JPH0611279A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH0611279A
JPH0611279A JP17060192A JP17060192A JPH0611279A JP H0611279 A JPH0611279 A JP H0611279A JP 17060192 A JP17060192 A JP 17060192A JP 17060192 A JP17060192 A JP 17060192A JP H0611279 A JPH0611279 A JP H0611279A
Authority
JP
Japan
Prior art keywords
capillary tubes
heat exchanger
heat
refrigerant
capillary tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17060192A
Other languages
Japanese (ja)
Inventor
Toshiya Ueno
壽也 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP17060192A priority Critical patent/JPH0611279A/en
Publication of JPH0611279A publication Critical patent/JPH0611279A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To improve heat exchanging efficiency and reduce a heat exchanger to a compact size by a method wherein a plurality of capillary tubes made of metal in a helical form are juxtaposed, both the ends thereof are connected with headers, a first heating medium is passed through the capillary tubes and a second heating medium is then passed therethrough. CONSTITUTION:When air flows through a plurality of capillary tubes 12, it does so through the helical structures of the capillary tubes 12 in a turbulent condition. Refrigerant is supplied from an inlet opening 13a, run through the capillary tubes 12 in a zigzag direction and carried out from an outlet opening 13b. Since a plurality of juxtaposed capillary tubes 12 are made of metal, their heat conductivity can be improved. Moreover, since the capillary tubes 12 are made in a helical form, the refrigerant runs revolving in a turbulent condition to enable the heat conductivity of the refrigerant to be improved. The air flowing outside the capillary tubes 12 is revolved in a swirl form along the outside wall thereof on the central side of the helocal structure and, due to the combined effect of the turbulences, the air heat conductivity becomes even better.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は熱交換器、より詳細には
空気調和機等に使用される熱交換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to heat exchangers, and more particularly to heat exchangers used in air conditioners and the like.

【従来の技術及び発明が解決しようとする課題】近年、
空気調和機、特にルームエアコンの室内器のコンパクト
化に伴い、高効率でしかもコンパクトな熱交換器が要求
されている。一般に空気調和機等に用いられている熱交
換器は、伝熱管とフィンからなる、いわゆるフィンアン
ドチューブ熱交換器であり、この種フィンアンドチュー
ブ熱交換器を図7に示す。図中31はフィンアンドチュ
ーブ熱交換器を示しており、フィンアンドチューブ熱交
換器31は複数枚のフィン34と冷媒を流す伝熱管33
が一体的に接続されて構成されている。このフィンアン
ドチューブ熱交換器31は伝熱管33に冷媒を流し、フ
ィン34及び伝熱管33の間に空気を流して熱交換を図
っていた。しかし、このフィンアンドチューブ熱交換器
31にあっては、薄型化等によるコンパクト化には限界
がある。この欠点を解決するために、例えば特開平3ー
67994号公報に開示されたような熱交換器が提案さ
れている。該公報開示の熱交換器は樹脂中空糸により熱
交換器が構成され、樹脂中空糸により編成体を構成し、
屈曲性を持たせることにより熱交換器のコンパクト化を
図っていた。上記した従来の熱交換器においては、前記
樹脂中空糸を使用しているため、金属(銅、アルミニウ
ム等)に比べて、熱伝導率が低く、しかも耐圧、腐食等
の問題から冷媒を水等にせざるを得ず、熱交換効率の低
下は避けられないという課題があった。本発明はこのよ
うな課題に鑑み発明されたものであって、熱交換効率の
向上を図ることができ、しかもコンパクト化を図ること
ができる熱交換器を提供することを目的としている。
2. Description of the Related Art In recent years,
Along with the downsizing of air conditioners, especially indoor units of room air conditioners, highly efficient and compact heat exchangers are required. A heat exchanger generally used in an air conditioner or the like is a so-called fin-and-tube heat exchanger including heat transfer tubes and fins, and this kind of fin-and-tube heat exchanger is shown in FIG. In the figure, 31 indicates a fin-and-tube heat exchanger, and the fin-and-tube heat exchanger 31 includes a plurality of fins 34 and a heat transfer tube 33 through which a refrigerant flows.
Are integrally connected. In this fin-and-tube heat exchanger 31, heat is exchanged by causing a refrigerant to flow in the heat transfer tube 33 and causing air to flow between the fin 34 and the heat transfer tube 33. However, in this fin-and-tube heat exchanger 31, there is a limit to downsizing due to thinning or the like. In order to solve this drawback, for example, a heat exchanger as disclosed in Japanese Patent Laid-Open No. 3-67994 has been proposed. In the heat exchanger disclosed in the publication, a heat exchanger is composed of a resin hollow fiber, and a knitted body is composed of a resin hollow fiber,
The heat exchanger was made compact by giving it flexibility. In the above conventional heat exchanger, since the resin hollow fiber is used, the heat conductivity is lower than that of metal (copper, aluminum, etc.), and the refrigerant such as water is used because of problems such as pressure resistance and corrosion. Inevitably, there was a problem that the reduction of heat exchange efficiency was unavoidable. The present invention has been made in view of the above problems, and an object of the present invention is to provide a heat exchanger that can improve heat exchange efficiency and can be made compact.

