JPH0611328B2 - Method for treating liquid using porous hollow fiber to which physiologically active substance is immobilized - Google Patents

Method for treating liquid using porous hollow fiber to which physiologically active substance is immobilized

Info

Publication number
JPH0611328B2
JPH0611328B2 JP59213693A JP21369384A JPH0611328B2 JP H0611328 B2 JPH0611328 B2 JP H0611328B2 JP 59213693 A JP59213693 A JP 59213693A JP 21369384 A JP21369384 A JP 21369384A JP H0611328 B2 JPH0611328 B2 JP H0611328B2
Authority
JP
Japan
Prior art keywords
physiologically active
active substance
hollow fiber
substance
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59213693A
Other languages
Japanese (ja)
Other versions
JPS6190672A (en
Inventor
清和 今井
友雄 塩見
正光 宮
昭夫 大森
弘幸 赤須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP59213693A priority Critical patent/JPH0611328B2/en
Publication of JPS6190672A publication Critical patent/JPS6190672A/en
Publication of JPH0611328B2 publication Critical patent/JPH0611328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、生理活性物質が化学的に結合されている多孔
性中空繊維を使用した液の処理方法に関するものであ
る。さらに詳しくは抗生物質、ホルモン、酵素、細胞、
微生物菌体、オルガネラ、核酸、医薬品等が化学的に結
合されている、物質透過性、特に蛋白質、多糖類の透過
性に優れた多孔性中空繊維を使用した液の処理方法に関
するものである。
TECHNICAL FIELD The present invention relates to a method for treating a liquid using a porous hollow fiber chemically bound with a physiologically active substance. More specifically, antibiotics, hormones, enzymes, cells,
The present invention relates to a method for treating a liquid using a porous hollow fiber which is chemically bonded to microbial cells, organelles, nucleic acids, pharmaceuticals and the like and has excellent substance permeability, particularly protein and polysaccharide permeability.

〔従来の技術〕[Conventional technology]

酵素や微生物菌体、さらには動植物細胞やオルガネラ、
抗原あるいは抗体、ホルモン、抗生物質、核酸、医薬品
などを物理的、化学的に固定化した材料は各種有用物質
の合成手段として、あるいは各種センサー用、医療用、
分析用などに広範囲な用途を有する。従来こうした固定
化材料として公知のものは、担体として多糖類、ポリマ
ー粒、多孔性ガラス、金属酸化物、活性炭などの粒状物
や、ゲル、フイルム、紙、織物、編物などを用いるも
のが多く、中空繊維を担体とするものは比較的少ない
が、中空繊維を担体とするものとして、例えば特開昭53
-18792号にはポリアクリロニトリルを素材とする非対称
型中空繊維に化学的結合法によつて酵素を固定する方法
が提示されており、また特開昭56-39788号、同56-13138
7号、同56-164789号にも表面に緻密層を有する中空繊維
型分離膜に物理的、あるいは(又は)化学的に酵素を固
定する方法が開示されている。しかしながら、これ等の
方法によつて得られる酵素固定膜は酵素の流出を防止す
るために膜表面に、平均孔径0.001μ〜0.01μ程度の細
孔よりなる酵素不透過性緻密層を設けた限外過膜を利
用したものであり、これらは本発明の目的とする生理活
性物質と該生理活性物質で処理されるる物質および処理
して得られる産生物質のいずれをも透過させうる孔径を
有する、物質透過性に優れた多孔性の生理活性物質固定
中空繊維の使用による液の処理方法とは基本的に異なつ
ている。また、特開昭57-146567号には菌体が透過しな
い範囲の孔径の多孔性膜に溶菌酵素を固定し、この膜の
一面に菌体分散液を接触させて菌体の細胞壁を一部また
は全部溶解させて菌体を破壊し、菌体の構成成分を膜透
過液として得ることを特徴とする技術が開示されてお
り、さらに、より孔径の小さな多孔膜を利用する方法と
して特願昭49-101614号には中空部に酵素液を封入し、
膜壁を通じての拡散により被処理液を中空部で処理し、
逆拡散により生成物を膜壁外へ取り出す方法が開示され
ている。しかしながら、これらの2つの方法は、前者で
は被処理物質を膜透過させることなく処理する点で、
又、後者では酵素が化学的に固定されておらず、かつ酵
素が透過し得ない程の小さな孔径の多孔膜を用いている
点で本発明の目的とする物質透過性に優れた多孔性の生
理活性物質固定中空繊維の使用による液の処理方法とは
異なつている。
Enzymes, microbial cells, plant and animal cells, organelles,
Materials in which antigens or antibodies, hormones, antibiotics, nucleic acids, pharmaceuticals, etc. are physically and chemically immobilized are used as means for synthesizing various useful substances, or for various sensors, medical use,
It has a wide range of uses such as for analysis. Conventionally known as such an immobilization material, many of which use polysaccharides, polymer particles, porous glass, metal oxides, granular materials such as activated carbon, gels, films, papers, woven fabrics, knitted fabrics, etc. as carriers. Relatively few hollow fibers are used as a carrier, but examples of hollow fibers used as a carrier include, for example, JP-A-53
-18792 discloses a method of immobilizing an enzyme on an asymmetric hollow fiber made of polyacrylonitrile by a chemical bonding method, and JP-A-56-39788 and 56-13138.
Nos. 7 and 56-164789 also disclose a method of physically or / or chemically immobilizing an enzyme on a hollow fiber type separation membrane having a dense layer on the surface. However, the enzyme-immobilized membranes obtained by these methods are limited in that an enzyme-impermeable dense layer consisting of pores with an average pore diameter of about 0.001 μ to 0.01 μ is provided on the membrane surface to prevent the outflow of the enzyme. Utilizing an outer membrane, these have a pore size capable of permeating both the physiologically active substance of the present invention, the substance to be treated with the physiologically active substance, and the produced substance obtained by the treatment, This is basically different from the method for treating a liquid by using hollow fibers having a physiologically active substance immobilized thereon and having excellent substance permeability. Further, in JP-A-57-146567, a lytic enzyme is immobilized on a porous membrane having a pore size that does not allow the cells to permeate, and a cell dispersion liquid is brought into contact with one surface of the membrane to partially cover the cell walls of the cells. Alternatively, a technique is disclosed in which all of the cells are dissolved to destroy the cells and the constituent components of the cells are obtained as a membrane permeate, and as a method of using a porous membrane having a smaller pore size, Japanese Patent Application No. No. 49-101614 contains enzyme solution in the hollow part,
The liquid to be treated is treated in the hollow part by diffusion through the membrane wall,
A method of removing the product out of the membrane wall by back diffusion is disclosed. However, in these two methods, the former method treats the substance to be treated without permeating the membrane,
Further, in the latter, the enzyme is not chemically fixed, and in the point of using a porous membrane having a small pore size such that the enzyme cannot permeate, the porous material excellent in substance permeability that is the object of the present invention is used. This is different from the method of treating a liquid by using hollow fibers fixed with a physiologically active substance.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

