限定されないが、リン酸塩水溶液、炭酸塩
水溶液、等電離度の高いもの、特に電離度が安定してい
るリン酸塩水溶液が望ましい。
(4) The solution used for electrolysis is not particularly limited as long as it is an electrolyte aqueous solution. However, a phosphate aqueous solution, a carbonate aqueous solution, a solution having a high degree of ionization, particularly a phosphate having a stable ionization degree. Aqueous solution is preferred.

【0019】リン酸塩としては、オルトリン酸カリウ
ム、リン酸二水素カリウム、リン酸一水素カリウム、等
を挙げることができる。
Examples of the phosphate include potassium orthophosphate, potassium dihydrogen phosphate, potassium monohydrogen phosphate and the like.

【0020】4.上記電解槽は、慣用の方法で配管・配
線して、エタノールを製造するために、二酸化炭素を電
気化学的に還元する。このとき電流密度は、通常、0.
2〜1000mA/ cm2とし、望ましくは、0.3〜5
0mA、特に、0.5mA/cm2前後が望ましい。
4. The electrolyzer is plumbed and wired in a conventional manner to electrochemically reduce carbon dioxide to produce ethanol. At this time, the current density is usually 0.
2 to 1000 mA / cm 2 , preferably 0.3 to 5
0 mA, especially around 0.5 mA / cm 2 is desirable.

【0021】[0021]

【試験例】以下、本発明の効果を確認するために行った
試験例について説明をする。
[Test Example] A test example conducted to confirm the effects of the present invention will be described below.

【0022】(1) 試験例1 前述の態様において、作用電極をZnO/CuO(モル
比)=7/3とし、濃度0.1 mol/dm3 各種カリウム
塩水溶液中、電流密度0.5mA/ cm2で二酸化炭素の
定電流電気化学的還元(通電電気量40C)を行った。
(1) Test Example 1 In the above embodiment, the working electrode was ZnO / CuO (molar ratio) = 7/3, and the concentration was 0.1 mol / dm 3 in various potassium salt aqueous solutions, and the current density was 0.5 mA / A constant-current electrochemical reduction of carbon dioxide was carried out at a cm 2 (current of electricity of 40 C).

【0023】試験結果を表1に示すが、リン酸二水素カ
リウム水溶液の場合が、エタノールの電流効率が11.
7%と良好で、且つ、反応選択性も約89%と良好であ
ることが分かる。
The test results are shown in Table 1. When the aqueous potassium dihydrogen phosphate solution was used, the current efficiency of ethanol was 11.
It can be seen that it is as good as 7% and the reaction selectivity is as good as about 89%.

【0024】(2) 試験例2 前述の態様において、作用電極としてZnO/CuO
(モル比)を種々変えたものを使用し、濃度0.1 mol
/dm3 のリン酸二水素カリウム水溶液中、窒素雰囲気下
で電流密度0.3 mA / cm2で2Cを流し電極を還元処
理した後、試験例1同様、電流密度0.5mA/ cm2
二酸化炭素の定電流電気化学的還元(通電電気量40
C)を行った。
(2) Test Example 2 In the above-mentioned embodiment, ZnO / CuO was used as the working electrode.
(Mol ratio) variously used, concentration 0.1 mol
/ Dm 3 aqueous solution of potassium dihydrogen phosphate under a nitrogen atmosphere at a current density of 0.3 mA / cm 2 to reduce the electrode by flowing 2C, the same as in Test Example 1 at a current density of 0.5 mA / cm 2 Constant current electrochemical reduction of carbon dioxide
C) was performed.

【0025】試験結果を表2に示すが、二酸化炭素の電
解前に予め作用電極を還元させると、エタノールの電流
効率が17.3%と増大し、また、ZnO/CuO(モ
ル比)が、3/7及び5/5の場合、選択性が99%以
上と増大していることが分かる。
The test results are shown in Table 2. When the working electrode is reduced in advance before electrolysis of carbon dioxide, the current efficiency of ethanol increases to 17.3%, and ZnO / CuO (molar ratio) It can be seen that in the cases of 3/7 and 5/5, the selectivity increased to 99% or more.

