JPH0611530A - Method and equipment for evaluating insulation reliability lifetime of electronic component - Google Patents

Method and equipment for evaluating insulation reliability lifetime of electronic component

Info

Publication number
JPH0611530A
JPH0611530A JP4169271A JP16927192A JPH0611530A JP H0611530 A JPH0611530 A JP H0611530A JP 4169271 A JP4169271 A JP 4169271A JP 16927192 A JP16927192 A JP 16927192A JP H0611530 A JPH0611530 A JP H0611530A
Authority
JP
Japan
Prior art keywords
life
electronic component
test
evaluating
insulation reliability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4169271A
Other languages
Japanese (ja)
Inventor
Tsutomu Tsukui
勤 津久井
Hiroji Yokosuka
洋児 横須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP4169271A priority Critical patent/JPH0611530A/en
Publication of JPH0611530A publication Critical patent/JPH0611530A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

PURPOSE:To execute highly-precise determination of lifetime in a state of not being deteriorated yet, by determining the lifetime on the basis of time-basis changes of characteristics measured in the initial stage of a lifetime test of an electronic component and in the middle thereof, when the test is conducted by impressing a bias voltage on the component in an environmental test tank. CONSTITUTION:A printed circuit board for evaluation of lifetime on the surface of which a solder resist is applied is used, and a lifetime test is executed by impressing a DC bias voltage of about 100V on the board in an environmental test tank in a specific environment. The R-t characteristic of an insulation resistance R in relation to a time (t) is measured every six hours at the voltage of about 100V. After 960 hours pass, then, a negative characteristic is seen in the R-t characteristic after the time (t) passes by six minutes. After 1500 hours pass, moreover, the negative change is seen in the R-t characteristic from the beginning, and this is a point at which the insulation resistance lowers sharply in the lifetime test. In this way, the end point of the lifetime can be determined at an early time point of about 2/3 by taking the negative change of the insulation resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電圧が印加される基板や
電子装置等の絶縁信頼性からその寿命を評価する方法及
び装置に係り、特に、マイグレーション劣化による寿命
の明確な早期評価を行うのに好適な寿命評価方法及びそ
の装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for evaluating the life of a substrate, an electronic device or the like to which a voltage is applied based on the insulation reliability thereof. The present invention relates to a suitable life evaluation method and apparatus.

【0002】[0002]

【従来の技術】プリント回路板や電子部品などの寿命を
評価する場合、一般的には、高温高湿度の環境槽内に被
試験体を入れ、直流電圧などのバイアス電圧を被試験体
に印加してその絶縁抵抗を測定し、この絶縁抵抗の経時
変化からその被試験体の寿命を判定する方法が採用され
ている。絶縁抵抗の測定は、環境槽内でそのまま測定す
る場合と、環境槽より外に取り出して測定する場合があ
る。いずれの場合にも、絶縁抵抗(R)の時間(ta)
特性は、図2に示す様に、ある時期になると抵抗値が急
激に低下する傾向を示す。この絶縁抵抗の急激な低下
は、文献;ディ.ジェイ.ランド−ほか:第17回米国
電気電子学会主催信頼性物理関係発表大会論文集(D.J.
Lando et.al. :17th IEEE Ann. Proc. Rel. Phys. pp.5
1-63(1989))の53頁に見られるように、導体間に短絡
現象が生起するためである。これは、現象的には、電気
化学反応を伴うイオンマイグレ−ションによる短絡であ
る。
2. Description of the Related Art Generally, when evaluating the life of printed circuit boards and electronic parts, the test object is placed in a high temperature and high humidity environment tank and a bias voltage such as a DC voltage is applied to the test object. Then, the insulation resistance is measured, and the life of the device under test is determined from the change with time of the insulation resistance. The insulation resistance may be measured in the environment tank as it is, or may be taken out from the environment tank and measured. In any case, insulation resistance (R) time (ta)
As shown in FIG. 2, the characteristics show a tendency that the resistance value sharply decreases at a certain time. This rapid decrease in insulation resistance is described in the literature; Jay. Rand- et al .: Proceedings of the 17th American Society of Electrical and Electronic Engineers Conference on Reliability Physics (DJ
Lando et.al .: 17th IEEE Ann. Proc. Rel. Phys. Pp. 5
This is because a short circuit phenomenon occurs between the conductors as seen on page 53 of 1-63 (1989)). This phenomenon is a short circuit due to ion migration accompanied by an electrochemical reaction.

【0003】そこで、被試験体の正確な寿命を評価する
には、マイグレーションの進展状況を把握する必要があ
る。しかし、上述した従来の一般的な絶縁抵抗の測定で
は、マイグレ−ションの進展状況が把握できないので、
文献;長谷川 昭彦ほか:第19回日科技連信頼性・保全性
シンポジウム 部門6−13、p.237(1988)の24
1頁に見られるように、環境槽から被試験体を取り出し
て、マイグレ−ションの進展状況を直接観測する方法が
採られている。
Therefore, in order to accurately evaluate the life of the test object, it is necessary to grasp the progress of migration. However, in the above-mentioned conventional general insulation resistance measurement, since the progress of migration cannot be grasped,
Reference; Akihiko Hasegawa et al .: The 19th Nikkiren reliability and maintainability symposium section 6-13, p. 24 of 237 (1988)
As can be seen on page 1, the method of taking out the test object from the environmental tank and directly observing the progress of migration is adopted.

【0004】[0004]

【発明が解決しようとする課題】プリント回路板や配線
板,電子デバイスなどの絶縁信頼性からみた従来の寿命
評価では、絶縁抵抗の経時変化から、絶縁抵抗が低下す
る時点を寿命としている。つまり、従来の寿命判定方法
は、マイグレーションで導体間が短絡したときをもって
寿命としている。しかし、寿命評価の信頼性を高めるに
は、マイグレーションによる短絡に至る前の早い時点
で、明確に寿命を判定する必要がある。また、毎回寿命
試験をしなくても済み、しかも未劣化の状態で精度良く
寿命判定をしたいという要望がある。
In the conventional life evaluation from the viewpoint of insulation reliability of printed circuit boards, wiring boards, electronic devices, etc., the life is defined as the time when the insulation resistance decreases due to the change in insulation resistance over time. That is, in the conventional life determination method, the life is defined when the conductors are short-circuited due to migration. However, in order to improve the reliability of life evaluation, it is necessary to clearly judge the life at an early point before a short circuit due to migration occurs. In addition, there is a demand that it is not necessary to carry out a life test every time, and moreover, it is desired to accurately judge the life in an undegraded state.

【0005】本発明の目的は、マイグレーションに至る
前の未劣化の状態で精度の高い寿命判定を行うことので
きる寿命評価方法及びその装置を提供することにある。
It is an object of the present invention to provide a life evaluation method and a device therefor capable of highly accurately performing life judgment in an undegraded state before migration.

【0006】[0006]

【課題を解決するための手段】上記目的は、プリント回
路板,配線板,電子デバイスなどの電子部品の絶縁信頼
性の寿命を評価する寿命評価において、環境試験槽で行
われるバイアス電圧の前記電子部品への印加による寿命
試験を行うときに、該寿命試験の初期及び試験中の途中
で測定される特性の時間的変化から寿命を判定すること
で、達成される。
The above-mentioned object is to evaluate the life of insulation reliability of electronic parts such as printed circuit boards, wiring boards, electronic devices, etc., in the life evaluation, and to measure the electron of the bias voltage in an environmental test tank. This is achieved by determining the life from the time change of the characteristics measured at the beginning of the life test and during the life test when the life test is performed by applying to the component.

【0007】上記目的はまた、環境試験槽で行われるバ
イアス電圧の前記電子部品への印加による寿命試験を行
うときに、該寿命試験中に前記バイアス電圧を変化させ
たときの電子部品の特性変化から寿命を判定すること
で、達成される。
The above-mentioned object is also to carry out a life test by applying a bias voltage to the electronic component, which is carried out in an environmental test tank, and to change the characteristics of the electronic component when the bias voltage is changed during the life test. It is achieved by determining the life from.