【課題を解決するための手段】上記目的を達成するため
に本発明に係る熱交換器は、螺旋状に成形された金属製
の毛細管が複数本並列に配置されてその両端部がヘッダ
に接続され、前記毛細管内に第1の熱媒が通流され、前
記毛細管間に第2の熱媒が通流されることを特徴とし
(1)、また上記熱交換器において螺旋状に成形された
金属製の毛細管がさらに全体として円弧状等に屈曲形成
されていることを特徴とし(2)、また上記熱交換器に
おいて螺旋状に成形された金属製の毛細管の外表面に伝
熱フィンが形成されていることを特徴としている
(3)。
In order to achieve the above object, a heat exchanger according to the present invention has a plurality of spirally formed metal capillaries arranged in parallel and both ends of which are connected to a header. The first heat medium is passed through the capillaries, and the second heat medium is passed between the capillaries (1), and the metal formed in a spiral shape in the heat exchanger. The capillary tube made of metal is further bent in an arc shape as a whole (2), and heat transfer fins are formed on the outer surface of the spirally formed metal capillary tube in the heat exchanger. It is characterized by (3).

【作用】(1)記載の構成によれば、複数本並列に配置
された毛細管が金属製でしかも螺旋状に形成されてお
り、これら毛細管内に第1の熱媒が通流され、前記毛細
管間には第2の熱媒が通流されるので、前記毛細管内を
第1の熱媒が旋回しながら流れることにより、また前記
毛細管外を流れる第2の熱媒に渦状の流れが発生して、
乱流効果が生じることにより熱交換効率の向上が図られ
る。また(2)記載の構成によれば、前記毛細管が全体
として円弧状等に屈曲形成されているので、熱交換器の
表面積が増大すると共に前記熱交換器の占有スペースに
合わせて成型することができ、コンパクト化を図ること
が可能となる。さらに(3)記載の構成によれば、前記
毛細管の外表面に伝熱フィンが形成されているので、第
2の熱媒との熱交換面積が増大することとなり、またフ
ィンの前縁効果により、より一層熱伝達率が向上し、さ
らなる高効率化及びコンパクト化を図ることが可能とな
る。
According to the configuration described in (1), a plurality of capillaries arranged in parallel are made of metal and are formed in a spiral shape, and the first heat medium is passed through these capillaries, Since the second heat medium flows between them, the first heat medium swirls and flows in the capillary tube, and a spiral flow is generated in the second heat medium flowing outside the capillary tube. ,
Due to the turbulent flow effect, the heat exchange efficiency is improved. Further, according to the configuration of (2), since the capillary tube is bent and formed in an arc shape as a whole, the surface area of the heat exchanger is increased, and the capillary tube can be molded in accordance with the space occupied by the heat exchanger. Therefore, it becomes possible to achieve compactness. Further, according to the configuration described in (3), since the heat transfer fins are formed on the outer surface of the capillary tube, the heat exchange area with the second heat medium increases, and due to the leading edge effect of the fins. Further, the heat transfer coefficient is further improved, and it is possible to achieve higher efficiency and compactness.