酵素不透過性緻密層を膜表面に有する限外過膜は一般
に異方性膜と呼ばれ、膜壁内に指状の巨大空隙を有して
おり、そのため、膜の比表面積は小さい。それ故、この
種の膜に生理活性物質を化学的に固定しようとする場合
には吸着量を多くとることができず、しかも、流路巾が
広いために被処理物質と生理活性物質の接触確率が低い
という問題がある。
An ultra-hypermembrane having an enzyme-impermeable dense layer on the membrane surface is generally called an anisotropic membrane and has a finger-like huge void in the membrane wall, and therefore the specific surface area of the membrane is small. Therefore, when attempting to chemically fix a physiologically active substance on this type of membrane, it is not possible to increase the amount of adsorption, and since the channel width is wide, the contact between the substance to be treated and the physiologically active substance is not possible. There is a problem that the probability is low.

被処理物質が孔径に比して大きく膜透過し得ない場合に
は中空繊維の内表面(または外表面)のみが処理に利用
されるだけであり、単位体積当りの有効処理面積が小さ
く、処理速度が遅い。また、膜壁内への被処理物質の沈
着が発生し、処理速度を一層劣化させる恐れもある。
又、生理活性物質を中空部に封入した場合には被処理物
質は拡散により膜壁を横切り、中空部で処理され逆拡散
により再び膜壁を横切らねばならず処理速度が遅い。被
処理物質や産生物質の分子量が大きい場合は拡散係数が
小さくなるため特に処理速度が低下する。
When the substance to be treated is larger than the pore size and cannot permeate through the membrane, only the inner surface (or outer surface) of the hollow fiber is used for treatment, and the effective treatment area per unit volume is small, The speed is slow. Further, deposition of the substance to be treated may occur inside the membrane wall, which may further deteriorate the treatment rate.
Further, when the physiologically active substance is enclosed in the hollow portion, the substance to be treated must cross the membrane wall by diffusion, must be treated in the hollow portion, and must cross the membrane wall again by reverse diffusion, which is a slow treatment speed. When the molecular weight of the substance to be treated or the substance to be produced is large, the diffusion coefficient becomes small, so that the treatment speed becomes particularly low.

〔問題点を解決するための手段および作用〕[Means and Actions for Solving Problems]

本発明者らは以上の様な問題点を解決すべく多孔性中空
繊維への生理活性物質の固定を鋭意研究した結果、本発
明に至つた。
The inventors of the present invention have conducted intensive studies on fixing a physiologically active substance to a porous hollow fiber in order to solve the above-mentioned problems, and as a result, achieved the present invention.

すなわち本発明は、生理活性物質が化学的に結合され、
該生理活性物質と該生理活性物質で処理される被処理物
質および処理して得られる産生物質のいずれをも透過さ
せうる孔径を有し、かつ比表面積が10m2/g以上である
多孔性の中空繊維に、該生理活性物質で処理される物質
を含む被処理液を供給して処理し、得られた産生物質を
含む処理液を該中空繊維の膜壁を通して取り出すことを
特徴とする生理活性物質固定中空繊維の使用による液の
処理方法である。
That is, the present invention, a physiologically active substance is chemically bound,
A porous material having a pore size capable of penetrating both the physiologically active substance, a substance to be treated with the physiologically active substance, and a product obtained by the treatment, and having a specific surface area of 10 m 2 / g or more. A physiological activity characterized in that a treatment liquid containing a substance to be treated with the physiologically active substance is supplied to the hollow fiber for treatment, and the treatment liquid containing the obtained production substance is taken out through the membrane wall of the hollow fiber. This is a method for treating a liquid by using a substance-fixed hollow fiber.

本発明において用いられる中空繊維の特徴は、先ず第1
に、生理活性物質が十分に透過しうる孔径を有する膜構
造であること、該生理活性物質が十分に結合しうる大き
な比表面積を有する点にある。結合される生理活性物質
が膜壁内を透過しえないと、結合に利用しうる膜構造が
表面部のみに限定されてしまい、結合量が小さくなり、
被処理物質の処理速度が遅くなる。一方、単に生理活性
物質を透過させる孔径を有しているのみで巨大な空隙の
多い膜では生理活性物質の結合しうる面積が少なく、や
はり処理速度が遅い。それ故本発明の第1の目的とする
ところは、生理活性物質が十分透過しうる孔径で、大き
な比表面積の中空繊維に該生理活性物質を固定すること
である。孔径と比表面積の間には若干の関連があるた
め、細胞、微生物、オルガネラなどの大きな物を固定し
ようとする場合は比表面積は低下せざるを得ないが、本
発明の目的とする速い処理速度を達成するためには、1
0m2/g以上、好ましくは30m2/g以上の比表面積が必要
である。比表面積はBET法により測定される。また、
ここでいう十分な透過性とは、該生理活性物質の希薄水
溶液(約0.1W/V%)の過実験から次式によつて算
出される透過率が50%以上の場合をいう。
The characteristics of the hollow fiber used in the present invention are as follows.
Secondly, it has a membrane structure having a pore size that allows the physiologically active substance to sufficiently permeate, and has a large specific surface area to which the physiologically active substance can sufficiently bind. If the physiologically active substance to be bound cannot permeate inside the membrane wall, the membrane structure that can be used for binding is limited to only the surface portion, and the amount of binding becomes small,
The processing speed of the substance to be processed becomes slow. On the other hand, a membrane having only a pore size that allows a physiologically active substance to pass therethrough and having a large number of voids has a small area where the physiologically active substance can be bound, and the treatment rate is also slow. Therefore, the first object of the present invention is to immobilize the physiologically active substance on the hollow fiber having a large specific surface area and having a pore size through which the physiologically active substance can sufficiently permeate. Since there is a slight relationship between the pore size and the specific surface area, the specific surface area must be reduced when attempting to immobilize large objects such as cells, microorganisms and organelles, but the rapid treatment intended by the present invention is required. To achieve speed 1
A specific surface area of 0 m 2 / g or more, preferably 30 m 2 / g or more is required. The specific surface area is measured by the BET method. Also,
The term “sufficient permeability” as used herein refers to a case where the transmittance calculated by the following formula from an overexperiment of a dilute aqueous solution of the physiologically active substance (about 0.1 W / V%) is 50% or more.