【0026】(3) 試験例3 試験例2のZnO/CuO(モル比)=7/3のものに
ついて、電流密度を種々に変えて試験をした例である。
(3) Test Example 3 This is an example in which the ZnO / CuO (molar ratio) = 7/3 of Test Example 2 was tested with various current densities.

【0027】試験結果を表3に示すが、どの電流密度に
おいても、二酸化炭素からの還元生成物としては、エタ
ノールが主生成物であることが分かる。電流密度0.5
mA/ cm2のとき電流効率が最大となった。
The test results are shown in Table 3, and it can be seen that ethanol is the main product as the reduction product from carbon dioxide at any current density. Current density 0.5
The maximum current efficiency was obtained at mA / cm 2 .

【0028】酸化亜鉛(ZnO)と酸化銅(CuO)と
からなる複合酸化物焼結体電極を用いて、リン酸塩水溶
液中で、二酸化炭素を電気化学的に還元してエタノール
を製造すること
To produce ethanol by electrochemically reducing carbon dioxide in a phosphate aqueous solution using a composite oxide sintered body electrode composed of zinc oxide (ZnO) and copper oxide (CuO).

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【発明の作用・効果】本発明の方法は、ZnOとCuO
との複合酸化物電極を用いて、電解質水溶液中で、二酸
化炭素を電気化学的に還元してエタノールを製造するこ
とにより、二酸化炭素をエタノールに反応選択性良好に
変換可能となる。
The operation and effect of the present invention are as follows: ZnO and CuO
By using the composite oxide electrode of and to electrochemically reduce carbon dioxide in an aqueous electrolyte solution to produce ethanol, carbon dioxide can be converted into ethanol with good reaction selectivity.

【0033】従って、化石燃料から発生する二酸化炭素
を、回収効率・エネルギー効率良好にエタノールに変換
可能となる。
Therefore, it is possible to convert carbon dioxide generated from fossil fuel into ethanol with good recovery efficiency and energy efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法に還元電極として使用する複合酸
化物電極の一例を示す概略断面図である。
FIG. 1 is a schematic cross-sectional view showing an example of a composite oxide electrode used as a reduction electrode in the method of the present invention.

【図2】本発明のエタノールの製造方法に使用する電解
槽の分解斜視図である。
FIG. 2 is an exploded perspective view of an electrolytic cell used in the method for producing ethanol of the present invention.

【符号の説明】[Explanation of symbols]

1 作用電極 3 ZnO/CuO複合酸化物 13 対極 15 参照電極 1 Working electrode 3 ZnO / CuO complex oxide 13 Counter electrode 15 Reference electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堺 松成 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社技術開発本部電力 技術研究所内 (72)発明者 野田 英智 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社技術開発本部電力 技術研究所内 (72)発明者 伊藤 要 愛知県知多市佐布里字東金久曽23番地19 (72)発明者 池田 章一郎 愛知県名古屋市名東区藤巻町3丁目2番地 の334 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Sakai Matsunari Aichi No. 20 Kitakanzan, Otaka-cho, Midori-ku, Nagoya-shi, Aichi Prefecture Chubu Electric Power Co., Inc. Technology Development Headquarters Electric Power Research Laboratory (72) Inventor Hidetomo Noda Aichi Aichi 1 20-20 Kitakousanyama, Odaka-cho, Midori-ku, Nagoya-shi, Chuo Electric Power Co., Ltd. Technology Development Headquarters (72) Inventor Kaname Ito 23, Tougane-Kusa, Tozaguri, Chita-shi, Aichi Prefecture 19 (72) Invention Ikeda Shoichiro 334, 3-2, Fujimaki-cho, Meito-ku, Nagoya, Aichi