【実施例】以下、本発明に係る熱交換器の実施例を図面
に基づいて説明する。図1は実施例に係る熱交換器を示
した概略斜視図であり、図2は毛細管内における冷媒の
流れを示した拡大部分断面図である。また図3は毛細管
間における空気の流れを示した部分拡大図である。図中
11は熱交換器を示しており、熱交換器11の上下部に
はヘッダ13が配設されており、上下のヘッダ13の間
には螺旋状に形成された金属製(例えば銅またはアルミ
ニウム製)の毛細管12が複数本並列に毛細管群16と
して配置されている。またこの毛細管12は、内径数百
μmから数mmに形成されており、毛細管12は上下の
ヘッダ13にろう付け等により接続されている。また上
部ヘッダ13の側面には熱媒の流入口13aが形成さ
れ、下部のヘッダ13の側面には熱媒の流出口13bが
形成され、熱媒が毛細管12内を通流するようになって
いる。上記の如く構成された熱交換器11にあっては、
図1の矢印で示したように、空気は複数本の毛細管12
間を通流する。このとき図3に示したように毛細管12
の螺旋構造の間を乱流状態となって通流する。また冷媒
は流入口13aから流入し、図2に示したように毛細管
12内を蛇行しながら流れ、流出口13bから流出す
る。以上説明したように実施例に係る熱交換器11にあ
っては、複数本並列に配置された毛細管12が金属で形
成されているので、熱伝導率を向上させることができ、
しかも毛細管12が螺旋状に形成されているため、毛細
管12内を冷媒が旋回しながら乱流状態となって流れ、
冷媒側の熱伝達率を向上させることができる。また毛細
管12間には第2の熱媒の空気が通流し、螺旋構造によ
り空気側の伝熱面積を増大させることができる。さら
に、毛細管12外を流れる空気には、螺旋構造中心側の
管外壁に沿う渦状の旋回成分が発生し、乱流混合効果に
より、空気側における熱伝達率がより一層良好となり、
熱交換効率を向上させることができる。また図4、図5
は熱交換器の別の実施例を概略的に示した正面図であ
る。図4において、図中26aは毛細管群を示してお
り、毛細管群26aは円弧状に屈曲形成されてヘッダ2
3に接続されており、一方のヘッダ23には冷媒の流入
口(図示せず)が形成されており、他方のヘッダ23に
は冷媒の流出口23bが形成されている。また図5にお
いて、図中26bは毛細管群を示しており、毛細管群2
6bは蛇行状に屈曲形成されてヘッダ23に接続されて
おり、一方のヘッダ23には冷媒の流入口(図示せず)
が形成されており、他方のヘッダ23には冷媒の流出口
23bが形成されている。上記した実施例によれば、毛
細管群26a、26bが円弧状もしくは蛇行状等に屈曲
形成されているので、熱交換器の表面積を増大させると
共に熱交換器の占有スペースに合わせて成型することが
でき、より一層のコンパクト化を図ることが可能とな
る。また図6(a)、(b)は熱交換器のさらに別の実
施例の要部を概略的に示した正面断面図及び斜視図であ
る。図中32は毛細管を示しており、毛細管32の外表
面に伝熱フィン30が螺旋状に形成されている。上記し
た実施例によれば、毛細管32の外表面に伝熱フィン3
0を形成することにより、空気側における熱交換面積を
増大させることができ、伝熱フィン30の前縁効果によ
り、より一層空気側熱伝達率を向上させることができ、
さらなる高効率化及びコンパクト化を図ることができ
る。
Embodiments of the heat exchanger according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic perspective view showing a heat exchanger according to an embodiment, and FIG. 2 is an enlarged partial sectional view showing a flow of a refrigerant in a capillary tube. FIG. 3 is a partially enlarged view showing the flow of air between the capillaries. Reference numeral 11 in the drawing denotes a heat exchanger, and a header 13 is arranged at the upper and lower portions of the heat exchanger 11, and a metal (for example, copper or copper) formed in a spiral shape is provided between the upper and lower headers 13. A plurality of capillary tubes 12 made of aluminum) are arranged in parallel as a capillary tube group 16. The capillary tube 12 is formed with an inner diameter of several hundred μm to several mm, and the capillary tube 12 is connected to the upper and lower headers 13 by brazing or the like. A heat medium inlet 13a is formed on the side surface of the upper header 13, and a heat medium outlet 13b is formed on the side surface of the lower header 13, so that the heat medium flows through the capillary tube 12. There is. In the heat exchanger 11 configured as described above,
As indicated by the arrow in FIG. 1, air is a plurality of capillaries 12
Flow between. At this time, as shown in FIG.
A turbulent state flows between the spiral structures of. Further, the refrigerant flows in from the inflow port 13a, flows meandering in the capillary tube 12 as shown in FIG. 2, and flows out from the outflow port 13b. As described above, in the heat exchanger 11 according to the embodiment, since the plurality of capillaries 12 arranged in parallel are made of metal, the thermal conductivity can be improved,
Moreover, since the capillary tube 12 is formed in a spiral shape, the refrigerant swirls in the capillary tube 12 in a turbulent state,
The heat transfer coefficient on the refrigerant side can be improved. Further, the air of the second heat medium flows between the capillaries 12 and the heat transfer area on the air side can be increased by the spiral structure. Further, in the air flowing outside the capillary tube 12, a swirling swirl component along the tube outer wall on the center side of the spiral structure is generated, and the turbulent mixing effect further improves the heat transfer coefficient on the air side.
The heat exchange efficiency can be improved. 4 and 5
FIG. 7 is a front view schematically showing another embodiment of the heat exchanger. In FIG. 4, reference numeral 26a indicates a capillary tube group, and the capillary tube group 26a is bent in an arc shape to form the header 2
3, a refrigerant inlet (not shown) is formed in one header 23, and a refrigerant outlet 23b is formed in the other header 23. Further, in FIG. 5, reference numeral 26b in the figure denotes a capillary group, and the capillary group 2
6b is bent in a meandering shape and connected to the header 23, and one header 23 has a refrigerant inlet port (not shown).
Is formed, and the other header 23 is formed with a refrigerant outlet port 23b. According to the above-described embodiment, since the capillary groups 26a and 26b are bent and formed in an arc shape or a meandering shape, it is possible to increase the surface area of the heat exchanger and mold the heat exchanger in accordance with the occupied space of the heat exchanger. Therefore, it is possible to further reduce the size. 6 (a) and 6 (b) are a front sectional view and a perspective view schematically showing a main part of still another embodiment of the heat exchanger. In the figure, reference numeral 32 denotes a capillary tube, and the heat transfer fins 30 are spirally formed on the outer surface of the capillary tube 32. According to the embodiment described above, the heat transfer fins 3 are formed on the outer surface of the capillary tube 32.
By forming 0, the heat exchange area on the air side can be increased, and the front edge effect of the heat transfer fins 30 can further improve the air side heat transfer coefficient.
Further high efficiency and compactness can be achieved.