尚、Cin =中空繊維入口の蛋白濃度 Cout= 同 出口の蛋白濃度 CuF =液の蛋白濃度 本発明で用いられる中空繊維のもう1つの特徴は、生理
活性物質で処理される被処理物質と処理して得られる産
生物質も十分に透過しうる孔径を有している点である。
これ等の要件も既に述べた理由により処理速度の向上に
結びついている。孔径の上限については特に規制はない
が、固定される生理活性物質、被処理物質、産生物質の
うち最大のもののストークス径の10倍以内が好まし
い。孔径が過大だと生理活性物質と被処理物質との接触
確率が減少し、処理速度の低下を招く。
Cin = protein concentration at the inlet of the hollow fiber Cout = protein concentration at the outlet CuF = protein concentration of the liquid Another feature of the hollow fiber used in the present invention is that it is treated with a substance to be treated with a physiologically active substance. The produced substance obtained by this method also has a pore size that allows sufficient permeation.
These requirements are also linked to the improvement in processing speed for the reasons already described. The upper limit of the pore diameter is not particularly limited, but it is preferably within 10 times the Stokes diameter of the largest fixed physiologically active substance, treated substance, or produced substance. If the pore size is too large, the probability of contact between the physiologically active substance and the substance to be treated decreases, leading to a decrease in treatment speed.

以上に述べた様な要件を満足する中空繊維のうち、特に
膜壁全体にわたりスポンジ状の多孔構造を有する膜は、
物質透過性、処理速度の経時的劣化が少なく好適であ
る。
Among the hollow fibers that satisfy the above-mentioned requirements, a membrane having a sponge-like porous structure over the entire membrane wall is
It is suitable because it has little deterioration in substance permeability and processing speed over time.

本発明において用いられる中空繊維の素材は特に限定は
なく例えば多孔性ガラスなどの無機材料、セルロース、
コラーゲン、キチンなどの天然有機高分子、スチレン、
ポリアミド、ポリアクリルアミド、ポリビニルアルコー
ル、ポリアクリロニトリル、ポリメタクリレート、ポリ
メチルメタクリレート、ポリビニルピロリドン、ポリエ
ステル、ポリ塩化ビニル、ポリカーボネート、ポリエチ
レン、ポリプロピレン、ポリブタジエン、ポリテトラフ
ロロエチレン、ポリスルホン、ポリエーテルエーテルケ
トン、ポリアミノ酸などの合成有機高分子材料がある。
これらの材料は単独で用いても良いし、共重合体やポリ
マーブレンドとして用いても良い。また光照射、放射線
照射、化学処理などにより、グラフト化や官能基の導入
を行なつた素材を用いても良いが、予め水酸基、アルデ
ヒド、カルボキシル基、アミノ基、イミド基などを有す
るものは固定化のための工程が少なく好適である。以
下、代表的なものについて簡単に説明する。
The material of the hollow fiber used in the present invention is not particularly limited, for example, an inorganic material such as porous glass, cellulose,
Natural organic polymers such as collagen and chitin, styrene,
Polyamide, polyacrylamide, polyvinyl alcohol, polyacrylonitrile, polymethacrylate, polymethylmethacrylate, polyvinylpyrrolidone, polyester, polyvinyl chloride, polycarbonate, polyethylene, polypropylene, polybutadiene, polytetrafluoroethylene, polysulfone, polyetheretherketone, polyamino acid, etc. There is a synthetic organic polymer material.
These materials may be used alone or as a copolymer or polymer blend. Materials that have been grafted or introduced with functional groups by light irradiation, radiation irradiation, chemical treatment, etc. may be used, but those that have hydroxyl groups, aldehydes, carboxyl groups, amino groups, imide groups, etc. in advance are fixed. It is suitable because there are few steps for chemical conversion. The representative ones will be briefly described below.

ポリビニルアルコールを生理活性物質固定用中空繊維素
材として用いる場合には、まず該中空繊維を水不溶性と
し、かつ多孔質構造を保持するための処理が必要であ
る。不溶化処理の方法としてはホルマリンやベンズアル
デヒド等によるホルマール化、グルタルアルデヒド、水
酸化チタン等の架橋剤による架橋、電子線やガンマー線
等による架橋反応が用いられる。これら不溶化処理によ
つて元のポリビニルアルコール中の水酸基の一部が失わ
れるが、本発明の生理活性物質固定用担体として用いる
場合、水酸基の残存率は好ましくは20モル%以上、さ
らに好ましくは35モル%以上である。
When using polyvinyl alcohol as a hollow fiber material for immobilizing a physiologically active substance, it is first necessary to treat the hollow fiber to make it insoluble in water and maintain its porous structure. As a method of insolubilizing treatment, formalization with formalin, benzaldehyde or the like, crosslinking with a crosslinking agent such as glutaraldehyde or titanium hydroxide, or crosslinking reaction with electron beam or gamma ray is used. Although some of the hydroxyl groups in the original polyvinyl alcohol are lost by these insolubilization treatments, when used as the physiologically active substance-immobilizing carrier of the present invention, the residual ratio of hydroxyl groups is preferably 20 mol% or more, more preferably 35%. It is at least mol%.

また中空繊維素材としてビニルアルコール系共重合体を
用いる場合にも共重合体中のビニルアルコール残基の含
有率は好ましくは20モル%以上、さらに好ましくは3
5モル%以上である。残存率が20%より小さいと水酸
基を利用する結合法だけでは固定化量が少なくなり、中
空繊維の比活性が低い。
When a vinyl alcohol-based copolymer is used as the hollow fiber material, the content of vinyl alcohol residue in the copolymer is preferably 20 mol% or more, more preferably 3%.
It is 5 mol% or more. If the residual rate is less than 20%, the amount of immobilization will be small and the specific activity of the hollow fiber will be low only by the bonding method utilizing hydroxyl groups.