【0008】[0008]

【作用】寿命試験をある時間継続して行うと、電子部品
の特性が計測時間経過に伴って変化することを、本願発
明者等は実験を繰り返すことで見い出した。そして、こ
の変化の初期の段階で寿命を判定することで、マイグレ
ーション等で劣化が進行してしまう以前にその寿命を評
価できることになる。
The inventors of the present application have found by repeating experiments that the characteristics of electronic components change with the elapse of measurement time when the life test is continuously performed for a certain period of time. By determining the life at the initial stage of this change, it is possible to evaluate the life before deterioration progresses due to migration or the like.

【0009】[0009]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。マイグレーションによる劣化前の早い時点で寿
命評価を明確に行うために、試験途中でパラメータを変
えた絶縁抵抗の測定を行い、その変化量から判定する。
寿命試験の途中で測定される絶縁抵抗は、従来は、一定
電圧を印加し、時間経過後一分値などの特定の一つの値
が取られていたに過ぎない。しかし、本実施例では、寿
命試験の途中で測定される絶縁抵抗を、パラメータを変
えた測定から新たな知見を見いだそうとするものであ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In order to clearly evaluate the life at an early point before deterioration due to migration, the insulation resistance is changed with the parameters changed during the test, and the change is determined.
The insulation resistance measured in the middle of the life test is conventionally only a specific one value such as a minute value after a certain voltage is applied. However, in this embodiment, the insulation resistance measured in the middle of the life test is to find a new finding from the measurement with different parameters.

【0010】絶縁抵抗の測定時間を一分値などに固定せ
ずに、1分より長時間に渡って計測したところ、図1に
示すようになる。絶縁層あるいは絶縁界面の劣化が進ん
でない状況では、同図(a)に示すように、測定初期の
段階においては吸収電流がみられ、その後に徐々に絶縁
抵抗(R)が上昇する。更に、時間(t)が経過する
と、漏洩電流のみとなって一定の絶縁抵抗値に落ちつく
ようになる。この傾向は、絶縁材料や絶縁システムにみ
られる一般的な傾向である。
FIG. 1 shows a result obtained by measuring the insulation resistance for a time longer than 1 minute without fixing it to a value such as 1 minute. In the situation where the insulation layer or the insulation interface is not deteriorated, as shown in (a) of the figure, an absorption current is observed in the initial stage of measurement, and thereafter the insulation resistance (R) gradually increases. Further, when the time (t) elapses, only the leakage current is reached and the insulation resistance value reaches a constant value. This trend is a general trend found in insulating materials and systems.

【0011】ところが、マイグレーションが進展してく
ると、同図(b)に示すように、時間特性の途中からか
或いは早い時点から電流が増加傾向を示し、その結果、
絶縁抵抗が低下する(ΔR/Δt<0)ようになり、そ
の後一定値に落ちつく。本願発明者等は、実験を繰り返
すことで斯かる特性を見いだし、この特性を利用するこ
とで、早期に精度の高い寿命評価を行う技術を発明した
ものである。この図1(b)に示す特性は、マイグレー
ションの進展によってみられる特徴的な現象である。絶
縁材料の熱劣化などでは同図(a)を示すので、このよ
うな劣化とは区別される。
However, as the migration progresses, the current tends to increase from the middle of the time characteristic or from the early point, as shown in FIG.
The insulation resistance decreases (ΔR / Δt <0), and then settles to a constant value. The inventors of the present application have found out such a characteristic by repeating an experiment, and invented a technique for performing a highly accurate life evaluation at an early stage by utilizing this characteristic. The characteristic shown in FIG. 1B is a characteristic phenomenon observed due to the progress of migration. The deterioration of the insulating material due to heat or the like is shown in FIG.

【0012】また、絶縁抵抗の一分値等を代表値とする
絶縁抵抗(R)の電圧(V)特性を測定すると、例え
ば、絶縁距離数百μm程度において、電圧が1kVを超
えるような、平均電界でいえば50kV/cm以上の領
域は別として、これより電界の低い領域では、図3
(a)に示すように、ほぼ直線で示され、電圧特性は現
れない。ところが、マイグレ−ションの進展が見られる
ようになると、同図(b)に示すように、絶縁抵抗に電
圧特性(ΔR/ΔV<0)が見られるようになること
を、本発明者等は見いだした。このような現象も絶縁材
料の他の劣化現象と区別できる特徴的な現象である。
Further, when the voltage (V) characteristic of the insulation resistance (R) whose representative value is one part of the insulation resistance is measured, for example, when the insulation distance is about several hundred μm, the voltage exceeds 1 kV. Except for the region having an average electric field of 50 kV / cm or more, in the region having a lower electric field,
As shown in (a), it is shown by a substantially straight line, and the voltage characteristic does not appear. However, the present inventors have found that when the progress of migration is observed, the insulation resistance exhibits a voltage characteristic (ΔR / ΔV <0) as shown in FIG. I found it. Such a phenomenon is also a characteristic phenomenon that can be distinguished from other deterioration phenomena of the insulating material.

【0013】本実施例では、以上述べたマイグレ−ショ
ンの進展に伴う、他の劣化現象とは明確に区別できる、
特性の負の変化量を捕らえて寿命の判定を行うものであ
る。
In the present embodiment, it is possible to clearly distinguish it from other deterioration phenomena which accompany the progress of the migration described above.
The life is determined by catching the negative change amount of the characteristic.

【0014】また、イオンマイグレ−ションの発生する
個所は、図4〜図6に示す代表例のように限定される。
従って、プリント回路板であれば、基板がどのようなプ
ロセスで作られたかによって、マイグレ−ションの発生
個所が特定される。このため、同一構成のプリント回路
板であれば、同じような箇所からマイグレ−ションが発
生するとみなすことができる。
Further, the places where the ion migration occurs are limited as in the representative examples shown in FIGS.
Therefore, in the case of a printed circuit board, the generation location of the migration is specified by the process of manufacturing the board. Therefore, if the printed circuit boards have the same configuration, it can be considered that the migration occurs from the same place.

【0015】寿命評価対象物が同一構成の場合には、図
7にその一例を示すように、未劣化試料の絶縁抵抗(R
o)と寿命(ta)との間に、両対数表示で良い相関性が
見られることを本発明者等は突き止めた。この関係は、
温度や湿度が変わっても、絶縁抵抗で整理できるので、
運転状態における雰囲気での絶縁抵抗に対する寿命を求
めることができる。
When the objects to be evaluated for life have the same structure, the insulation resistance (R
The present inventors have found that there is a good correlation in the logarithmic display between o) and the lifetime (ta). This relationship is
Even if the temperature or humidity changes, it can be organized by insulation resistance, so
It is possible to obtain the life with respect to the insulation resistance in the atmosphere in the operating state.

【0016】そのためには、予め、未劣化時の絶縁抵抗
と寿命との相関性を示すマスタ−カ−ブを求めておく必
要がある。そうすることによって、未劣化試料の絶縁抵
抗の初期値を測定することで、その未劣化試料の寿命が
推定できる。また、単に同一ロット試料のQC試験とし
ても利用できる。
For that purpose, it is necessary to obtain in advance a master curve showing the correlation between the insulation resistance when not deteriorated and the life. By doing so, the lifetime of the undegraded sample can be estimated by measuring the initial value of the insulation resistance of the undegraded sample. It can also be used simply as a QC test for samples of the same lot.

【0017】尚、初期値として、電子部品やプリント配
線板の製作終了時点、フロ−やリフロ−のはんだ付け終
了後、更には洗浄のある場合には洗浄後等が、必要に応
じて決められる。当然ながら、各初期値に対応したマス
タ−カ−ブを求めておく必要がある。しかし、場合によ
っては、絶縁抵抗の判定基準を決めておき、相対的に比
較することで済ますこともできる。
It should be noted that, as an initial value, when the production of electronic parts or a printed wiring board is completed, after the soldering of the flow or reflow, and further, if there is cleaning, after cleaning, it is determined as necessary. . As a matter of course, it is necessary to find the master curve corresponding to each initial value. However, in some cases, it may be possible to set a criterion for the insulation resistance and make a relative comparison.