【発明の効果】以上詳述したように本発明に係る熱交換
器にあっては、螺旋状に成形された金属製の毛細管が複
数本並列に配置されてその両端部がヘッダに接続され、
前記毛細管内に第1の熱媒が通流され、前記毛細管間に
第2の熱媒が通流されるので、伝熱面積の増大により熱
交換効率を向上させることができる。しかも前記毛細管
内における第1の熱媒を旋回させながら乱流状態で流す
ことができ、また前記毛細管外を流れる第2の熱媒に渦
状の流れを発生させることができ、乱流効果により熱交
換効率の向上を図ることができる。また本発明に係る熱
交換器にあって、螺旋状に成形された金属製の毛細管が
さらに全体として円弧状等に屈曲形成されている場合に
は、熱交換器の表面積を増大させると共に前記熱交換器
の占有スペースに合わせて成型することができ、さらな
るコンパクト化を図ることができる。さらに本発明に係
る熱交換器にあって、前記毛細管外表面に伝熱フィンが
形成されている場合には、第2の熱媒との熱交換面積が
増大することとなり、またフィンの前縁効果により、よ
り一層熱伝達率が向上し、さらなる高効率化及びコンパ
クト化を図ることができる。
As described in detail above, in the heat exchanger according to the present invention, a plurality of spirally formed metal capillaries are arranged in parallel and both ends thereof are connected to the header.
Since the first heat medium flows through the capillaries and the second heat medium flows between the capillaries, the heat transfer efficiency can be improved by increasing the heat transfer area. Moreover, the first heat medium in the capillary tube can be swirled in a turbulent state while being swirled, and a vortex flow can be generated in the second heat medium flowing outside the capillary tube. The exchange efficiency can be improved. Further, in the heat exchanger according to the present invention, when the spirally formed metal capillary tube is further bent and formed into an arc shape as a whole, the surface area of the heat exchanger is increased and the heat It can be molded according to the space occupied by the exchanger, and can be made more compact. Further, in the heat exchanger according to the present invention, when the heat transfer fins are formed on the outer surface of the capillary tube, the heat exchange area with the second heat medium is increased, and the front edge of the fin is increased. Due to the effect, the heat transfer coefficient is further improved, and higher efficiency and compactness can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る熱交換器の実施例を示す概略斜視
図である。
FIG. 1 is a schematic perspective view showing an embodiment of a heat exchanger according to the present invention.

【図2】実施例に係る毛細管内の冷媒の流れを示す拡大
部分断面図である。
FIG. 2 is an enlarged partial cross-sectional view showing the flow of the refrigerant in the capillary tube according to the example.

【図3】実施例に係る毛細管外の空気の流れを示す部分
拡大図である。
FIG. 3 is a partially enlarged view showing the flow of air outside the capillary tube according to the embodiment.