本発明において用いられる多孔質中空繊維そのものは公
知の製法により製造することができる。例えばポリビニ
ルアルコールの多孔性中空繊維は特開昭52-21420号に記
載されている方法により、エチレンビニルアルコール系
共重合体の多孔質中空繊維は特開昭51-145474号に記載
されている方法をもとに製造することができる。また、
これらの多孔質中空繊維のプロフイールは、通常、内径
が50μ以上、20,000μ以下、好適には100μ以上5000
μ以下、さらに好適には175μ以上2000μ以下であ
る。これより細いと中空繊維が機械的に弱く、また集
束、成形してモジユール化した際に中空部流路側の圧損
が大きくなりすぎる。これより太いと単位体積当りの膜
面積が小さくなりぎて十分な固定化量が得られず、被処
理液の処理効率が低い。
The porous hollow fiber itself used in the present invention can be produced by a known production method. For example, a polyvinyl alcohol porous hollow fiber is a method described in JP-A-52-21420, and an ethylene-vinyl alcohol copolymer porous hollow fiber is a method described in JP-A-51-145474. Can be manufactured based on. Also,
These porous hollow fiber profiles usually have an inner diameter of 50μ or more and 20,000μ or less, preferably 100μ or more and 5000 or less.
μ or less, and more preferably 175 μ or more and 2000 μ or less. If it is thinner than this, the hollow fiber is mechanically weak, and the pressure loss on the flow path side of the hollow portion becomes too large when it is bundled and molded to be a module. If it is thicker than this, the membrane area per unit volume becomes too small to obtain a sufficient amount of immobilization, and the treatment efficiency of the liquid to be treated is low.

固定化される生理活性物質としては、酵素(含補酵
素)、微生物菌体、細胞、オルガネラ、ホルモン、抗生
物質、核酸、医薬品などをあげる事ができる。
Examples of the physiologically active substance to be immobilized include enzymes (coenzymes), microbial cells, cells, organelles, hormones, antibiotics, nucleic acids, pharmaceuticals and the like.

医薬品としては、例えば、シクロフォスファミド、アザ
チオプリン等の免疫抑制物質、レバミゾール等の免疫調
節物質、インターフェロン、インターロイキン等の免疫
関連物質に代表される免疫系を抑制または活性化する物
質、プロスタグランジン、トロンボキサン、プロスタサ
イクリン、ロイコトリエン、副腎皮質ステロイドなどが
固定化される。
Examples of the drug include immunosuppressive substances such as cyclophosphamide and azathioprine, immunomodulators such as levamisole, substances that suppress or activate the immune system represented by immune-related substances such as interferon and interleukin, and prostaglandin. Gin, thromboxane, prostacyclin, leukotriene, and corticosteroids are immobilized.

オルガネラとしては例えばミトコンドリア、核、クロマ
トホアー、クロロプラスト、ペルオキシゾームなどが固
定化される。
As organelles, for example, mitochondria, nuclei, chromatophores, chloroplasts, peroxisomes and the like are immobilized.

細胞としては例えば腎細胞、肝細胞、ランゲルハンス島
細胞、各種リンパ球、およびハイブリツド化された細胞
などが固定化される。
As cells, for example, renal cells, hepatocytes, Langerhans islet cells, various lymphocytes, hybridized cells and the like are immobilized.

微生物菌体としては例えば大腸菌、枯草菌、放線菌、ブ
ドウ状球菌、メタノール菌などの細菌類、酵母、各種の
カビなどが固定化される。
As the microbial cells, for example, bacteria such as Escherichia coli, Bacillus subtilis, actinomycetes, staphylococcus, methanol, etc., yeast, various molds and the like are immobilized.

酵素としては、単離精製されたものの他、微生物菌体内
酵素のように細胞内に存在する酵素でも良いし、細胞か
ら抽出された酵素でも良い。あるいはまた単一の酵素だ
けでなく、複数の酵素を固定化しても良いし、補酵素
や、ATP、ADPなどと共に固定化しても良い。具体
例としては、例えばアミノ酸オキシダーゼ、カタラー
ゼ、キサンチンオキシダーゼ、グルコースオキシダー
ゼ、グルコース−6−リン酸デヒドロゲナーゼ、グルタ
ミン酸デヒドロゲナーゼ、チトクロムCオキシダーゼ、
チロシナーゼ、乳酸デヒドロゲナーゼ、ペルオキシダー
ゼ、6−ホスホグルコン酸デヒドロゲナーーゼ、リンゴ
酸デヒドロゲナーゼのような酸化還元酵素、アスパラギ
ン酸アセチルトランスフエラーゼ、アスパラギン酸アミ
ノトランスフエラーゼ、グリシンアミノトランスフエラ
ーゼ、グルタミン酸−オキザロ酢酸アミノトランスフエ
ラーゼ、グルタミン酸−ピルビン酸アミノトランスフエ
ラーゼ、クレアチンホスホキナーゼ、ヒスタミンメチル
トランスフエラーゼ、ピルビン酸キナーゼ、フラクトキ
ナーゼ、ヘキソキナーゼ、8−リジンアセチルトランス
フエラーゼ、ロイシンアミノペプチターゼのような転移
酵素、アスパラギナーゼ、アセチルコリンエステラー
ゼ、アミノアミラーゼ、アミラーゼ、アルギナーゼ、L
−アルギニンデイミナーゼ、インベルターゼ、マルター
ゼ、ラクターゼ、ウレアーゼ、ウリカーゼ、ウロキナー
ゼ、エステラーゼ、β−ガラクトシダーゼ、カリクレイ
ン、キモトリプシン、トリプシン、トロンビン、ペプシ
ン、パパイン、パンクレアチン、ナリンギナーゼ、ヌク
レオチダーゼ、ヒヤウロニダーゼ、プラスミン、ペクチ
ナーゼ、ヘスペリジナーゼ、ペニシリナーゼ、ペニシリ
ンアミダーゼ、リパーゼ、ホスホリパーゼ、ホスフアタ
ーゼ、リボヌクレアーゼ、レンニン、メリビアーゼ、ア
ルドラーゼ、セルラーゼ、アントシアナーゼ、ナリンジ
ナーゼ、タンナーゼのような加水分解酵素、アスパラギ
ン酸デカルボキシラーゼ、アスパルターゼ、クエン酸リ
アーゼ、グルタミン酸デカルボキシラーゼ、ヒスチジン
アンモニアリアーゼ、フエニルアラニンアンモニアリア
ーゼ、フマラーゼ、フマール酸ヒドラターゼ、リンゴ酸
シンテターゼのようなリアーゼ、アラニンラセマーゼ、
グルコースイソメラーゼ、グリコースホスフエートイソ
メラーゼ、グルタミン酸ラセマーゼ、乳酸ラセマーゼ、
メチオニンラセマーゼのような異性化酵素、アスパラギ
ンシンターゼ、ダルタチオンシンターゼ、ピルビン酸シ
ンターゼ、DNAリガーゼなどのリガーゼ、EcoRI、Hind
III、Bam HI、Sal I、Pst Iなどの制限酵素等がある。
In addition to the isolated and purified enzyme, the enzyme may be an enzyme existing in a cell such as an enzyme in a microbial cell, or an enzyme extracted from a cell. Alternatively, not only a single enzyme but also a plurality of enzymes may be immobilized, or may be immobilized together with coenzyme, ATP, ADP and the like. Specific examples include, for example, amino acid oxidase, catalase, xanthine oxidase, glucose oxidase, glucose-6-phosphate dehydrogenase, glutamate dehydrogenase, cytochrome C oxidase,
Redox enzymes such as tyrosinase, lactate dehydrogenase, peroxidase, 6-phosphogluconate dehydrogenase, malate dehydrogenase, aspartate acetyl transferase, aspartate amino tranferase, glycine amino tranferase, glutamic acid-oxalo. Transfer such as aminoacetate aminotransferase, glutamate-pyruvate aminotransferase, creatine phosphokinase, histamine methyltransferase, pyruvate kinase, fructokinase, hexokinase, 8-lysine acetyltransferase, leucine aminopeptidase. Enzyme, asparaginase, acetylcholinesterase, aminoamylase, amylase, arginase, L
-Arginine deiminase, invertase, maltase, lactase, urease, uricase, urokinase, esterase, β-galactosidase, kallikrein, chymotrypsin, trypsin, thrombin, pepsin, papain, pancreatin, naringinase, nucleotidase, hyaluronidase, plasmin, plasmin. , Hydrolytic enzymes such as penicillinase, penicillin amidase, lipase, phospholipase, phosphatase, ribonuclease, rennin, melibiase, aldolase, cellulase, anthocyanase, narindinase, tannase, aspartate decarboxylase, aspartase, citrate lyase, glutamate decarboxylase , Histidine ammonia rear , Phenylalanine ammonia lyase, fumarase, fumarate hydratase, lyase, such as malic acid synthetase, alanine racemase,
Glucose isomerase, glucose phosphate isomerase, glutamate racemase, lactate racemase,
Isomerizing enzymes such as methionine racemase, asparagine synthase, daltathione synthase, pyruvate synthase, ligases such as DNA ligase, EcoRI, Hind
III, Bam HI, Sal I, Pst I and other restriction enzymes.