【0018】更に、絶縁抵抗ばかりでなく、誘電率や誘
電体損失などの誘電特性の利用を図ることができる。プ
リント回路板などにおいても、誘電特性が従来から測定
されてはいた。しかし、その目的は、基板の信号回路の
伝播速度の遅延を判断するために測定されるものであっ
て、1MHz以上の高い周波数においてであった。
Further, not only the insulation resistance but also the dielectric characteristics such as the dielectric constant and the dielectric loss can be utilized. Even in printed circuit boards and the like, dielectric properties have been conventionally measured. However, the purpose was to measure the delay in the propagation speed of the signal circuit of the substrate, and was at high frequencies above 1 MHz.

【0019】このこととは別に、絶縁の信頼性と関連さ
せた寿命評価のために、誘電特性が測定されることはな
かった。しかし、本発明者等が、寿命評価のために誘電
特性を検討した結果、図8に示すように、誘電特性には
周波数特性が見られ、未劣化品と比較して、マイグレ−
ションによる劣化に対応した変化は低周波領域(数百k
Hz以下)で大きな差として現れる。
Apart from this, the dielectric properties were not measured for lifetime evaluation in relation to insulation reliability. However, as a result of examining the dielectric characteristics for life evaluation by the present inventors, as shown in FIG. 8, a frequency characteristic is seen in the dielectric characteristics, which is higher than that of the undegraded product.
The change corresponding to the deterioration due to the
It appears as a large difference below (Hz).

【0020】このことを利用して、誘電特性を上記絶縁
抵抗に替えて寿命評価に利用することができる。この場
合には、誘電率や誘電体損失の小さいもので、寿命が長
くなる。ただ、誘電特性を寿命判定に用いる場合に、絶
縁材料や絶縁システムの熱劣化や湿熱劣化による変化を
予め捕らえておいて、マイグレ−ションによる劣化と区
別する必要がある。ただ幸いなことに、このような劣化
で低周波領域における誘電特性を大きく変化させること
はない。
By utilizing this fact, the dielectric characteristics can be replaced with the above-mentioned insulation resistance and utilized for life evaluation. In this case, the dielectric constant and dielectric loss are small, and the life is long. However, when the dielectric characteristics are used for determining the life, it is necessary to catch changes in the insulating material and the insulating system due to heat deterioration and wet heat deterioration in advance to distinguish them from deterioration due to migration. Fortunately, however, such deterioration does not significantly change the dielectric characteristics in the low frequency region.

【0021】絶縁信頼性についての寿命評価を行う場
合、上記の絶縁抵抗の負の変化量の判定にあたって次の
手法をとる。寿命試験の途中で測定する絶縁抵抗の時間
特性は、連続して測定できるので、最初絶縁抵抗が負の
変化を示してから暫く継続して負の変化を示す時点をも
って終点とする。このことによって、測定時の変動や誤
差に対処する。
In the case of evaluating the life of insulation reliability, the following method is used to determine the above-mentioned negative change amount of insulation resistance. Since the time characteristics of the insulation resistance measured during the life test can be continuously measured, the end point is the point at which the insulation resistance first shows a negative change and then continuously shows a negative change for a while. By this, fluctuations and errors during measurement are dealt with.

【0022】絶縁抵抗の電圧特性を求める場合、連続し
て電圧が上昇することが吸収電流を含むことを考慮する
必要がある。そこで、予め経験的に電流の減衰定数を把
握しておき、吸収電流分を考慮して補正を加えること
で、図9に示すような絶縁抵抗の電圧特性が描かれ、負
の変化を示すようになる時点で終点と判定する。この場
合にも、暫く負の変化が継続することを確認する必要が
ある。このような方式によらなくても、電圧を二点以上
を選んで一分値等を測定し比較することで判定すること
ができる。
When obtaining the voltage characteristic of the insulation resistance, it is necessary to consider that the continuous voltage increase includes the absorption current. Therefore, by empirically grasping the attenuation constant of the current in advance and making a correction in consideration of the absorbed current, the voltage characteristic of the insulation resistance as shown in FIG. 9 is drawn so that a negative change is shown. Is determined to be the end point. Even in this case, it is necessary to confirm that the negative change continues for a while. Even without such a method, it is possible to make a determination by selecting two or more voltages and measuring a minute value or the like and comparing them.

【0023】以上のデ−タは、絶縁抵抗について記述し
たが、電流を測定して絶縁抵抗に変換している場合に
は、電流の時間特性や電圧特性を求めてそれぞれの変化
量から判定することもできる。ただし、電流(i)の時
間(t)特性ではΔi/Δt>0,電流の電圧(V)特
性ではΔi/ΔV>1で判定することになる。
Although the above data describes the insulation resistance, when the current is measured and converted into the insulation resistance, the time characteristic and the voltage characteristic of the current are obtained and judged from the respective changes. You can also However, the time (t) characteristic of the current (i) is determined by Δi / Δt> 0, and the voltage (V) characteristic of the current is determined by Δi / ΔV> 1.

【0024】誘電率(ε)や誘電体損失(tan δ)等の
誘電特性を求めるにあたっては、低周波域のこれらの周
波数(f)特性を求めて、Δε,Δtan δ/Δf<0を
もって終点と判定するか、経験的に得られる一定の周波
数において基準値を超えるとき終点と判定することもで
きる。
In obtaining the dielectric characteristics such as the permittivity (ε) and the dielectric loss (tan δ), these frequency (f) characteristics in the low frequency region are obtained, and the end points are Δε and Δtan δ / Δf <0. Alternatively, the end point can be determined when the frequency exceeds a reference value at a certain frequency obtained empirically.

【0025】以下、上述した実施例の具体例について説
明する。 《具体例1》表面にソルダ−レジストが施された櫛型の
寿命評価用のプリント配線板を用い、85℃、85%R
Hの環境試験槽内で、直流100Vのバイアス電圧を印
加して寿命試験を実施した。この試験途中において、6
時間置きに絶縁抵抗(R)の時間(t)特性を電圧10
0Vで測定していったところ、taが960時間経過し
たあたりから、tが6分経過(=t6)後、R−t特性
に図1(b)のに示したような負の変化が見られるよ
うになり、約1500時間経過すると同図(b)のに
示したような早くからΔR/Δt<0の領域が見られる
ようになった。図1に示したように、寿命試験で絶縁抵
抗が急激に低下するようになるta(=ta1)では、Δ
R/Δt <0の変化がtの早い時点から見られるよう
になる。
A specific example of the above-described embodiment will be described below. << Specific Example 1 >> A comb-shaped printed wiring board for life evaluation, which has a solder resist on the surface, is used, and the temperature is 85 ° C. and 85% R.
A life test was carried out by applying a bias voltage of 100 V DC in an H environment test tank. During this test, 6
The time (t) characteristic of the insulation resistance (R) is measured at a voltage of 10
When measured at 0V, after ta has passed 960 hours and t has passed 6 minutes (= t6), a negative change is seen in the R-t characteristic as shown in Fig. 1 (b). After about 1500 hours, the region of ΔR / Δt <0 came to be seen as early as shown in (b) of FIG. As shown in FIG. 1, at ta (= ta1) where the insulation resistance rapidly decreases in the life test, Δ
A change of R / Δt <0 can be seen from the early point of t.

【0026】このような絶縁抵抗の負の変化量を捕らえ
て寿命の終点を判定することができる。すなわち、従来
のta1の時間まで実験しなくても、ΔR/Δt<0が見
られる早い時点で寿命の終点を判断することができる。
図1の実施例では、ta1の約2/3の時間で寿命試験が
終了できる。
The end point of the life can be determined by catching such a negative change amount of the insulation resistance. That is, it is possible to determine the end point of the life at an early time when ΔR / Δt <0 is observed without performing an experiment until the time of the conventional ta1.
In the embodiment of FIG. 1, the life test can be completed in about 2/3 of ta1.

【0027】実際のところ、寿命の終点の判定に当たっ
ては、ΔR/Δt<0の変化を、外部ノイズや内部変動
などの影響を受けて誤判定しないように、時間経過で変
化量を検出し、標準のパタ−ンと照合しながら行うこと
が必要である。特に、コントロ−ラ機能を有し、自動計
測と演算機能を備えた装置で行う場合には重要である。
In actuality, when determining the end of the life, the change amount of ΔR / Δt <0 is detected over time so as not to be erroneously determined due to the influence of external noise or internal fluctuation. It is necessary to check it against the standard pattern. In particular, it is important when a device having a controller function and having an automatic measurement and calculation function is used.