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 二酸化炭素を還元することによりエタノ
ールを製造するに際して、 酸化亜鉛(ZnO)と酸化銅(CuO)との複合酸化物
電極を用いて、電解質水溶液中で、二酸化炭素を電気化
学的に還元してエタノールを製造することを特徴とする
エタノールの製造方法。
1. When ethanol is produced by reducing carbon dioxide, carbon dioxide is electrochemically converted in an aqueous electrolyte solution by using a composite oxide electrode of zinc oxide (ZnO) and copper oxide (CuO). A method for producing ethanol, which comprises reducing ethanol to produce ethanol.
JP4263841A 1992-10-01 1992-10-01 Production of ethanol Withdrawn JPH06116771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4263841A JPH06116771A (en) 1992-10-01 1992-10-01 Production of ethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4263841A JPH06116771A (en) 1992-10-01 1992-10-01 Production of ethanol

Publications (1)

Publication Number Publication Date
JPH06116771A true JPH06116771A (en) 1994-04-26

Family

ID=17394971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4263841A Withdrawn JPH06116771A (en) 1992-10-01 1992-10-01 Production of ethanol

Country Status (1)

Country Link
JP (1) JPH06116771A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138270A (en) * 1997-05-07 2009-06-25 George A Olah Recycling of carbon dioxide into methyl alcohol and related oxygenates or hydrocarbons
JP2018031034A (en) * 2016-08-23 2018-03-01 古河電気工業株式会社 Electrode carrying metal-containing nanoparticles and carbon dioxide reduction apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138270A (en) * 1997-05-07 2009-06-25 George A Olah Recycling of carbon dioxide into methyl alcohol and related oxygenates or hydrocarbons
JP2018031034A (en) * 2016-08-23 2018-03-01 古河電気工業株式会社 Electrode carrying metal-containing nanoparticles and carbon dioxide reduction apparatus

Similar Documents

Publication Publication Date Title
CN107904614B (en) A kind of Ni3S2@Ni-Fe LDH analyses oxygen electro catalytic electrode and the preparation method and application thereof
KR102250321B1 (en) Electrochemical system for producing ammonia from nitrogen oxides and preparation method thereof
CN110479320B (en) High-efficiency bifunctional decomposition water electric catalyst and preparation method thereof
CN102912374A (en) Electrochemical reduction CO2 electrolytic tank using bipolar membrane as diaphragm and application of electrochemical reduction CO2 electrolytic tank
EP0931855B1 (en) Production of hydrogen from water using photocatalyst-electrolysis hybrid system
JPS6122036B2 (en)
CN107699901B (en) Preparation method of zinc-iron-aluminum hydrotalcite/titanium dioxide composite membrane photo-anode for photoproduction cathodic protection
KR101451630B1 (en) Method for reducing carbon dioxide and reductor of carbon dioxide using the same
Chen et al. Base–acid hybrid water electrolysis
KR101468782B1 (en) Method for reducing carbon dioxide and non-diaphragm reductor of carbon dioxide using the same
CN105463497A (en) Battery device capable of electrolyzing water for making hydrogen
KR100699556B1 (en) The equipment for producing hydrogen gas by using photocatalyst and biocatalyst
Zha et al. Electrochemical ammonia synthesis by reduction of nitrate on Au doped Cu nanowires
CN114250486A (en) Preparation method of surface nano-porous NiMoCu catalyst
CN104411638A (en) Gas production device and method
US4497698A (en) Lanthanum nickelate perovskite-type oxide for the anodic oxygen evolution catalyst
JPH06116771A (en) Production of ethanol
CN103159297B (en) Hydrogen-production and on-line separation device for decomposing water by optical electrolytic cell
KR20200090668A (en) Electrochemical system for producing ammonia from nitrogen oxides and preparation method thereof
CN117165986A (en) Preparation of bimetal co-doped electrode material and application of bimetal co-doped electrode material in photovoltaic water electrolysis system
CN111534830A (en) Device and method for producing high-purity hydrogen by electrolyzing water
CN110957513A (en) Direct coal fuel cell power generation system with near-zero carbon emission
CN108063274B (en) Novel sacrificial fuel cell, preparation method thereof and application of paired synthesis method in carbon dioxide recycling
CN100497747C (en) Method for combined production of hydrogen and hydroxide by water electrolysis with low power consumption
CN110299532A (en) A kind of preparation method of water system aluminum-air battery device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000104