これらの生理活性物質を多孔質中空繊維に固定する方法
としては、担体結合法が用いられるが、微生物菌体、細
胞、オルガネラ等を固定する際には包括法を併用しても
良い。担体結合法のうちでは共有結合法、イオン結合法
が好適であり、共有結合法としては例えばジアゾ法、ア
ルキル化法、ペプチド法などが好ましい。また、これら
の化学薬品を用いる結合法の外、光や放射線の照射を利
用して共有結合や、イオン結合を行なわせることもでき
る。
As a method for fixing these physiologically active substances to the porous hollow fibers, a carrier binding method is used, but when fixing microbial cells, cells, organelles, etc., a comprehensive method may be used together. Among the carrier binding methods, the covalent binding method and the ionic binding method are preferable, and the covalent binding method is preferably, for example, the diazo method, the alkylation method, the peptide method or the like. In addition to the bonding method using these chemicals, covalent bonding or ionic bonding can be performed using irradiation of light or radiation.

不溶化処理されたポリビニルアルコールや、エチレンビ
ニルアルコール系ポリマー、セルロース等の水酸基は、
酵素、細胞、オルガネラ、微生物菌体、核酸、ホルモ
ン、抗生物質、医薬品などの有する水酸基、アミノ基、
カルボキシル基等と適当な試薬によつて結合することが
できる。以下にビニルアルコールの水酸基と、生理活性
物質のアミノ基間の結合形成法を例として列挙する。こ
こで固定化物のアミノ基をR−NH2、ビニルアルコール
で示す。
Insolubilized polyvinyl alcohol, ethylene vinyl alcohol-based polymers, hydroxyl groups such as cellulose,
Hydroxyl groups, amino groups possessed by enzymes, cells, organelles, microbial cells, nucleic acids, hormones, antibiotics, pharmaceuticals, etc.
It can be bound to a carboxyl group or the like by a suitable reagent. A method for forming a bond between a hydroxyl group of vinyl alcohol and an amino group of a physiologically active substance will be listed below as an example. Here, the amino group of the immobilized product is R-NH 2 and vinyl alcohol is Indicate.

(1) (2) (3) (4) (5) (6) (7) (8) (9) アクリル酸系ポリマーよりなる中空繊維への生理活性物
質の固定は例えば次の様にして行なえる。ここで はアクリル酸系ポリマーを、R−NH2は酵素を表わす。
(1) (2) (3) (Four) (Five) (6) (7) (8) (9) The physiologically active substance can be fixed to the hollow fiber made of an acrylic acid polymer, for example, as follows. here Represents an acrylic acid-based polymer, and R-NH 2 represents an enzyme.

(10) ナイロンよりなる中空繊維への生理活性物質の固定は例
えば次の様にして行なえる。ここで はナイロンを、R−NH2は酵素を表わす。
(Ten) The physiologically active substance can be fixed to the hollow fiber made of nylon, for example, as follows. here Represents nylon and R-NH 2 represents an enzyme.

(11) 本発明の生理活性物質固定中空繊維を用いれば、被処理
液は中空繊維が多孔性であるため、中空繊維の膜壁を通
しつつ、効率よく処理される。被処理液は全量が膜壁を
通る必要はなく、中空繊維の内部または外部を循環させ
ながら、1部が膜壁を通過し、有用物質が中空繊維の膜
壁を通して取り出されればよい。
(11) When the physiologically active substance-immobilized hollow fiber of the present invention is used, the liquid to be treated is efficiently treated while passing through the membrane wall of the hollow fiber because the hollow fiber is porous. It is not necessary that the entire amount of the liquid to be treated pass through the membrane wall, and one part may pass through the membrane wall while circulating the inside or outside of the hollow fiber, and the useful substance may be taken out through the membrane wall of the hollow fiber.