【0028】一方、環境槽内に設定した高温高湿状態で
観察できるファイバ−スコ−プによる基板のイオンマイ
グレ−ションを観測した結果では、ΔR/Δt<0が見
られるようになると、十分観察できるまでマイグレ−シ
ョンの伸びが見られ、ta1になると、導体間が短絡する
ようになる。
On the other hand, as a result of observing the ion migration of the substrate by the fiber scope which can be observed in a high temperature and high humidity condition set in the environment tank, it is observed that ΔR / Δt <0 is sufficiently observed. The elongation of the migration can be seen until it is possible, and at ta1, the conductors are short-circuited.

【0029】この場合、試料として、はんだ付け面であ
ったり、多層基板の内層導体間やスル−ホ−ルやビアホ
−ルを含む基板、さらには、ハイブリッドIC等の電子
部品であっても良い。このことは、以下に述べる具体例
についても同様である。
In this case, the sample may be a soldering surface, a board between inner layer conductors of a multilayer board, a through hole or a via hole, or an electronic component such as a hybrid IC. . This also applies to the specific examples described below.

【0030】《具体例2》寿命試験の途中で測定する絶
縁抵抗の試験電圧を変えた測定から、図3に示すように
絶縁抵抗(R)の電圧(V)特性を求め、ΔR/ΔV<
0を示す時点で寿命の終点判定を行う。試験電圧は、未
劣化状態では同図(a)で示されるように、R−V特性
おいて電圧特性が見られない十分低い範囲の電圧とす
る。ところが、試験時間が経過してマイグレ−ションが
発生するようになると、同図(b)のに示すように、
電圧特性が見られるようになる。前記ta1に近ずくと、
に示すように、電圧の低いところから電圧特性が見ら
れるようになる。このように、ΔR/ΔV<0になると
ころを利用して寿命試験における終点を判定するもので
ある。手法としては、前記絶縁抵抗の時間特性と基本的
には同じである。ただし、電圧特性を求めるにあったて
は、測定電圧の一分値等を代表値として採用するか、あ
るいは吸収電流の減衰定数を考慮したプログラムにより
連続的に求める方法がある。これらの特性より、負の変
化量を検出して寿命試験における終点を判定する。
<Specific Example 2> The voltage (V) characteristic of the insulation resistance (R) is obtained as shown in FIG. 3 from the measurement while changing the test voltage of the insulation resistance measured during the life test, and ΔR / ΔV <
At the time point of 0, the end of life is judged. The test voltage is set to a voltage in a sufficiently low range in which no voltage characteristic is observed in the R-V characteristic, as shown in FIG. However, when the test time elapses and migration occurs, as shown in (b) of the figure,
The voltage characteristics can be seen. When approaching ta1,
As shown in FIG. 5, the voltage characteristic can be seen from the place where the voltage is low. In this way, the end point in the life test is determined by utilizing the fact that ΔR / ΔV <0. The method is basically the same as the time characteristic of the insulation resistance. However, in order to obtain the voltage characteristic, there is a method of adopting a fractional value or the like of the measured voltage as a representative value, or continuously obtaining it by a program considering the attenuation constant of the absorption current. From these characteristics, the negative change amount is detected to determine the end point in the life test.

【0031】この場合には、先の実施例より測定に面倒
なところもあるが、自動計測と計算処理を行う装置を用
いることによって能率的に行うことができる。この方法
を用いると、先の実施例よりさらに早い判定が可能であ
る。
In this case, the measurement may be more troublesome than that of the previous embodiment, but the measurement can be efficiently performed by using a device that performs automatic measurement and calculation processing. By using this method, it is possible to make an earlier determination than in the previous embodiment.

【0032】測定を簡単にするには、二,三点の電圧を
選び電圧特性が見られるかどうかを判断することでも良
い。
To simplify the measurement, it is also possible to select two or three points of voltage and judge whether the voltage characteristic can be seen.

【0033】《具体例3》絶縁抵抗を測定する替わり
に、漏洩電流(i)の時間特性や電圧特性を測定して寿
命試験における判定を行うことができる。時間特性から
は絶縁抵抗と逆の傾向を示すので、Δi/ΔV>0を、
電圧特性からは、図9に示した傾向にあるので、Δi/
ΔV>1で判定する。この場合にも、自動計測と情報処
理機能を有し、上記寿命の終点の判定と寿命推定可能な
システムを持った装置を利用できる。
<Specific Example 3> Instead of measuring the insulation resistance, it is possible to measure the time characteristic and the voltage characteristic of the leakage current (i) to make the judgment in the life test. Since the time characteristics show the opposite tendency to the insulation resistance, Δi / ΔV> 0
From the voltage characteristics, there is a tendency shown in FIG. 9, so Δi /
The judgment is made when ΔV> 1. Also in this case, it is possible to use a device having a system capable of automatically measuring and processing information and capable of determining the end point of the life and estimating the life.

【0034】《具体例4》絶縁抵抗や漏洩電流を測定す
る替わりに、寿命試験の途中で誘電特性としての誘電率
(ε)あるいは静電容量(C)や誘電損失(tan δ)の
周波数特性を測定して、寿命試験における終点を判定す
ることができる。
Example 4 Instead of measuring insulation resistance and leakage current, frequency characteristics such as dielectric constant (ε) or capacitance (C) and dielectric loss (tan δ) as dielectric characteristics during the life test. Can be measured to determine the end point in the life test.

【0035】この場合には、図8に示したように、マイ
グレ−ションによる劣化で誘電特性が増加する、特に低
周波数領域において顕著に見られる。この周波数は数百
kHz以下である。寿命試験における終点の判定は、数
百Hzから数kHz程度の間で二,三点選び、未劣化時
点と寿命試験途中の誘電特性特性を比較してその増加傾
向を見て行う。当然ながら、マイグレ−ションによる劣
化が進展すると、増加傾向が著しくなる。
In this case, as shown in FIG. 8, the dielectric property increases due to deterioration due to migration, and it is particularly noticeable in the low frequency region. This frequency is below a few hundred kHz. The determination of the end point in the life test is performed by selecting a few points in the range of several hundreds of Hz to several kHz, comparing the dielectric property characteristics at the time of non-deterioration and the dielectric characteristic characteristics during the life test, and checking the increasing tendency. As a matter of course, as the deterioration due to migration progresses, the increasing tendency becomes remarkable.

【0036】誘電特性のなかで、誘電率の測定は、層間
絶縁層でマイグレ−ションが見られる場合などに限ら
れ、一般的には標準パタ−ンなどで静電容量を測定して
相互に比較する方法が良い。また、これらの測定と算出
処理機能を有し、寿命の終点の判定と寿命推定できるシ
ステムを備えた装置を利用できる。
Among the dielectric characteristics, the measurement of the dielectric constant is limited to the case where a migration is observed in the interlayer insulating layer, and generally, the capacitance is measured by a standard pattern or the like, and mutual measurement is performed. A good way to compare. Further, it is possible to use a device having a system for measuring and calculating the end point of the life and estimating the life, which has the measurement and calculation processing functions.

【0037】《具体例5》具体例4に示したように、誘
電特性を測定するが、図8に示したように周波数(f)
に対して負の変化を示すので、この変化量を利用して寿
命試験における終点を判定することができる。この場
合、未劣化品に比べて、マイグレ−ションによる劣化
で、負の変化量が大きくなるのでこの傾向を捕らえて判
定する。この判定方法において、未劣化品が多少負の周
波数依存性を示す場合があるので、その場合には、初期
値を差し引いた値で見れば良い。
<< Specific Example 5 >> As shown in Specific Example 4, the dielectric characteristics are measured, but the frequency (f) is measured as shown in FIG.
Since it shows a negative change with respect to, the end point in the life test can be determined by using this change amount. In this case, the negative change amount becomes larger due to the deterioration due to the migration as compared with the non-deteriorated product. In this determination method, the undeteriorated product may exhibit a slightly negative frequency dependence, and in that case, the value obtained by subtracting the initial value may be used.