【図4】本発明に係る熱交換器の別の実施例を示す毛細
管群の正面図である。
FIG. 4 is a front view of a capillary group showing another embodiment of the heat exchanger according to the present invention.

【図5】本発明に係る熱交換器のさらに別の実施例を示
す毛細管群の正面図である。
FIG. 5 is a front view of a capillary group showing still another embodiment of the heat exchanger according to the present invention.

【図6】(a)(b)は本発明に係る熱交換器のさらに
別の実施例を示す毛細管の正面断面図及び斜視図であ
る。
6 (a) and 6 (b) are a front sectional view and a perspective view of a capillary tube showing still another embodiment of the heat exchanger according to the present invention.

【図7】従来のフィンアンドチューブ式熱交換器を示す
概略斜視図である。
FIG. 7 is a schematic perspective view showing a conventional fin-and-tube heat exchanger.

【符号の説明】[Explanation of symbols]

11 熱交換器 12、22、32 毛細管 13、23 ヘッダ 30 伝熱フィン 11 Heat Exchanger 12, 22, 32 Capillary Tube 13, 23 Header 30 Heat Transfer Fin

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 螺旋状に成形された金属製の毛細管が複
数本並列に配置されてその両端部がヘッダに接続され、
前記毛細管内に第1の熱媒が通流され、前記毛細管間に
第2の熱媒が通流されることを特徴とする熱交換器。
1. A plurality of spirally formed metal capillaries are arranged in parallel and both ends thereof are connected to a header.
A heat exchanger characterized in that a first heat medium flows through the capillaries and a second heat medium flows between the capillaries.
【請求項2】 螺旋状に成形された金属製の毛細管がさ
らに全体として円弧状等に屈曲形成されている請求項1
記載の熱交換器。
2. The spirally formed metal capillary tube is further bent and formed in an arc shape or the like as a whole.
The heat exchanger described.
【請求項3】 螺旋状に成形された金属製の毛細管の外
表面に伝熱フィンが形成されている請求項1または請求
項2記載の熱交換器。
3. The heat exchanger according to claim 1, wherein the heat transfer fins are formed on the outer surface of the spirally formed metal capillary tube.
JP17060192A 1992-06-29 1992-06-29 Heat exchanger Pending JPH0611279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17060192A JPH0611279A (en) 1992-06-29 1992-06-29 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17060192A JPH0611279A (en) 1992-06-29 1992-06-29 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH0611279A true JPH0611279A (en) 1994-01-21

Family

ID=15907877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17060192A Pending JPH0611279A (en) 1992-06-29 1992-06-29 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH0611279A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321904A (en) * 1986-07-11 1988-01-29 花王株式会社 Disposable diaper
KR20020094153A (en) * 2001-06-11 2002-12-18 엘지전자 주식회사 a tube of heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321904A (en) * 1986-07-11 1988-01-29 花王株式会社 Disposable diaper
KR20020094153A (en) * 2001-06-11 2002-12-18 엘지전자 주식회사 a tube of heat exchanger

Similar Documents

Publication Publication Date Title
US5036909A (en) Multiple serpentine tube heat exchanger
JP3105901U (en) Fin-tube heat exchanger
JPH04155194A (en) Heat exchanger
JPH08136176A (en) Corrugated fin type heat exchanger
WO2011000137A1 (en) Microchannel parallel-flow all-aluminum flat-tube weld-type heat exchanger and use of same
JPH04187990A (en) Heat exchanging device
CN110822942B (en) Three-dimensional cobweb laminated tube type heat exchanger based on bionics
JP3284904B2 (en) Heat exchanger
JPH0611279A (en) Heat exchanger
JPH0755369A (en) Heat exchanger
JP2001133076A (en) Heat exchanger
US6325140B1 (en) Fin and tube type heat exchanger
JPH04136690A (en) Heat exchanger
CN209689459U (en) Fin assembly, micro-channel heat exchanger and air conditioner
JPH04340094A (en) Heat exchanger
JPS62131195A (en) Heat exchanger
JPH11264674A (en) Parallel flow heat exchanger
AU2020476620B2 (en) Indoor heat exchanger and indoor unit of air-conditioning apparatus
CN215261362U (en) Copper pipe for heat exchanger, heat exchanger and air conditioner
CN216347958U (en) Heat exchanger and electrical equipment
JP3836966B2 (en) Tube for heat exchanger
JPS616591A (en) Finned heat exchanger
JPS6222992A (en) Multi-tubular heat exchanger
JPH1019480A (en) Air conditioner
KR0165069B1 (en) Flat tube type heat exchanger