被処理液は、生理活性物質を固定した中空繊維の反応収
率、反応速度、目的とする物質の所望の純度等により、
バツチ式、連続式のうち好適な方法で処理する事ができ
る。また同様の見地より循環の有無、循環量と膜透過量
の比も最適な条件を選択する事ができる。被処理液の流
路は中空繊維の中空部でも、外表面側でも良い。通常は
循環方式では中空部を、全量押込み透過(非循環)方式
では外表面側を流す方が有利である。また上記の様な方
法で処理を行なうに際し、本発明の中空繊維は単繊維と
してだけでなく、両端開口型や片端閉止型など公知のモ
ジユール形態に集束、成形して用いることができる。
The liquid to be treated is, depending on the reaction yield of the hollow fiber on which the physiologically active substance is immobilized, the reaction rate, the desired purity of the target substance, etc.
It can be processed by a suitable method of batch type and continuous type. From the same point of view, it is possible to select the optimum conditions for the presence / absence of circulation and the ratio of the circulation amount to the membrane permeation amount. The flow path of the liquid to be treated may be the hollow part of the hollow fiber or the outer surface side. Usually, it is more advantageous to flow through the hollow portion in the circulation system and through the outer surface side in the case of full penetration and transmission (non-circulation). Further, when the treatment is carried out by the method as described above, the hollow fiber of the present invention can be used not only as a single fiber, but also after being bundled and molded into a known module form such as an open-ended type or a closed-end type.

本発明の中空繊維の具体的な利用例としては、例えば生
化学分野ではDNA組換え技術で育種された微生物を中
空繊維の膜壁内および(または)表面に固定し、一方の
側より培養液と共にペプチド、アミノ酸、糖、ATP、
塩類等の低分子量原料物質を供給し、他の側より人由来
ホルモン、ポリペプチド、インターフエロン、ワクチン
などの高分子量生産物を得ることへの利用を挙げること
ができる。同様に菌体外タンパク質生産菌を固定した中
空繊維を用いて、飼料用や食料用タンパク質の生産を行
なわせることもできる。
Specific examples of the use of the hollow fiber of the present invention include, for example, in the biochemical field, microorganisms bred by DNA recombination technology are immobilized on the membrane wall and / or the surface of the hollow fiber, and the culture solution is applied from one side. With peptides, amino acids, sugars, ATP,
It can be used for supplying low molecular weight raw materials such as salts to obtain high molecular weight products such as human-derived hormones, polypeptides, interferons and vaccines from the other side. Similarly, a hollow fiber on which extracellular protein-producing bacteria have been immobilized can be used to produce a protein for feed or food.

食品工業の分野では例えばβ−ガラクトシダーゼを固定
した中空繊維に、外表面側よりチーズホエーを供給し、
ホエー中の乳糖を膜壁内を通過させつつ連続的に加水分
解することに利用できる。本発明によれば、この際に分
子量数万のホエータンパク質も膜壁内を通過し得るた
め、従来の限外過膜を担体とする酵素固定の欠点であ
るホエータンパク質の膜壁上への濃縮、ゲル層生成と、
それに伴う加水分解速度の低下を防止することができ
る。
In the field of food industry, for example, β-galactosidase-fixed hollow fibers, cheese whey is supplied from the outer surface side,
It can be used to continuously hydrolyze lactose in whey while passing it through the membrane wall. According to the present invention, since whey protein having a molecular weight of tens of thousands can pass through the membrane wall at this time, the concentration of whey protein on the membrane wall, which is a drawback of conventional enzyme immobilization using an ultrapermeabilization membrane, is concentrated. , Gel layer generation,
It is possible to prevent a decrease in the hydrolysis rate accompanying it.

本発明の対象となる被処理液としては上記の例の外、体
液、血漿、細胞や微生物の培養液、多糖類、糖蛋白、蛋
白、ペプタイド、核酸等の合成のための調製原料および
(または)生成物含有液、さらに食品工業や医薬品製造
における製造工程液、廃液などがある。
As the liquid to be treated which is the subject of the present invention, in addition to the above-mentioned examples, body fluid, plasma, culture fluid of cells and microorganisms, polysaccharides, glycoproteins, proteins, peptides, preparation raw materials for synthesis of nucleic acids and the like (or ) Product-containing liquids, as well as manufacturing process liquids and waste liquids in the food industry and pharmaceutical manufacturing.

〔実施例〕〔Example〕

以下実施例により本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples.

実施例1 比表面積45m2/g、インベルターゼ(分子量29万)に
対する透過率76%、内径220μ、外径330μのエ
チレンビニルアルコール(エチレン含量32モル%、ケ
ン化度99.9%)よりなる多孔質中空繊維を用いて、公知
の方法により50cm2の膜面積の小型モジユールを作製し
た。該モジユールの中空繊維内外に硫酸10W/V%、芒
硝25W/V%、アミノアセトアルデヒド5W/V%を含む水
溶液を流し、24時間、40℃でアミノアセタール化を
行なつたのち、純水で十分に洗浄した。次いで5μg/
mlのインベルターゼ水溶液を中空部側に流し、一部は膜
壁を通過させつつ室温下で10時間循環し、インベルタ
ーゼの固定化を行つた。純水で十分に未結合状態の酵素
を洗浄除去した後、1W/V%のサツカロースを含む酢酸
緩衝溶液を用いpH4.5、40℃において吸着率、比活
性、活性収率の測定を行なつた。なお、ここでいう吸着
率とは であり、比活性とは であり、活性収率とは のことである。
Example 1 Porous hollow made of ethylene vinyl alcohol (ethylene content 32 mol%, saponification degree 99.9%) having a specific surface area of 45 m 2 / g, an invertase (molecular weight of 290,000) of 76%, an inner diameter of 220 μ, and an outer diameter of 330 μ. Using the fiber, a small module having a membrane area of 50 cm 2 was prepared by a known method. An aqueous solution containing 10 W / V% of sulfuric acid, 25 W / V% of Glauber's salt and 5 W / V% of aminoacetaldehyde was poured into and out of the hollow fibers of the module, and after performing aminoacetalization at 40 ° C. for 24 hours, pure water was sufficient. Washed. Then 5 μg /
An invertase aqueous solution (ml) was flown to the hollow part side, and a part of the solution was circulated at room temperature for 10 hours while passing through the membrane wall to immobilize the invertase. After the unbound enzyme was sufficiently washed away with pure water, the adsorption rate, specific activity and activity yield were measured at pH 4.5 and 40 ° C using an acetate buffer solution containing 1 W / V% sucrose. It was The adsorption rate here is And the specific activity is And the activity yield is That is.

得られた吸着率は78%、比活性は88%、活性収率は
69%と高く、酵素よりも大きな孔径の多孔膜に固定し
たにもかかわらず酵素の流出は少なく、高い活性が保持
されていた。
The adsorption rate obtained was 78%, the specific activity was 88%, and the activity yield was as high as 69%. Even though it was immobilized on a porous membrane with a pore size larger than that of the enzyme, the outflow of the enzyme was small and the high activity was retained. Was there.