【0038】《具体例6》試料が同じ構成を持つもので
あれば、図7に一例を示すように、未劣化試料の絶縁抵
抗(Ro)や静電容量(Co)あるいは誘電率(εo)、
誘電体損失(tanδo)などの誘電特性と寿命(ta1)と
の間に両対数表示あるいは片対数表示で良い相関性が見
られることを利用して、使用状態における寿命(ta2)
を推定することができる。この関係は、温度や湿度が変
わっても、上記誘電特性で整理できるので、運転状態に
おける雰囲気での誘電特性に対する寿命を求めることが
できる。
Example 6 If the samples have the same structure, as shown in FIG. 7, an insulation resistance (Ro), a capacitance (Co) or a dielectric constant (εo) of the undegraded sample is obtained. ,
Utilizing the fact that there is a good correlation between dielectric characteristics such as dielectric loss (tan δo) and life (ta1) in double logarithmic display or semilogarithmic display, the life (ta2) in use condition
Can be estimated. Since this relationship can be organized by the above-mentioned dielectric characteristics even if the temperature and humidity change, it is possible to obtain the life with respect to the dielectric characteristics in the atmosphere in the operating state.

【0039】そのためには、予め未劣化時の誘電特性と
寿命の相関性を示すマスタ−カ−ブを求めておく必要が
ある。そうすることによって、未劣化試料の誘電特性の
初期値を測定することで寿命が推定できる。
For that purpose, it is necessary to obtain in advance a master curve showing the correlation between the dielectric property and the life when not deteriorated. By doing so, the lifetime can be estimated by measuring the initial value of the dielectric property of the undeteriorated sample.

【0040】マスタ−カ−ブの求め方についてである
が、次に述べる方法による。すなわち、図7に例をとれ
ば、未劣化試料の絶縁抵抗(Ro)と前記した環境槽内
での寿命試験(ある一定バイアス電圧V1印加時)で得
られる寿命(ta1)の関係を示している。この図は、例
えばV1印加時のいろんな環境条件において実施したそ
れぞれの寿命(ta1)を求め、これに対応した未劣化試
料の絶縁抵抗(Ro)を測定しておいて、両者の関係を
プロットしていくと得られるものである。寿命(ta1)
の求め方は、今までの具体例で述べてきた方法による。
The method of obtaining the master curve will be described below. That is, taking the example in FIG. 7, the relationship between the insulation resistance (Ro) of the undeteriorated sample and the life (ta1) obtained by the above-mentioned life test in the environmental tank (when a certain constant bias voltage V1 is applied) is shown. There is. In this figure, for example, the lifespan (ta1) performed under various environmental conditions when V1 is applied is obtained, the insulation resistance (Ro) of the undeteriorated sample corresponding to this is measured, and the relationship between the two is plotted. It is something you can get by going. Life (ta1)
The method of obtaining is according to the method described in the specific examples so far.

【0041】この関係は、前述のように、温度や湿度が
変わっても、上記絶縁抵抗で整理できるので、運転状態
における雰囲気での絶縁抵抗に対する加速過電圧下での
寿命(ta2)を求めることができる。ただし、この寿命
(ta2)は、一定バイアス電圧における寿命であって、
このままでも単に同一ロット試料のQC試験として利用
できるが、電圧加速された状態での寿命である。したが
って、さらに、電圧を変えた寿命試験から、使用電圧に
おける寿命(ta3)を求める必要がある。この方法は、
寿命と電圧の関係が両対数表示で直線関係の見られるこ
とを利用する。
As described above, this relationship can be arranged by the insulation resistance even if the temperature and humidity change, so that the life (ta2) under accelerated overvoltage with respect to the insulation resistance in the atmosphere in the operating state can be obtained. it can. However, this life (ta2) is the life at a constant bias voltage,
Even if it is left as it is, it can be used as a QC test of the sample of the same lot, but it has a life in the state of voltage acceleration. Therefore, it is further necessary to obtain the life (ta3) at the working voltage from the life test with the voltage changed. This method
The fact that the relationship between life and voltage is linear in logarithmic display is used.

【0042】次に、絶縁抵抗以外の誘電特性と寿命の関
係についてであるが、この場合には、図10に示すよう
に逆の傾向を示す。最終的な寿命の求め方については、
上記の絶縁抵抗の場合について述べた手法と基本的には
変わらない。以上述べた方法の測定と処理機能を有し、
寿命推定するプログラムを備えた装置を利用することで
効率良く行うことができる。
Next, regarding the relationship between the dielectric characteristics other than the insulation resistance and the life, in this case, the opposite tendency is shown as shown in FIG. For how to obtain the final life,
The method is basically the same as the method described above for the case of insulation resistance. Having the measurement and processing functions of the method described above,
It can be efficiently performed by using an apparatus provided with a program for estimating the life.

【0043】《具体例7》以上に、電子部品の絶縁信頼
性寿命の評価方法ならびにその評価装置について述べた
が、いずれもバイアス電圧のみ課電するものである。と
ころが、実用されている電子部品1では、電極導体に通
電されている。これを模擬するため、その一例を図11
に示す。図11において、電子部品1の電極導体2に、
課電装置3とは別に、通電装置4を設ける。これによ
り、より実用状態に近い評価が得られる。評価手法その
ものは、前記の方法と同じである。通電は、必要に応じ
て、電極導体2の(+)極側から(−)極側に或いは両
方に行うことができる。課電においても、連続課電の
他、必要に応じて間欠課電ができるが、通電においても
同様である。
<Specific Example 7> The method for evaluating the insulation reliability life of an electronic component and its evaluation apparatus have been described above, but all of them apply only the bias voltage. However, in the practical electronic component 1, the electrode conductor is energized. To simulate this, one example is shown in FIG.
Shown in. In FIG. 11, on the electrode conductor 2 of the electronic component 1,
An energizing device 4 is provided separately from the power applying device 3. As a result, an evaluation closer to the practical state can be obtained. The evaluation method itself is the same as the above method. Energization can be performed from the (+) pole side of the electrode conductor 2 to the (-) pole side or both, as required. In addition to the continuous power supply, the power supply can be intermittently supplied if necessary, but the same applies to the power supply.

【0044】なお、この具体例7の課電,通電方式は、
前記具体例1〜6の全てに適用できるものである。
The voltage application and energization method of this specific example 7 is as follows.
It is applicable to all of the specific examples 1 to 6.

【0045】[0045]

【発明の効果】本発明によれば、従来不明確であったプ
リント回路板や配線板,電子部品,電子デバイスなどの
寿命評価の判定が、明確にしかも早く行えるようにな
る。また、寿命評価試験時の計測と寿命判定を含む機能
を有するプログラムされたコントロ-ル機能を備える装
置により、より一層のきめこまかい信頼性の高いしかも
早く自動的に寿命評価ができる。さらに、マイグレ-シ
ョンなどの劣化状況を高温高湿の雰囲気で寿命試験中に
行えるので、寿命判定を一層確かなものとすることがで
きる。
According to the present invention, it becomes possible to clearly and quickly determine the life evaluation of a printed circuit board, a wiring board, an electronic component, an electronic device, etc., which has been unclear conventionally. In addition, a device having a programmed control function that has functions including measurement and life judgment during a life evaluation test enables even more detailed, highly reliable and quick life evaluation. Furthermore, deterioration conditions such as migration can be performed during the life test in a high temperature and high humidity atmosphere, so that the life judgment can be made more reliable.

【図面の簡単な説明】[Brief description of drawings]

【図1】寿命試験途中で測定される絶縁抵抗の時間特性
の一例を示す図である。
FIG. 1 is a diagram showing an example of time characteristics of insulation resistance measured during a life test.

【図2】寿命試験における絶縁抵抗と試験時間の関係を
示す図である。
FIG. 2 is a diagram showing the relationship between insulation resistance and test time in a life test.

【図3】寿命試験途中で測定される絶縁抵抗の電圧特性
の一例を示す図である。
FIG. 3 is a diagram showing an example of voltage characteristics of insulation resistance measured during a life test.

【図4】マイグレ−ションによる劣化状況をプリント配
線板について示した一例を示す図である。
FIG. 4 is a diagram showing an example of a deterioration situation due to migration for a printed wiring board.

【図5】マイグレ−ションによる劣化状況をプリント配
線板について示した別の例を示す図である。
FIG. 5 is a diagram showing another example showing a deterioration situation due to migration for a printed wiring board.

【図6】マイグレ−ションによる劣化状況をプリント配
線板について示した更に別の例を示す図である。
FIG. 6 is a diagram showing still another example showing a deterioration situation due to migration for a printed wiring board.

【図7】未劣化試料の絶縁抵抗とバイアス電圧一定時の
寿命との相関性を示す図である。
FIG. 7 is a diagram showing the correlation between the insulation resistance of an undeteriorated sample and the life when the bias voltage is constant.

【図8】誘電特性の周波数特性の一例を示す図である。FIG. 8 is a diagram showing an example of frequency characteristics of dielectric characteristics.

【図9】寿命試験途中で測定する電圧の電流特性を示す
図である。
FIG. 9 is a diagram showing current characteristics of voltage measured during a life test.

【図10】未劣化試料の誘電特性とバイアス電圧一定時
の寿命との相関性を示す図である。
FIG. 10 is a diagram showing the correlation between the dielectric characteristics of an undeteriorated sample and the life when the bias voltage is constant.

【図11】電子部品の電極導体に通電して評価する説明
図である。
FIG. 11 is an explanatory diagram for evaluating by energizing an electrode conductor of an electronic component.

【符号の説明】[Explanation of symbols]

R…絶縁抵抗、Ro…未劣化試料の絶縁抵抗、tan δ…
誘電体損失、tan δo…未劣化試料の誘電体損失、ε…
誘電率、C…静電容量、Co…未劣化試料の静電容量、
f…周波数、V…寿命試験途中で測定する試験電圧、i
…寿命試験途中で測定する漏洩電流、t…寿命試験途中
で測定される絶縁抵抗の測定時間、ta…寿命試験時
間、ta1…一定条件のもとでの寿命試験で得られる寿
命、ta2…一定バイアス電圧のもとでの使用環境条件で
の推定寿命、ta3…使用条件での推定寿命。
R ... Insulation resistance, Ro ... Insulation resistance of undeteriorated sample, tan δ ...
Dielectric loss, tan δo ... Dielectric loss of undegraded sample, ε ...
Dielectric constant, C ... capacitance, Co ... capacitance of undeteriorated sample,
f ... Frequency, V ... Test voltage measured during life test, i
... Leakage current measured during life test, t ... Insulation resistance measurement time measured during life test, ta ... Life test time, ta1 ... Life obtained by life test under constant condition, ta2 ... Constant Estimated life under operating environment conditions under bias voltage, ta3 ... Estimated life under operating conditions.

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 プリント回路板,配線板,電子デバイス
などの電子部品の絶縁信頼性の寿命を評価する寿命評価
方法において、環境試験槽で行われるバイアス電圧の前
記電子部品への印加による寿命試験を行うときに、該寿
命試験の初期及び試験中の途中で測定される特性の時間
的変化から寿命を判定することを特徴とする電子部品の
絶縁信頼性寿命の評価方法。
1. A life evaluation method for evaluating the life of insulation reliability of an electronic component such as a printed circuit board, a wiring board, an electronic device, etc., wherein a life test is performed by applying a bias voltage to the electronic component in an environmental test tank. The method for evaluating the insulation reliability life of an electronic component is characterized in that the life is judged from the temporal change of the characteristics measured at the beginning of the life test and during the life test.
【請求項2】 プリント回路板,配線板,電子デバイス
などの電子部品の絶縁信頼性の寿命を評価する寿命評価
方法において、環境試験槽で行われるバイアス電圧の前
記電子部品への印加による寿命試験を行うときに、該寿
命試験中に前記バイアス電圧を変化させたときの前記電
子部品の特性変化から寿命を判定することを特徴とする
電子部品の絶縁信頼性寿命の評価方法。
2. A life evaluation method for evaluating the life of insulation reliability of an electronic component such as a printed circuit board, a wiring board, an electronic device, etc., wherein a life test is performed by applying a bias voltage to the electronic component in an environmental test tank. When performing the above, the method for evaluating the insulation reliability life of an electronic component is characterized by determining the life from the characteristic change of the electronic component when the bias voltage is changed during the life test.
【請求項3】 プリント回路板,配線板,電子デバイス
などの電子部品の絶縁信頼性の寿命を評価する寿命評価
方法において、環境試験槽で行われるバイアス電圧の前
記電子部品への印加による寿命試験を行うときに、前記
電子部品の誘電特性として絶縁抵抗を測定し、試験時間
の途中で測定されるその特性の時間変化点あるいは平均
電界が50kV/cmより低い範囲の電圧特性における
負の変化量を示す時点をもって寿命試験における終点と
判定することを特徴とする電子部品の絶縁信頼性寿命の
評価方法。
3. A life evaluation method for evaluating the life of insulation reliability of an electronic component such as a printed circuit board, a wiring board, an electronic device, etc., wherein a life test is performed by applying a bias voltage to the electronic component in an environmental test tank. Insulation resistance is measured as the dielectric characteristic of the electronic component, and the time change point of the characteristic measured during the test time or the negative change amount in the voltage characteristic in the range where the average electric field is lower than 50 kV / cm. The method for evaluating the insulation reliability life of an electronic component is characterized in that the end point in the life test is determined at the time point indicating.
【請求項4】 プリント回路板,配線板,電子デバイス
などの電子部品の絶縁信頼性の寿命を評価する寿命評価
方法において、環境試験槽で行われるバイアス電圧の前
記電子部品への印加による寿命試験を行うときに、前記
電子部品の誘電特性として漏洩電流を測定し、試験時間
の途中で測定されるその特性の時間変化における正の変
化量あるいは平均電界が50kV/cmより低い範囲の
電圧特性における変化量が1より大きくなる時点をもっ
て寿命試験における終点と判定することを特徴とする電
子部品の絶縁信頼性寿命の評価方法。
4. A life evaluation method for evaluating the life of insulation reliability of an electronic component such as a printed circuit board, a wiring board, an electronic device, etc., wherein a life test is performed by applying a bias voltage to the electronic component, which is carried out in an environmental test tank. When performing, the leakage current is measured as the dielectric characteristic of the electronic component, and the positive change amount in the time change of the characteristic measured in the middle of the test time or the voltage characteristic in the range where the average electric field is lower than 50 kV / cm A method for evaluating the insulation reliability life of an electronic component, characterized in that the end point in a life test is determined when the amount of change becomes greater than 1.
【請求項5】 プリント回路板,配線板,電子デバイス
などの電子部品の絶縁信頼性の寿命を評価する寿命評価
方法において、環境試験槽で行われるバイアス電圧の前
記電子部品への印加による寿命試験を行ったときの、該
寿命試験の時間経過初期の未劣化の状態で得られた前記
電子部品の誘電特性を、予め求めておいた誘電特性と寿
命との関係とを比較して寿命を評価することを特徴とす
る電子部品の絶縁信頼性寿命の評価方法。
5. A life evaluation method for evaluating the life of insulation reliability of an electronic component such as a printed circuit board, a wiring board, an electronic device, etc., by a bias voltage applied to the electronic component in an environmental test tank. When performing, the dielectric characteristics of the electronic component obtained in the undegraded state at the beginning of the elapsed time of the life test, the lifetime is evaluated by comparing the relationship between the previously obtained dielectric characteristics and the lifetime. A method for evaluating the insulation reliability life of electronic parts, characterized by:
【請求項6】 請求項2において、変化を見る特性とし
て、周波数500kHz以下の誘電率あるいは静電容量
あるいは誘電損失を用いることを特徴とする電子部品の
絶縁信頼性寿命の評価方法。
6. The method for evaluating the insulation reliability life of an electronic component according to claim 2, wherein a dielectric constant, a capacitance or a dielectric loss at a frequency of 500 kHz or less is used as the characteristic for observing the change.
【請求項7】 請求項6において、誘電特性の負の周波
数依存性を示す時点をもって寿命試験における終点と判
定することを特徴とする電子部品の絶縁信頼性寿命の評
価方法。
7. The method for evaluating the insulation reliability life of an electronic component according to claim 6, wherein the end point in the life test is determined when the time point at which the dielectric characteristics show negative frequency dependence.
【請求項8】 プリント回路板,配線板,電子デバイス
などの電子部品の絶縁信頼性の寿命を評価する寿命評価
装置において、環境試験槽で行われるバイアス電圧の前
記電子部品への印加による寿命試験を行う手段と、該寿
命試験の初期及び試験中の途中で測定される特性の時間
的変化から寿命を判定する手段とを備えることを特徴と
する電子部品の絶縁信頼性寿命の評価装置。
8. A life evaluation apparatus for evaluating the life of insulation reliability of an electronic component such as a printed circuit board, a wiring board, an electronic device, etc., by a bias voltage applied to the electronic component in an environmental test tank. An apparatus for evaluating the insulation reliability life of an electronic component, comprising means for performing the above, and means for determining the life from the temporal change of the characteristics measured at the beginning of the life test and during the test.
【請求項9】 プリント回路板,配線板,電子デバイス
などの電子部品の絶縁信頼性の寿命を評価する寿命評価
装置において、環境試験槽で行われるバイアス電圧の前
記電子部品への印加による寿命試験を行う手段と、該寿
命試験中に前記バイアス電圧を変化させたときの前記電
子部品の特性変化から寿命を判定する手段とを備えるこ
とを特徴とする電子部品の絶縁信頼性寿命の評価装置。
9. A life evaluation apparatus for evaluating the life of insulation reliability of electronic parts such as printed circuit boards, wiring boards, electronic devices, etc., by a bias voltage applied to the electronic parts in an environmental test tank. And a means for judging the life from the characteristic change of the electronic component when the bias voltage is changed during the life test.
【請求項10】 プリント回路板,配線板,電子デバイ
スなどの電子部品の絶縁信頼性の寿命を評価する寿命評
価装置において、環境試験槽で行われるバイアス電圧の
前記電子部品への印加による寿命試験を行う手段と、該
寿命試験中に前記電子部品の電極導体のいずれか一方あ
るいは両方に通電する手段を備えることを特徴とする電
子部品の絶縁信頼性寿命の評価装置。
10. A life evaluation apparatus for evaluating the life of insulation reliability of an electronic component such as a printed circuit board, a wiring board, an electronic device, etc., by a bias voltage applied to the electronic component in an environmental test tank. And a means for energizing either or both of the electrode conductors of the electronic component during the life test.
【請求項11】 請求項8または請求項9において、高
温高湿の雰囲気を伴う環境槽内で行われる寿命試験にお
ける電子部品のマイグレ−ションによる劣化状況を観測
する手段を併せ持って寿命を評価することを特徴とする
電子部品の絶縁信頼性寿命の評価装置。
11. The life is evaluated according to claim 8 or 9, further comprising means for observing a deterioration state due to migration of an electronic component in a life test performed in an environment tank with an atmosphere of high temperature and high humidity. An insulation reliability life evaluation device for electronic parts.
【請求項12】 プリント回路板,配線板,電子デバイ
スなどの電子部品の絶縁信頼性の寿命を評価する寿命評
価装置において、環境試験槽で行われるバイアス電圧の
前記電子部品への印加による寿命試験を行う手段と、前
記電子部品の誘電特性として絶縁抵抗を測定する手段
と、試験時間の途中で測定されるその特性の時間変化点
あるいは平均電界が50kV/cmより低い範囲の電圧
特性における負の変化量を示す時点をもって寿命試験に
おける終点と判定する手段とを備えることを特徴とする
電子部品の絶縁信頼性寿命の評価装置。
12. A life evaluation device for evaluating the life of insulation reliability of electronic parts such as printed circuit boards, wiring boards, electronic devices, etc., by a bias voltage applied to the electronic parts in an environmental test tank. Means for measuring the insulation resistance as a dielectric characteristic of the electronic component, and a time change point of the characteristic measured in the middle of the test time or a negative voltage characteristic in the range where the average electric field is lower than 50 kV / cm. A device for evaluating the insulation reliability life of an electronic component, characterized in that it comprises means for determining the end point in a life test at the time when the amount of change is indicated.
【請求項13】 プリント回路板,配線板,電子デバイ
スなどの電子部品の絶縁信頼性の寿命を評価する寿命評
価装置において、環境試験槽で行われるバイアス電圧の
前記電子部品への印加による寿命試験を行う手段と、前
記電子部品の誘電特性として漏洩電流を測定する手段
と、試験時間の途中で測定されるその特性の時間変化に
おける正の変化量あるいは平均電界が50kV/cmよ
り低い範囲の電圧特性における変化量が1より大きくな
る時点をもって寿命試験における終点と判定する手段と
を備えることを特徴とする電子部品の絶縁信頼性寿命の
評価装置。
13. A life evaluation apparatus for evaluating the life of insulation reliability of an electronic component such as a printed circuit board, a wiring board, an electronic device, etc., by a bias voltage applied to the electronic component in an environmental test tank. Means for measuring the leakage current as a dielectric characteristic of the electronic component, and a voltage in the range where the positive change amount or the average electric field in the time change of the characteristic measured during the test time is lower than 50 kV / cm. A device for evaluating insulation reliability life of an electronic component, comprising means for determining an end point in a life test when a change amount in the characteristic becomes larger than 1.
【請求項14】 プリント回路板,配線板,電子デバイ
スなどの電子部品の絶縁信頼性の寿命を評価する寿命評
価装置において、環境試験槽で行われるバイアス電圧の
前記電子部品への印加による寿命試験を行う手段と、該
寿命試験の時間経過初期の未劣化の状態で得られた前記
電子部品の誘電特性を予め求めておいた誘電特性と寿命
との関係と比較して寿命を評価する手段とを備えること
を特徴とする電子部品の絶縁信頼性寿命の評価装置。
14. A life evaluation apparatus for evaluating the life of insulation reliability of an electronic component such as a printed circuit board, a wiring board, an electronic device or the like, and a life test by applying a bias voltage to the electronic component performed in an environmental test tank. And a means for evaluating the life by comparing the previously obtained relationship between the dielectric characteristics and the life of the dielectric characteristics of the electronic component obtained in the undegraded state at the beginning of the elapsed time of the life test. An apparatus for evaluating the insulation reliability life of an electronic component, comprising:
【請求項15】 請求項9において、変化を見る特性と
して周波数500kHz以下の誘電率あるいは静電容量
あるいは誘電損失を測定する手段を備えることを特徴と
する電子部品の絶縁信頼性寿命の評価装置。
15. The apparatus for evaluating the insulation reliability life of an electronic component according to claim 9, further comprising means for measuring a dielectric constant, a capacitance, or a dielectric loss at a frequency of 500 kHz or less as a characteristic for observing the change.
【請求項16】 請求項15において、誘電特性の周波
数特性を測定する手段と、周波数依存性を算出する手段
とを備え、前記寿命を評価する手段は負の周波数依存性
を示す時点をもって寿命の終点と判定することを特徴と
する電子部品の絶縁信頼性寿命の評価装置。
16. The method according to claim 15, further comprising means for measuring frequency characteristics of dielectric characteristics and means for calculating frequency dependence, wherein the means for evaluating the life indicates the life at a time point at which negative frequency dependence is exhibited. A device for evaluating the insulation reliability life of electronic parts, characterized by determining the end point.
JP4169271A 1992-06-26 1992-06-26 Method and equipment for evaluating insulation reliability lifetime of electronic component Pending JPH0611530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4169271A JPH0611530A (en) 1992-06-26 1992-06-26 Method and equipment for evaluating insulation reliability lifetime of electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4169271A JPH0611530A (en) 1992-06-26 1992-06-26 Method and equipment for evaluating insulation reliability lifetime of electronic component

Publications (1)

Publication Number Publication Date
JPH0611530A true JPH0611530A (en) 1994-01-21

Family

ID=15883419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4169271A Pending JPH0611530A (en) 1992-06-26 1992-06-26 Method and equipment for evaluating insulation reliability lifetime of electronic component

Country Status (1)

Country Link
JP (1) JPH0611530A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054720A (en) * 1997-11-06 2000-04-25 International Business Machines Corporation Apparatus and method for evaluating the surface insulation resistance of electronic assembly manufacture
JP2001215187A (en) * 2000-02-01 2001-08-10 Toshiba Corp Method and apparatus for diagnosing deterioration
WO2013131031A1 (en) * 2011-03-02 2013-09-06 Nokomis, Inc Integrated circuit with electromagnetic energy anomaly detection and processing
US9562962B2 (en) 2011-01-06 2017-02-07 Nokomis, Inc. System and method for physically detecting, identifying, diagnosing and geolocating electronic devices connectable to a network
US9599576B1 (en) 2013-03-06 2017-03-21 Nokomis, Inc. Acoustic—RF multi-sensor material characterization system
US9642014B2 (en) 2014-06-09 2017-05-02 Nokomis, Inc. Non-contact electromagnetic illuminated detection of part anomalies for cyber physical security
US9772363B2 (en) 2014-02-26 2017-09-26 Nokomis, Inc. Automated analysis of RF effects on electronic devices through the use of device unintended emissions
US9851386B2 (en) 2012-03-02 2017-12-26 Nokomis, Inc. Method and apparatus for detection and identification of counterfeit and substandard electronics
KR20180059540A (en) * 2015-10-01 2018-06-04 와틀로 일렉트릭 매뉴팩츄어링 컴파니 Integrated device and method for improving heater life and performance
US10395032B2 (en) 2014-10-03 2019-08-27 Nokomis, Inc. Detection of malicious software, firmware, IP cores and circuitry via unintended emissions
US10448864B1 (en) 2017-02-24 2019-10-22 Nokomis, Inc. Apparatus and method to identify and measure gas concentrations
US10475754B2 (en) 2011-03-02 2019-11-12 Nokomis, Inc. System and method for physically detecting counterfeit electronics
US11489847B1 (en) 2018-02-14 2022-11-01 Nokomis, Inc. System and method for physically detecting, identifying, and diagnosing medical electronic devices connectable to a network
WO2023125019A1 (en) * 2021-12-28 2023-07-06 中车永济电机有限公司 Insulation materials performance evaluation method for motor

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6664794B1 (en) 1997-11-06 2003-12-16 International Business Machines Corporation Apparatus and method for evaluating the surface insulation resistance of electronic assembly manufacture
US6054720A (en) * 1997-11-06 2000-04-25 International Business Machines Corporation Apparatus and method for evaluating the surface insulation resistance of electronic assembly manufacture
JP2001215187A (en) * 2000-02-01 2001-08-10 Toshiba Corp Method and apparatus for diagnosing deterioration
US9562962B2 (en) 2011-01-06 2017-02-07 Nokomis, Inc. System and method for physically detecting, identifying, diagnosing and geolocating electronic devices connectable to a network
US9887721B2 (en) 2011-03-02 2018-02-06 Nokomis, Inc. Integrated circuit with electromagnetic energy anomaly detection and processing
WO2013131031A1 (en) * 2011-03-02 2013-09-06 Nokomis, Inc Integrated circuit with electromagnetic energy anomaly detection and processing
US9059189B2 (en) 2011-03-02 2015-06-16 Nokomis, Inc Integrated circuit with electromagnetic energy anomaly detection and processing
US11450625B2 (en) 2011-03-02 2022-09-20 Nokomis, Inc. System and method for physically detecting counterfeit electronics
US10475754B2 (en) 2011-03-02 2019-11-12 Nokomis, Inc. System and method for physically detecting counterfeit electronics
US9851386B2 (en) 2012-03-02 2017-12-26 Nokomis, Inc. Method and apparatus for detection and identification of counterfeit and substandard electronics
US10571505B2 (en) 2013-03-06 2020-02-25 Nokomis, Inc. Method and apparatus for detection and identification of counterfeit and substandard electronics
US9599576B1 (en) 2013-03-06 2017-03-21 Nokomis, Inc. Acoustic—RF multi-sensor material characterization system
US11733283B2 (en) 2013-03-06 2023-08-22 Nokomis, Inc. Method and apparatus for detection and identification of counterfeit and substandard electronics
US9772363B2 (en) 2014-02-26 2017-09-26 Nokomis, Inc. Automated analysis of RF effects on electronic devices through the use of device unintended emissions
US10254326B1 (en) 2014-02-26 2019-04-09 Nokomis, Inc. Automated analysis of RF effects on electronic devices through the use of device unintended emissions
US9642014B2 (en) 2014-06-09 2017-05-02 Nokomis, Inc. Non-contact electromagnetic illuminated detection of part anomalies for cyber physical security
US10149169B1 (en) 2014-06-09 2018-12-04 Nokomis, Inc. Non-contact electromagnetic illuminated detection of part anomalies for cyber physical security
US10395032B2 (en) 2014-10-03 2019-08-27 Nokomis, Inc. Detection of malicious software, firmware, IP cores and circuitry via unintended emissions
KR20180059540A (en) * 2015-10-01 2018-06-04 와틀로 일렉트릭 매뉴팩츄어링 컴파니 Integrated device and method for improving heater life and performance
CN108476557B (en) * 2015-10-01 2021-08-27 沃特洛电气制造公司 Control system and method for controlling operation of resistance heater
CN108476557A (en) * 2015-10-01 2018-08-31 沃特洛电气制造公司 Device and method for the integration for improving heater life and performance
US11917730B2 (en) 2015-10-01 2024-02-27 Watlow Electric Manufacturing Company Integrated device and method for enhancing heater life and performance
US10448864B1 (en) 2017-02-24 2019-10-22 Nokomis, Inc. Apparatus and method to identify and measure gas concentrations
US11229379B2 (en) 2017-02-24 2022-01-25 Nokomis, Inc. Apparatus and method to identify and measure gas concentrations
US11489847B1 (en) 2018-02-14 2022-11-01 Nokomis, Inc. System and method for physically detecting, identifying, and diagnosing medical electronic devices connectable to a network
WO2023125019A1 (en) * 2021-12-28 2023-07-06 中车永济电机有限公司 Insulation materials performance evaluation method for motor

Similar Documents

Publication Publication Date Title
JPH0611530A (en) Method and equipment for evaluating insulation reliability lifetime of electronic component
JP3558434B2 (en) Electrical wiring inspection method and apparatus
EP2135102A1 (en) Electromigration testing and evaluation apparatus and methods
Ugur et al. Neural networks to analyze surface tracking on solid insulators
Ritämaki et al. Differences in AC and DC large-area breakdown behavior of polymer thin films
JP2008203077A (en) Circuit inspection device and method
JP3400362B2 (en) Method and apparatus for diagnosing life of electronic device
US6333633B1 (en) Method for inspecting a flexible printed circuit
JP2002014132A (en) Device for inspecting circuit board
JP2010204021A (en) Apparatus and method for inspecting circuit board
JP2001242211A (en) Circuit board inspection device
Pham et al. Characterization of Wetting behavior of commercial flux systems by impedance measurement technique
JP5097046B2 (en) Semiconductor device reliability evaluation method and semiconductor device reliability evaluation apparatus
JP3599929B2 (en) Circuit board pattern capacitance measurement method
Ready et al. A comparison of hourly versus daily testing methods for evaluating the reliability of water soluble fluxes
EP2345903B1 (en) Method and apparatus for predicting the residual life of a coil
JP3997762B2 (en) Insulation reliability test method for printed wiring boards
JP2003121404A (en) Deterioration diagnostic method of solid insulating material
Bono The assessment of the corrosivity of soldering flux residues using printed copper circuit board tracks
JP3019564B2 (en) Evaluation method of insulating film
Turbini et al. Characterising the corrosion properties of flux residues: Part 2: Test method modification
JPH0614092B2 (en) Withstanding voltage test method for product inspection of circuit boards for hybrid integrated circuits
JPH063399A (en) Evaluating method for printed wiring board
JPH10308330A (en) Screening method of laminated ceramic capacitor
Jones et al. Electrical measurements as performance indicators of electromigration