また該モジユールの中空部内に種々の濃度のサツカロー
スを含む酢酸緩衝溶液(pH4.5、40℃)を10ml/min
の速度で供給し、一部を膜壁を透過させつつ処理したと
ころ、みかけのミハエリス定数として1.2×10-2Mを得
た。これは固定化されない酵素自身のミハエリス定数1.
5×10-2Mに比較して小さく、本発明の生理活性物質固
定中空繊維が、高い処理速度を有していることは明らか
である。
In addition, an acetic acid buffer solution (pH 4.5, 40 ° C.) containing various concentrations of sucrose in the hollow part of the module was added at 10 ml / min.
When it was supplied at a rate of 1, and part of it was processed while passing through the membrane wall, an apparent Michaelis constant of 1.2 × 10 -2 M was obtained. This is the Michaelis constant of the enzyme itself which is not immobilized 1.
It is clear that the hollow fiber fixed to the physiologically active substance of the present invention has a high treatment rate, which is smaller than 5 × 10 −2 M.

比較例1 比表面積53m2/g、インベルターゼに対する透過率1
%、内径220μ、外径300μエチレンビニルアルコ
ール(エチレン含量32モル%、ケン化度99.9%)より
なる微多孔質中空繊維を用いた他は実施例1と同様にし
てインベルターゼを固定し、吸着率、比活性、活性収
率、みかけのミハエリス定数の測定を行なつた。吸着率
は89%と実施例1より高かつたが比活性は80.3%と低
く、活性収率は71.4%、みかけのミハエリス定数は1.9
×10-2Mで実施例1に比較し、反応速度が遅かつた。
Comparative Example 1 Specific surface area 53 m 2 / g, permeability 1 for invertase 1
%, Inner diameter 220μ, outer diameter 300μ Ethylene vinyl alcohol (ethylene content 32 mol%, saponification degree 99.9%) was used in the same manner as in Example 1 except that a microporous hollow fiber was used to fix the invertase and the adsorption rate. , Specific activity, activity yield, and apparent Michaelis constant were measured. The adsorption rate was 89%, which was higher than that of Example 1, but the specific activity was low at 80.3%, the activity yield was 71.4%, and the apparent Michaelis constant was 1.9.
The reaction rate was slower as compared with Example 1 at × 10 -2 M.

比較例2 比表面積90cm2、厚さ1mmのエチレンビニルアルコー
ルフイルム(エチレン含量32モル%、ケン化度99.9
%)を硫酸25W/V%、芒硝25W/V%、アミノアセトア
ルデヒド5W/V%を含む水溶液中に浸漬し、70℃で8
時間振とうしてアミノアセタール化を行つたのち、純水
で十分に洗浄した。次いで5μg/mlのインベルターゼ
水溶液中に室温で24時間振とうして酵素を固定化し
た。純水で十分に未結合状態の酵素を除去し、得られた
フイルムをサツカロース溶液中で振とうしつつ分解反応
を行なわせた他は実施例1と同様にして該固定化酵素フ
イルムを評価した。
Comparative Example 2 Ethylene vinyl alcohol film having a specific surface area of 90 cm 2 and a thickness of 1 mm (ethylene content 32 mol%, saponification degree 99.9)
%) Is immersed in an aqueous solution containing 25 W / V% of sulfuric acid, 25 W / V% of Glauber's salt, and 5 W / V% of aminoacetaldehyde, and the temperature is 70 ° C. for 8 hours.
The mixture was shaken for a time to effect aminoacetalization, and then thoroughly washed with pure water. Then, the enzyme was immobilized by shaking in a 5 μg / ml aqueous solution of invertase for 24 hours at room temperature. The immobilized enzyme film was evaluated in the same manner as in Example 1 except that the unbound enzyme was sufficiently removed with pure water, and the resulting film was subjected to a decomposition reaction while being shaken in a Satsucarose solution. .

吸着率は85.7%と高かつたが、比活性は17.7%、活性収
率は15.1%と小さく、みかけのミハエリス定数も7.9×1
0-2と大きく、実施例1に比較して明らかに劣つてい
た。
The adsorption rate was as high as 85.7%, but the specific activity was 17.7%, the activity yield was 15.1%, and the apparent Michaelis constant was 7.9 × 1.
It was as large as 0 -2 , which was clearly inferior to that of Example 1.

〔発明の効果〕〔The invention's effect〕

本発明によれば、生理活性物質が化学的に結合され、該
生理活性物質と該生理活性物質で処理される被処理物質
および処理して得られる産生物質のいずれをも透過させ
うる孔径を有し、かつ比表面積が10m2/g以上である多
孔性の中空繊維に、該生理活性物質で処理される物質を
含む被処理液を供給して処理し、得られた産生物質を含
む処理液を該中空繊維の膜壁を通して取り出す、生理活
性物質固定中空繊維の使用による液の処理方法が提供さ
れる。本発明の処理方法は、生理活性物質の流出が少な
く、処理速度が速い優れた処理方法であり、各種有用物
質の合成手段として、あるいは各種センサー用、医療
用、分析用等、広範囲に利用することができる。
According to the present invention, a physiologically active substance is chemically bound, and has a pore size that allows passage of both the physiologically active substance, the substance to be treated and the substance produced by the treatment. And a treatment liquid containing a product substance obtained by supplying a treatment liquid containing a substance to be treated with the physiologically active substance to porous hollow fibers having a specific surface area of 10 m 2 / g or more and treating the same. There is provided a method for treating a liquid by using a physiologically active substance-immobilized hollow fiber, wherein the liquid is taken out through the membrane wall of the hollow fiber. INDUSTRIAL APPLICABILITY The treatment method of the present invention is an excellent treatment method in which the outflow of physiologically active substances is small and the treatment speed is fast, and is widely used as a synthetic means for various useful substances, or for various sensors, medical use, analytical use, etc. be able to.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】生理活性物質が化学的に結合され、該生理
活性物質と該生理活性物質で処理される被処理物質およ
び処理して得られる産生物質のいずれをも透過させうる
孔径を有し、かつ比表面積が10m2/g以上である多孔性の
中空繊維に、該生理活性物質で処理される物質を含む被
処理液を供給して処理し、得られた産生物質を含む処理
液を該中空繊維の膜壁を通して取り出すことを特徴とす
る生理活性物質固定中空繊維の使用による液の処理方
法。
1. A pore size that allows a physiologically active substance to be chemically bound to pass through both the physiologically active substance, a substance to be treated treated with the physiologically active substance, and a product obtained by the treatment. , And the specific surface area is 10 m 2 / g or more, to the porous hollow fiber, the liquid to be treated containing the substance to be treated with the physiologically active substance is supplied and treated, and a treatment liquid containing the obtained product substance is treated. A method for treating a liquid by using hollow fibers fixed with a physiologically active substance, characterized in that the hollow fibers are taken out through a membrane wall.
JP59213693A 1984-10-11 1984-10-11 Method for treating liquid using porous hollow fiber to which physiologically active substance is immobilized Expired - Fee Related JPH0611328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59213693A JPH0611328B2 (en) 1984-10-11 1984-10-11 Method for treating liquid using porous hollow fiber to which physiologically active substance is immobilized

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59213693A JPH0611328B2 (en) 1984-10-11 1984-10-11 Method for treating liquid using porous hollow fiber to which physiologically active substance is immobilized

Publications (2)

Publication Number Publication Date
JPS6190672A JPS6190672A (en) 1986-05-08
JPH0611328B2 true JPH0611328B2 (en) 1994-02-16

Family

ID=16643422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59213693A Expired - Fee Related JPH0611328B2 (en) 1984-10-11 1984-10-11 Method for treating liquid using porous hollow fiber to which physiologically active substance is immobilized

Country Status (1)

Country Link
JP (1) JPH0611328B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113465A (en) * 1984-11-07 1986-05-31 城 靖 Immune activation apparatus
CA2001720C (en) * 1988-10-31 2001-10-02 Randal A. Goffe Membrane affinity apparatus and purification methods related thereto
JP3653307B2 (en) * 1995-08-21 2005-05-25 株式会社 神崎高級工機製作所 Bonnet lock structure
JP3733658B2 (en) * 1995-12-28 2006-01-11 東レ株式会社 β2 microglobulin removal, detection or measurement material and body fluid purification column using the same
US5868936A (en) * 1996-06-20 1999-02-09 Baxter International Inc. Affinity membrane system and method of using same
US7144505B2 (en) 1997-09-18 2006-12-05 Baxter International Inc. Melt-spun polysulfone semipermeable membranes and methods for making the same
US6218441B1 (en) 1997-09-18 2001-04-17 Timothy B. Meluch Melt-spun polysulfone semipermeable membranes and methods for making the same
ES2561418T3 (en) * 1999-06-03 2016-02-26 Advanced Extravascular Systems Single phase removal of unwanted molecules in circulating blood
US8865172B2 (en) 2000-05-08 2014-10-21 Advanced Extravascular Systems, Inc. Method for reducing the number of unwanted molecules in bodily fluids
PT2377599T (en) 2008-12-25 2020-11-20 Jorge Manuel Costeira Dos Santos Faustino Porous hollow fiber membrane and porous hollow fiber membrane for processing protein-containing liquid

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652581A (en) * 1979-10-08 1981-05-11 Chuji Saito Moving gate type sea wave power plant
JPS57146567A (en) * 1981-03-06 1982-09-10 Nitto Electric Ind Co Ltd Apparatus for treating bacterial cell
JPS57149509A (en) * 1981-03-09 1982-09-16 Toray Ind Inc Preparation of hollow separating membrane
JPS6111054A (en) * 1984-06-25 1986-01-18 三菱レイヨン株式会社 Blood purification system
JPS6120560A (en) * 1984-07-10 1986-01-29 三菱レイヨン株式会社 Porous hollow yarn filter membrane
JPS6125566A (en) * 1984-07-13 1986-02-04 三菱レイヨン株式会社 Porous membrane
JPS6131165A (en) * 1984-07-23 1986-02-13 三菱レイヨン株式会社 Porous hollow yarn membrane
JPS6137252A (en) * 1984-07-31 1986-02-22 三菱レイヨン株式会社 Porous hollow yarn membrane

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652581A (en) * 1979-10-08 1981-05-11 Chuji Saito Moving gate type sea wave power plant
JPS57146567A (en) * 1981-03-06 1982-09-10 Nitto Electric Ind Co Ltd Apparatus for treating bacterial cell
JPS57149509A (en) * 1981-03-09 1982-09-16 Toray Ind Inc Preparation of hollow separating membrane
JPS6111054A (en) * 1984-06-25 1986-01-18 三菱レイヨン株式会社 Blood purification system
JPS6120560A (en) * 1984-07-10 1986-01-29 三菱レイヨン株式会社 Porous hollow yarn filter membrane
JPS6125566A (en) * 1984-07-13 1986-02-04 三菱レイヨン株式会社 Porous membrane
JPS6131165A (en) * 1984-07-23 1986-02-13 三菱レイヨン株式会社 Porous hollow yarn membrane
JPS6137252A (en) * 1984-07-31 1986-02-22 三菱レイヨン株式会社 Porous hollow yarn membrane

Also Published As

Publication number Publication date
JPS6190672A (en) 1986-05-08

Similar Documents

Publication Publication Date Title
D'souza Immobilized enzymes in bioprocess
Rosevear Immobilised biocatalysts—a critical review
Klibanov Immobilized enzymes and cells as practical catalysts
Abdelmajeed et al. Immobilization technology for enhancing bio-products industry
Ulbricht et al. Polyacrylonitrile enzyme ultrafiltration membranes prepared by adsorption, cross-linking, and covalent binding
JPS6321474B2 (en)
Brodelius Industrial applications of immobilized biocatalysts
JPH0611328B2 (en) Method for treating liquid using porous hollow fiber to which physiologically active substance is immobilized
Fernández-Lorente et al. Immobilization of proteins on glyoxyl activated supports: dramatic stabilization of enzymes by multipoint covalent attachment on pre-existing supports
JPH0416156B2 (en)
Vojtíšek et al. Immobilized cells
EP0069869B1 (en) A membrane and an arrangement for the removal of a substance from a solution
US4525457A (en) Method of immobilizing enzymatically active materials
Powell Developments in immobilized-enzyme technology
Mosbach The potential in biotechnology of immobilized cells and of immobilized multistep enzyme—coenzyme systems
JPS5826316B2 (en) Continuous reaction method using enzymes or microorganisms
Kitano et al. Hollow fiber enzyme reactors
Förster et al. Immobilization of citrate-producing Yarrowia lipolytica cells in polyelectrolyte complex capsules
JPH0611327B2 (en) Multi-layered hollow fiber having a physiologically active substance fixed thereto and a method for treating a liquid using the hollow fiber
JPH0364173B2 (en)
Chibata et al. Continuous enzyme reactions by immobilized microbial cells
Giorno Membrane bioreactors
CA1203187A (en) Immobilization of invertase on polyethylenimine- coated cotton cloth
Drioli Membranes and membrane processes in biotechnology
Keyes et al. Immobilized enzymes

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees