JPH06112649A - Manufacture of interlayer connector of multilayer printed board - Google Patents

Manufacture of interlayer connector of multilayer printed board

Info

Publication number
JPH06112649A
JPH06112649A JP25483292A JP25483292A JPH06112649A JP H06112649 A JPH06112649 A JP H06112649A JP 25483292 A JP25483292 A JP 25483292A JP 25483292 A JP25483292 A JP 25483292A JP H06112649 A JPH06112649 A JP H06112649A
Authority
JP
Japan
Prior art keywords
layer
copper foil
outermost
circuit
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25483292A
Other languages
Japanese (ja)
Inventor
Morio Take
杜夫 岳
Hidenori Kanehara
秀憲 金原
Mitsuo Ejiri
三雄 江尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP25483292A priority Critical patent/JPH06112649A/en
Publication of JPH06112649A publication Critical patent/JPH06112649A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE:To manufacture an ultrahigh-density multilayer printed wiring board by specifying the thicknesses of the outermost copper foil and an inner layer circuit copper foil, and opening a hole by the irradiation with an excimer laser, and electrically connecting the two copper foil layers with each other by electroless plating or conductive coating at least. CONSTITUTION:In the process of electrically connecting the outermost copper foil layer 4 and he copper layer 2 for an inner circuit with each other through a through hole, the thickness of the copper foil layer 4 to be made the circuit of the outermost layer is 10mum or under, and the thickness of the inner-layer circuit copper foil 2 to electrically connect with the outermost copper 4 by a through hole is 15mum or under. And, a hole 5 is opened in the outermost-layer copper foil 4 and a resin film 3, and further one part of the inner-layer copper foil 2. Next, the two copper foil layers are connected electrically by electroless plating or conductive coating at least. Hereby, it becomes possible to make the through hole between the outermost-layer circuit conductor and the inner- layer circuit conductor easily and besides in the minimum diameter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多層印刷配線板(多層
プリント板)の製造方法に関し、特に、超高密度の多層
プリント板を製造するに好適な方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a multilayer printed wiring board (multilayer printed board), and more particularly to a method suitable for manufacturing a super high density multilayer printed board.

【0002】[0002]

【従来の技術】通常の多層プリント板は、ガラス布基材
エポキシ樹脂銅張積層板等(中間層用銅張板)の銅張積
層板をエッチング加工し回路を形成し、ガラス布基材エ
ポキシ樹脂プリプレグなどの接着シートを用いて、加熱
加圧して多層化し貫通孔をあけ、無電解めっきや電解め
っきし最終的に外層回路をエッチング加工して形成し、
多層プリント板を製造する。
2. Description of the Related Art Ordinary multilayer printed boards are produced by etching glass-clad laminates such as glass cloth-based epoxy resin copper-clad laminates (intermediate-layer copper-clad laminates) to form circuits. Using an adhesive sheet such as resin prepreg, heat and pressure to make multiple layers to open through holes, electroless plating or electrolytic plating, and finally form the outer layer circuit by etching,
Manufacture multilayer printed boards.

【0003】しかし、ガラス布基材熱硬化性樹脂の絶縁
層をドリル孔あけする場合、ガラス布の影響で直径0.
20mm以下のような小径の孔あけが難かしく又は、非
常に高価になる問題がある。
However, when a glass cloth-based thermosetting resin insulating layer is drilled, the diameter of the glass cloth is 0.
There is a problem that it is difficult to make a hole having a small diameter of 20 mm or less, or it becomes very expensive.

【0004】この問題を解決するため、絶縁層としてガ
ラス布を使わないで、樹脂層のみ、もしくは、有機繊維
で補強された樹脂層で形成する“ノンガラス布”多層板
が提案されている。これは、ガラス布基材熱硬化性樹脂
積層板や、金属板、セラミック板等の基板の上に、樹脂
絶縁層次いで、導体層、さらにこのくり返しの構成の多
層プリント板である。
In order to solve this problem, there has been proposed a "non-glass cloth" multilayer board which is formed of a resin layer alone or a resin layer reinforced with organic fibers without using a glass cloth as an insulating layer. This is a multi-layer printed board having a glass cloth-based thermosetting resin laminated board, a metal insulating board, a ceramic board, and the like, a resin insulating layer, a conductor layer, and a repeating structure.

【0005】この多層板の導通孔の形成には、2通りあ
り、1つは、樹脂絶縁層として、光硬化性を有する樹脂
組成物を基板上に均一に塗装した後、導通孔とすべき部
分以外を光硬化し、光硬化してない部分を除去する方法
である。この場合、導体は少なくとも無電解めっきで樹
脂面めっきし、次いで、エッチング等により回路形成す
る。
There are two types of formation of the through holes of this multilayer board. One is to form the through holes after uniformly coating a resin composition having photocurability as a resin insulating layer on a substrate. It is a method of photo-curing the parts other than the part and removing the parts that are not photo-cured. In this case, the conductor is at least electrolessly plated on the resin surface, and then a circuit is formed by etching or the like.

【0006】他の方法は、銅はくなどの金属はくと、フ
ィルム状で半硬化状態の熱硬化性樹脂フィルムを重さね
て、加圧加熱により銅はくを基板に接着する。この場
合、導通孔は、ドリルで孔あけする方法及び導通孔部分
に位置する銅はくを、選択的にエッチング除去した後、
エクシマレーザー等のレーザー光を照射して、樹脂を除
去し、導通孔を形成する方法が知られている。
According to another method, a metal foil such as a copper foil and a thermosetting resin film in a film-like and semi-cured state are stacked, and the copper foil is bonded to a substrate by heating under pressure. In this case, the conductive hole is a method of drilling a hole and a copper foil located in the conductive hole portion is selectively etched and removed,
A method is known in which a resin is removed by irradiating a laser beam such as an excimer laser to form a conductive hole.

【0007】導通孔の孔壁は、少なくとも無電解めっき
で樹脂めっきされたり、銀ペイントなどの導電性塗料を
埋める事により導電化される。以上、2つの方法とも、
多層回路化する為には、絶縁層の形成と導体形成をくり
返す事になるが、非常に長い工程を必要とする欠点があ
った。
The wall of the conductive hole is made conductive by at least resin plating by electroless plating or by filling a conductive paint such as silver paint. Above, both methods
In order to form a multi-layer circuit, the formation of the insulating layer and the formation of the conductor are repeated, but there is a drawback that a very long process is required.

【0008】[0008]

【発明が解決しようとする課題】本発明は、最外層回路
導体と導通させようとする内層回路導体部間を、最外層
導体の厚さを10μm以下とし、すでに回路形成された
内層回路導体の厚さを15μm以上にして、半硬化性樹
脂フィルムを絶縁層とすべく加熱加圧により多層化され
た板を、最外層回路導体の外部より、導通孔形成部分に
エクシマレーザーを用いて孔あけし最外層銅はくと、絶
縁層と、内層回路銅はく表面の1部分を除去して導通孔
を形成し、次いで無電解めっきや導電性塗料で2つの導
体間を導通させる方法に関するものである。
DISCLOSURE OF THE INVENTION According to the present invention, the thickness of the outermost layer conductor is set to 10 μm or less between the inner layer circuit conductor portions which are intended to be electrically connected to the outermost layer circuit conductor, and the inner layer circuit conductor already formed in the circuit is formed. A plate, which has a thickness of 15 μm or more and is multilayered by heating and pressing so that a semi-curable resin film serves as an insulating layer, is drilled from the outside of the outermost layer circuit conductor in a portion where a conductive hole is formed using an excimer laser. The outermost layer copper foil, the insulating layer, and a part of the inner layer circuit copper foil surface are removed to form a conduction hole, and then electroless plating or a conductive paint is used to make the two conductors electrically conductive. Is.

【0009】本方法によれば、樹脂表面をあらした後無
電解めっきで回路導体を形成する事の工程のハン雑さ
や、導体層と樹脂層の接着力低下の問題もなく、又、最
外層銅はくの孔形成部分のエッチング除去工程も不要で
あり、通常の多層プリント板製造プロセスとは、孔あけ
が、ドリル孔あけにかえて、レーザー孔あけにする以外
はほぼ同様なプロセスで、孔径が100ミクロン以下の
導通孔を有する多層プリント板を短かい工程で経済的
に、しかも高性能で形成する事が可能であり、実用性の
高い超高密度多層プリント板を作れることが特徴であ
る。
According to this method, there is no problem in the process of forming a circuit conductor by electroless plating after the surface of the resin is roughened, there is no problem of a decrease in the adhesive strength between the conductor layer and the resin layer, and the outermost layer. The etching removal step of the hole forming part of the copper foil is also unnecessary, and the normal multilayer printed board manufacturing process is almost the same process as drilling instead of drilling, but laser drilling, It is possible to form a multi-layer printed circuit board having a conductive hole with a hole diameter of 100 microns or less in a short process economically and with high performance, and it is possible to make a highly practical super high density multi-layer printed circuit board. is there.

【0010】[0010]

【課題を解決するための手段】すなわち、本発明は、多
層プリント板の製造工程において、少なくとも最外層の
回路とすべき銅はく層と、内層回路が形成された銅はく
層間を、半硬化性樹脂フィルムを用いて接着硬化されて
いる構成の多層化したプリント板材料において、該最外
層用銅はく層と内層回路用銅はく層間を、スルーホール
導通させる工程で、最外層の回路とすべき銅はく層の厚
さを10μm以下とし、最外層銅はくをスルーホールに
より導通させるべき内層回路銅はくの厚さを15μm以
上とし、導通孔形成部を、最外層銅はくの外部よりエク
シマレーザーを照射し、最外層銅はくと樹脂フィルムと
さらに内層銅はくの1部を孔あけし、次いで、少なくと
も無電解めっき又は導電性塗料で、2つの銅はく層を導
通させる事を特徴とする、多層プリント板の層間接続の
製造方法の製造方法である。
That is, according to the present invention, in the manufacturing process of a multilayer printed board, at least the copper foil layer to be the outermost circuit and the copper foil layer on which the inner layer circuit is formed are separated by half. In a multilayer printed board material having a configuration in which it is adhesively cured using a curable resin film, the outermost layer copper foil layer and the inner layer circuit copper foil layer are provided with through-hole conduction in the outermost layer. The thickness of the copper foil layer to be made into a circuit is 10 μm or less, the thickness of the inner layer circuit copper foil to which the outermost copper foil is to be conducted by a through hole is 15 μm or more, and the conduction hole forming portion is the outermost copper layer. Irradiating an excimer laser from the outside of the foil, perforating the outermost copper foil, the resin film and a part of the inner copper foil, and then using at least electroless plating or conductive paint, two copper foils are used. Characterized by conducting layers And a method for manufacturing an interlayer connection of a multilayer printed board.

【0011】本発明をより具体化する為に、ガラス布基
材エポキシ樹脂銅張積層板を基板とし、その表裏に絶縁
層をかいして銅回路を有する4層多層プリント板につい
てのべる。
In order to further embody the present invention, a four-layer multilayer printed board having a glass cloth-based epoxy resin copper-clad laminate as a substrate and an insulating layer on the front and back sides to form a copper circuit will be described.

【0012】基板の銅はくを公知の方法で、エッチング
により銅はくを用いた回路を形成し内層用両面回路板を
作る。この場合、導体厚さは15μm以上、好ましくは
20μm以上とする。
The copper foil of the substrate is formed by a known method to form a circuit using the copper foil by etching to form a double-sided circuit board for inner layer. In this case, the conductor thickness is 15 μm or more, preferably 20 μm or more.

【0013】該内層両面回路板は、公知の方法で、ドリ
ル孔あけされ、スルーホールめっきされた両面回路板で
あってもよい。又、該内層両面回路板の回路には、最外
層と導通させるべき部分(パッド)を少なくとも1個以
上形成する。
The inner layer double-sided circuit board may be a double-sided circuit board which is drilled and through-hole plated by a known method. In addition, at least one portion (pad) to be electrically connected to the outermost layer is formed in the circuit of the inner layer double-sided circuit board.

【0014】次いで内層両面回路板の表裏面に、半硬化
樹脂フィルムを置き、さらに、厚さ10μ以下好ましく
は6μ以下の極薄銅はくをおき、加熱硬化により、内層
両面回路板と極薄銅はくを1体化し、4層の導体層を有
する板を作るか、厚さ10μm以上の銅はくを使い加熱
硬化して1体化した後、銅はくをエッチングして10μ
m以下の厚さに形成する。ここでいう半硬化樹脂フィル
ムとは、加熱により流動し、次いで熱硬化し、基板やご
くうす銅はくと接着性の高いフィルム状の樹脂を言い、
厚さは10μm以上200μm以下が好適である。樹脂
の種類は、エポキシ樹脂、ポリイミド樹脂、シアネート
樹脂しなどの公知の熱硬化性樹脂と、ポリブタジエン、
アクリロニトリル、ブタジエンなどのゴム類、ポリフエ
ニレンオキサイド、ポリエーテルイミドなどのエンジニ
アリングプラスチック、アクリル樹脂などの高分子量可
塑性樹脂とを混合又は、部分的に反応してあるフィルム
状樹脂が例示される。勿論、熱硬化に必要な硬化剤や触
媒を必要に応じて混合し、樹脂溶液を離型性フィルムに
塗布乾燥してフィルム形成する方法や加熱溶融混合して
フィルム形成する方法などにより作られる。
Next, a semi-cured resin film is placed on the front and back surfaces of the inner layer double-sided circuit board, and an ultra-thin copper foil having a thickness of 10 μm or less, preferably 6 μm or less is further placed on the inner-layer double-sided circuit board and the ultrathin film. Copper foil is integrated into a plate with four conductor layers, or a copper foil with a thickness of 10 μm or more is heat-cured to be integrated, and then the copper foil is etched to 10 μm.
It is formed to a thickness of m or less. The semi-cured resin film referred to here is a film-like resin having high adhesiveness to a substrate or a very thin copper foil, which is fluidized by heating and then thermally cured,
The thickness is preferably 10 μm or more and 200 μm or less. The types of resin are known thermosetting resins such as epoxy resin, polyimide resin, cyanate resin, polybutadiene,
Examples of the film-like resin are those which are mixed with or partially reacted with rubbers such as acrylonitrile and butadiene, engineering plastics such as polyphenylene oxide and polyetherimide, and high molecular weight plastic resins such as acrylic resins. Of course, a curing agent and a catalyst necessary for heat curing are mixed as necessary, and a resin solution is applied to a releasable film and dried to form a film, a method of heating and melting and mixing to form a film.

【0015】10μm以下の厚さの極薄銅はくとは、公
知のプラスチックフィルムやアルミはくに厚さ10μm
以下に銅めっきをして作られたアルミはくやフィルムで
保護一体化された銅はくや、ステンレス板等の担体に厚
さ10μm以下の銅めっきをして作られた、ステンレス
板を担体とする銅はく、又は、アルミはくやプラスチッ
クフィルムと接着された、厚さ10μm以下の銅はくで
ある。
An ultra-thin copper foil having a thickness of 10 μm or less is a known plastic film or aluminum foil having a thickness of 10 μm.
Aluminum foil or copper foil made by plating the following with copper foil integrated with the film, or stainless steel plate made by plating the carrier such as stainless steel plate with a thickness of 10 μm or less Is a copper foil having a thickness of 10 μm or less, which is bonded to an aluminum foil or a plastic film.

【0016】又は、10μm以上の厚さの銅はくと、フ
ィルム性接着剤で加熱加圧して1体化した後公知の過酸
化水素/硫酸液等により、銅表面を均一にエッチングし
て、途中でとめ、厚さ10μm以下の銅はくを残す事に
より、厚さ10μm以下の銅はくが接着された形の板と
する方法がある。
Alternatively, a copper foil having a thickness of 10 μm or more is heated and pressed with a film adhesive to be integrated, and the copper surface is uniformly etched with a known hydrogen peroxide / sulfuric acid solution. There is a method of forming a plate in which a copper foil having a thickness of 10 μm or less is adhered by leaving the copper foil having a thickness of 10 μm or less by leaving it halfway.

【0017】銅はくと基板をフィルム状接着剤を用いて
加熱加圧により1体化する方法としては、公知の加熱加
圧によるプレス成形や、加熱されたロール間を通して作
るロール成形などを使う。
As a method of unifying the copper foil and the substrate with a film adhesive by heating and pressing, known press forming by heating and pressurizing, roll forming by passing between heated rolls, and the like are used. .

【0018】又、フィルム状接着剤の熱硬化が不充分な
場合、加熱炉内で後硬化する事もできる。10μm以下
の最外層銅はくと内層回路導体を導通させようとする部
分を、エクシマレーザーを用いて孔あけする。
When the film adhesive is insufficiently heat-cured, it can be post-cured in a heating furnace. A portion where the outermost copper foil having a thickness of 10 μm or less and the inner layer circuit conductor are intended to be conducted is bored using an excimer laser.

【0019】エクシマレーザーとは、Xe,Kr,A
r,Ne,He等の希ガスとF,Cl,Br等のハロゲ
ンガスを放電等により励起状態にした後、基底状態に戻
るときに発する光を誘導・増幅して得られるレーザー光
であり、通常0.01〜100J/cm2 程度のエネル
ギー密度で使用する。又、照射ショット数は銅箔厚み、
樹脂フィルム層厚み、孔径、孔深さ等により適する条件
は異なるが通常10〜1000ショットで加工する。
Excimer laser means Xe, Kr, A
A laser beam obtained by inducing and amplifying light emitted when returning to a ground state after a rare gas such as r, Ne, or He and a halogen gas such as F, Cl, or Br are excited by discharge or the like, Usually, it is used at an energy density of about 0.01 to 100 J / cm 2 . The number of irradiation shots is the copper foil thickness,
Suitable conditions vary depending on the resin film layer thickness, pore diameter, pore depth, etc., but usually 10 to 1000 shots are processed.

【0020】エネルギー密度のコントロールは通常、出
力エネルギー、マスクの開孔寸法及びレーザー光の縮小
率により行なう。エクシマレーザーによる孔あけは、あ
けるべき孔の深さをパルスによりセイギョ可能である
が、銅はくや絶縁層の厚さバラツキにより内層導体回路
表面を充分露出させ、又、接着力を向上するために、内
層銅はく表面に酸化銅膜を形成している場合の酸化銅膜
の完全除去の為、内層銅はく表面から2〜10μmさら
に、レーザーで孔あけする事が好ましい。
The energy density is usually controlled by the output energy, the size of the mask aperture and the reduction rate of the laser beam. In excimer laser drilling, the depth of the hole to be drilled can be adjusted by a pulse, but the inner conductor circuit surface is sufficiently exposed due to the variation in the thickness of the copper foil and insulating layer, and the adhesive strength is improved. In addition, in order to completely remove the copper oxide film when the copper oxide film is formed on the surface of the inner layer copper foil, it is preferable to further perforate 2 to 10 μm from the surface of the inner layer copper foil with a laser.

【0021】本発明は、銅はく厚さが10μm以下、好
ましくは6μm以下にする事により、絶縁樹脂層をレー
ザー孔あけすると同一のエクシマレーザーエネルギーで
外層銅はく層で、絶縁樹脂層及び内層銅はくの一部を孔
あけする事が特徴である。
According to the present invention, the thickness of the copper foil is set to 10 μm or less, preferably 6 μm or less, so that when the insulating resin layer is laser-drilled, the outer copper foil layer, the insulating resin layer and the insulating resin layer are formed with the same excimer laser energy. The feature is that a part of the inner layer copper foil is drilled.

【0022】孔あけされた導通用の孔は、公知無電解め
っきプロセス、電解めっき、などのめっき及び、銅粉や
銀粉を熱硬化性樹脂に混練した導電性塗料の充てん、熱
硬化などの方法による。
The holes for conduction that have been bored are plated by a known electroless plating process, electrolytic plating, or the like, and a method such as filling with a conductive coating obtained by kneading a copper powder or silver powder with a thermosetting resin, or thermosetting. by.

【0023】フィルム状絶縁体の孔壁と、めっき層や導
電塗料との密着性を向上するために、孔壁の樹脂表面
を、硫酸や過マンガン酸カリウム塩液により粗化する方
法をとることができる。
In order to improve the adhesion between the hole wall of the film-like insulator and the plating layer or the conductive paint, the resin surface of the hole wall is roughened with sulfuric acid or potassium permanganate salt solution. You can

【0024】最終的に、最外層導体を公知の方法により
選択的にエッチングして、最外層回路を形成し多層回路
板を製造する。最外層回路を形成する前に必要に応じ四
つの層を貫通する孔を、ドリルを用いて孔あけした後、
スルーホールめっきをほどこし、そして最外層回路を形
成する事もできる。
Finally, the outermost layer conductor is selectively etched by a known method to form an outermost layer circuit to manufacture a multilayer circuit board. Before forming the outermost layer circuit, if necessary, after making a hole through the four layers using a drill,
Through-hole plating can be applied to form the outermost layer circuit.

【0025】同様に6層多層プリント板の製法を説明す
る。4層板と同様の基板を用い、必要に応じてエッチン
グにより回路形成する。必要に応じ、最外層銅はくと導
通すべきランドを形成する。
Similarly, a method for producing a 6-layer multilayer printed board will be described. A substrate similar to the four-layer plate is used, and if necessary, a circuit is formed by etching. If necessary, the outermost copper foil and the land to be conducted are formed.

【0026】厚さ15μm以上、好ましくは20μm以
上の銅はくと、厚さ10〜200μm、好ましくは、5
0〜150μmのフィルム状接着剤を用い加熱加圧し一
体化し4層板とする。銅はくを公知の方法でエッチング
し、内層回路(L2, L5 層) を形成し、必要に応じて最外
層(L1, L6 層) と基板上のランド(L3, L4 層) とを導通
すべき部分の導体(L2, L5 層) は除去しておく。導通す
べきランドを少なくとも1個以上形成する。さらに、内
層回路形成した4層板の表裏に、厚さ10〜200μm
のフィルム状接着剤と、さらにその外層に厚さ10μm
以下の銅はくを置いて、加熱加圧により1体化する。次
いで最外層銅はくの外面より、その次の導通すべき層の
銅回路のランド部との孔あけ、及び最外層銅はくと基板
に形成した回路導体間の孔あけをエクシマレーザーによ
り行なう。これらは、パルス数のコントロールにより行
なう。
A copper foil having a thickness of 15 μm or more, preferably 20 μm or more, and a thickness of 10 to 200 μm, preferably 5
A film adhesive having a thickness of 0 to 150 μm is used to heat and pressurize and integrate to form a four-layer board. Copper foil is etched by a known method to form inner layer circuits (L2, L5 layers) and, if necessary, connect the outermost layers (L1, L6 layers) with the lands (L3, L4 layers) on the substrate. The conductors (L2, L5 layers) of the power part are removed. At least one land to be conducted is formed. Furthermore, a thickness of 10 to 200 μm is formed on the front and back of the four-layer board on which the inner layer circuit is formed.
Film adhesive of 10 μm thick on the outer layer
The following copper foils are placed and integrated by heating and pressing. Then, an excimer laser is used to make a hole from the outer surface of the outermost copper foil to the land portion of the copper circuit of the next layer to be conducted and between the outermost copper foil and the circuit conductor formed on the substrate. . These are performed by controlling the number of pulses.

【0027】6層板の別の製法は、4層板を初めの方法
で作り、さらにフィルムと極薄銅はくを重さねて6層化
し、最外層銅はくとすぐ下の導体層間をレーザー孔あけ
し、めっき又は導通塗料で導通する方法である。
Another method of producing a 6-layer board is to prepare a 4-layer board by the first method, and then stack a film and an ultrathin copper foil to form a 6-layer board. Laser drilling and conducting with plating or conducting paint.

【0028】これ以上の層の形成は、該方法をくり返す
事により可能である。又、基板の片側の面にのみ、フィ
ルムと銅はくを重さねて多層化する方法も可能である。
Further layers can be formed by repeating the method. It is also possible to stack the film and the copper foil on only one surface of the substrate to form a multilayer structure.

【0029】[0029]

【実施例】実施例1 図1に示した4層の多層板を製造した。絶縁層厚0.6
mmの両面に35μm銅箔を張ったガラスエポキシ積層
板をエッチングして回路を形成し、更に NaOH(1
5g/リットル)/次亜塩素酸ナトリウム(31g/リ
ットル)/リン酸ナトリウム(15g/リットル)の水
溶液で90℃、5分間処理し、水洗して、130℃、3
0分間乾燥して黒色酸化銅処理内層板を得た。
Example 1 A four-layer multilayer board shown in FIG. 1 was manufactured. Insulation layer thickness 0.6
The glass epoxy laminate with 35 μm copper foil stretched on both sides of mm is etched to form a circuit, and NaOH (1
5 g / liter) / sodium hypochlorite (31 g / liter) / sodium phosphate (15 g / liter) at 90 ° C. for 5 minutes, washed with water, and 130 ° C., 3
It was dried for 0 minutes to obtain a black copper oxide-treated inner layer plate.

【0030】一方、ポリフエニレンエーテル 5000
g、ブロム化エポキシ樹脂(YDB−340東都化成
(株)製)2000g、液状エポキシ樹脂(エピコート
828油化シェル(株)製)1000g、ビスフェノー
ルAジシアネート 1500g及トリフェニルフォスフ
ァイト 500gをヘンシェルミキサーにてブレンド
後、二軸押出し機にてシリンダー温度 130℃でペレ
ット化し、更に押し出し機(T−ダイ)にてシート化
(140℃)し、延伸ロールにて100μm厚の樹脂フ
ィルムを得た。この樹脂フィルムを先の黒化処理済み内
層板の上下に1枚づつ配置し、更にその外側上下に5μ
m銅箔(アルミキャリヤー付)を配置して20torr
真空下、200℃、40kg/cm2 、2時間加熱、加
圧成形し、4層の多層板を得た。
On the other hand, polyphenylene ether 5000
g, brominated epoxy resin (YDB-340 Toto Kasei Co., Ltd.) 2000 g, liquid epoxy resin (Epicoat 828 Yuka Shell Co., Ltd.) 1000 g, bisphenol A dicyanate 1500 g and triphenyl phosphite 500 g in a Henschel mixer. After blending, pelletization was carried out at a cylinder temperature of 130 ° C. by a twin-screw extruder, further sheeting (140 ° C.) was made by an extruder (T-die), and a resin film having a thickness of 100 μm was obtained by a stretching roll. This resin film is placed one above and one below the blackened inner layer plate, and 5 μm above and below the outside.
20 torr with copper foil (with aluminum carrier)
It was heated and pressure-molded at 200 ° C. and 40 kg / cm 2 for 2 hours under vacuum to obtain a four-layer multilayer plate.

【0031】キャリヤーアルミ箔を除去した後、エクシ
マレーザーを照射し表層から第2層の内層銅間までの孔
あけを行なった。 エクシマレーザー条件 使用ガス KrF エネルギー密度 6J/cm2 ショット数 126 孔径 100μm(マスク法)
After removing the carrier aluminum foil, an excimer laser was irradiated to open a hole from the surface layer to the inner copper layer of the second layer. Excimer laser conditions Gas used KrF Energy density 6J / cm 2 Number of shots 126 Pore size 100μm (mask method)

【0032】又、通常のドリルにより貫通孔加工(0.
35φ)した。孔あけした多層板をプリント板の常法に
より、過マンガン酸塩をデスミャー後、無電解銅メッ
キ、更に電気銅メッキにより20μm厚のメッキ処理し
た。できあがった4層板の導通孔(レーザー加工部)の
断面を観察した所良好な導通孔である事を確認した。
Further, through-hole machining (0.
35φ). The perforated multilayer board was subjected to a desmearing of permanganate by a conventional method for printed boards, electroless copper plating, and then electrolytic copper plating to a thickness of 20 μm. Observation of the cross section of the conduction hole (laser processed portion) of the completed 4-layer plate confirmed that it was a good conduction hole.

【0033】比較例1 多層化成形時に樹脂フィルムの代りにガラスエポキシプ
リプレグ(100μ)を用いた以外はすべて実施例1と
同様にした。エクシマレーザーにて孔あけはできなかっ
た。含まれるガラスセンイがそのまま残った。
Comparative Example 1 The same procedure as in Example 1 was carried out except that a glass epoxy prepreg (100 μ) was used instead of the resin film in the multilayer molding. The excimer laser could not be drilled. The contained glass was left as it was.

【0034】比較例2 多層化成形時に5μm銅箔の代りに18μm銅箔を用い
た以外はすべて実施例1と同様にした。エクシマレーザ
ー照射にて銅箔が加熱され表層銅のはくりを生じてしま
った。
Comparative Example 2 The same procedure as in Example 1 was carried out except that 18 μm copper foil was used in place of the 5 μm copper foil in the multilayer molding. The copper foil was heated by the excimer laser irradiation, causing peeling of the surface copper.

【0035】比較例3 実施例1に於いて、多層化成形時 5μm銅箔の代りに
離形フィルムとしてフッ素系フィルム(テドラー)を用
い、成形後はがした。それ以外はすべて実施例1と同様
に行なった。その結果孔あけはできたが4層板表面の銅
メッキの密着力が0.1kg/cm以下と弱い事を確認
した。
Comparative Example 3 In Example 1, a fluorine-based film (Tedlar) was used as a release film instead of the 5 μm copper foil at the time of multilayer molding, and peeled off after molding. Otherwise, the same procedure as in Example 1 was carried out. As a result, it was confirmed that the holes were formed, but the adhesion of the copper plating on the surface of the four-layer board was weak at 0.1 kg / cm or less.

【0036】実施例2 図2に示した6層の多層板を製造した。4層板の成形ま
では4層板の外層銅箔として35μm履くを用いる事以
外は実施例1と同様とした。その後、4層板の外層をエ
ッチングにより回路形成し、更に実施例1と同じ黒化処
理した後、上下に1枚づつ実施例1の樹脂フィルムを配
置し、更にその外側に5μm銅箔(アルミキャリヤー
付)を配置して実施例1の4層板と同じ成形条件で6層
板を得た。
Example 2 A 6-layer multilayer board shown in FIG. 2 was produced. Up to the formation of the 4-layer board, the same procedure as in Example 1 was carried out except that 35 μm was used as the outer layer copper foil of the 4-layer board. After that, the outer layer of the four-layer plate is etched to form a circuit, and after the same blackening treatment as in Example 1, the resin films of Example 1 are arranged one by one on the upper and lower sides, and a 5 μm copper foil (aluminum) is further provided on the outside thereof. (With carrier) was placed to obtain a 6-layer board under the same molding conditions as the 4-layer board of Example 1.

【0037】その後、実施例1と同様にエクシマレーザ
ーを照射し、表層から第2層までの孔あけ及び表層か
ら第3層銅箔までの孔あけを行なった。 エクシマレーザー条件 使用ガス KrF KrF エネルギー密度 6J/cm2 6J/cm2 ショット数 126 256 孔径 100μm 100μm
Thereafter, as in Example 1, irradiation with an excimer laser was carried out to carry out perforation from the surface layer to the second layer and perforation from the surface layer to the third layer copper foil. Excimer laser conditions Working gas KrF KrF Energy density 6J / cm 2 6J / cm 2 Number of shots 126 256 Pore diameter 100 μm 100 μm

【0038】更に通常ドリルにより貫通孔加工(0.3
5φ)した。孔あけした6層板は実施例1と同様にメッ
キ処理し、レーザー加工による導通孔の断面観察により
良好な導通孔である事を確認した。
Further, a through hole is usually drilled (0.3
5φ). The perforated 6-layer plate was plated in the same manner as in Example 1, and it was confirmed by laser observation that the cross section of the conductive hole was a good conductive hole.

【0039】実施例3 樹脂フィルムとして次の組成のものを使用する以外は実
施例1と同様にした。ポリエーテルイミド 6000
g、ビスフェノールAジシアネート 3500g及び液
状エポキシ化ポリブタジエン(R45EPT長瀬産業)
500gをヘンシェルミキサーにてブレンド後、二軸押
し出し機にてシリンダー温度 130℃でペレット化
し、更に押し出し機(T−ダイ)にてシート化(140
℃)し、延伸ロールにて 100μm厚の樹脂フィルム
を得た。できあがった4層板の導通孔の断面を観察した
所良好な導通孔である事を確認した。
Example 3 Example 3 was repeated except that the resin film having the following composition was used. Polyetherimide 6000
g, bisphenol A dicyanate 3500 g and liquid epoxidized polybutadiene (R45EPT Nagase & Co.)
After blending 500 g with a Henschel mixer, pelletized with a twin-screw extruder at a cylinder temperature of 130 ° C., and further formed into a sheet with an extruder (T-die) (140
Then, a resin film having a thickness of 100 μm was obtained with a stretching roll. Observation of the cross section of the completed 4-layer plate through hole confirmed that the hole was a good through hole.

【0040】[0040]

【発明の効果】以上のように、本発明によれば多層板に
おける最外層回路導体と内層回路導体間の導通孔を容易
にしかも極少径とする事が可能となる。
As described above, according to the present invention, it is possible to easily and minimize the diameter of the conductive hole between the outermost layer circuit conductor and the inner layer circuit conductor in the multilayer board.

【0041】[0041]

【図面の簡単な説明】[Brief description of drawings]

【図1】 断面図 本発明の製造法による4層板の製造工程フローの一例を
示す断面図である。
FIG. 1 is a cross-sectional view showing an example of a manufacturing process flow of a four-layer board by the manufacturing method of the present invention.

【図2】 断面図 本発明の製造法による6層板の製造工程フローの一例を
示す断面図である。
FIG. 2 is a cross-sectional view showing an example of a manufacturing process flow of a 6-layer plate by the manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

図1、図2中の符号はそれぞれ、1:ガラスエポキシ積
層板、2:35μm回路銅箔、3:半硬化性樹脂フィル
ム、4:5μm銅箔、5:エキシマレーザーによる孔、
6:通常ドリルによる貫通孔、7:銅メッキを示す。
Reference numerals in FIGS. 1 and 2 are 1: glass epoxy laminated plate, 2: 35 μm circuit copper foil, 3: semi-curable resin film, 4: 5 μm copper foil, 5: hole by excimer laser,
6: Shows a through hole formed by a normal drill, 7: Shows copper plating.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 多層プリント板の製造工程において、少
なくとも最外層の回路とすべき銅はく層と、内層回路が
形成された銅はく層間を、半硬化性樹脂フィルムを用い
て接着硬化されている構成の多層化したプリント板材料
において、該最外層用銅はく層と内層回路用銅はく層間
を、スルーホール導通させる工程で、最外層の回路とす
べき銅はく層の厚さを10μm以下とし、最外層銅はく
をスルーホールにより導通させるべき内層回路銅はくの
厚さを15μm以上とし、導通孔形成部を、最外層銅は
くの外部よりエクシマレーザーを照射し、最外層銅はく
と樹脂フィルムとさらに内層銅はくの1部を孔あけし、
次いで、少なくとも無電解めっき又は導電性塗料で、2
つの銅はく層を導通させる事を特徴とする、多層プリン
ト板の層間接続の製造方法
1. In a manufacturing process of a multilayer printed board, at least the copper foil layer to be the outermost circuit and the copper foil layer on which the inner layer circuit is formed are adhesively cured using a semi-curable resin film. In the multilayer printed board material having the structure described above, the thickness of the copper foil layer to be the outermost circuit in the step of conducting the through hole between the copper foil layer for the outermost layer and the copper foil layer for the inner layer circuit. The thickness of the inner-layer circuit copper foil for conducting the outermost copper foil through the through hole is 15 μm or more, and the conduction hole forming portion is irradiated with excimer laser from the outside of the outermost copper foil. , The outermost layer copper foil, resin film and part of the inner layer copper foil are punched,
Then, at least with electroless plating or conductive paint, 2
A method for manufacturing an interlayer connection of a multilayer printed circuit board, characterized in that two copper foil layers are conducted.
JP25483292A 1992-09-24 1992-09-24 Manufacture of interlayer connector of multilayer printed board Pending JPH06112649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25483292A JPH06112649A (en) 1992-09-24 1992-09-24 Manufacture of interlayer connector of multilayer printed board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25483292A JPH06112649A (en) 1992-09-24 1992-09-24 Manufacture of interlayer connector of multilayer printed board

Publications (1)

Publication Number Publication Date
JPH06112649A true JPH06112649A (en) 1994-04-22

Family

ID=17270477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25483292A Pending JPH06112649A (en) 1992-09-24 1992-09-24 Manufacture of interlayer connector of multilayer printed board

Country Status (1)

Country Link
JP (1) JPH06112649A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000016597A1 (en) * 1998-09-14 2000-03-23 Ibiden Co., Ltd. Printed wiring board and its manufacturing method
US7415761B2 (en) 1998-09-03 2008-08-26 Ibiden Co., Ltd. Method of manufacturing multilayered circuit board
JP2010205809A (en) * 2009-03-02 2010-09-16 Nec Infrontia Corp Multilayer printed wiring board and method of manufacturing the same
JP2014068047A (en) * 2014-01-23 2014-04-17 Nec Infrontia Corp Method for manufacturing multilayer printed wiring board

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7415761B2 (en) 1998-09-03 2008-08-26 Ibiden Co., Ltd. Method of manufacturing multilayered circuit board
US7832098B2 (en) 1998-09-03 2010-11-16 Ibiden Co., Ltd. Method of manufacturing a multilayered printed circuit board
US8148643B2 (en) 1998-09-03 2012-04-03 Ibiden Co., Ltd. Multilayered printed circuit board and manufacturing method thereof
WO2000016597A1 (en) * 1998-09-14 2000-03-23 Ibiden Co., Ltd. Printed wiring board and its manufacturing method
US7230188B1 (en) 1998-09-14 2007-06-12 Ibiden Co., Ltd. Printed wiring board and its manufacturing method
US7691189B2 (en) 1998-09-14 2010-04-06 Ibiden Co., Ltd. Printed wiring board and its manufacturing method
US7827680B2 (en) 1998-09-14 2010-11-09 Ibiden Co., Ltd. Electroplating process of electroplating an elecrically conductive sustrate
US8065794B2 (en) 1998-09-14 2011-11-29 Ibiden Co., Ltd. Printed wiring board and its manufacturing method
EP1667504B1 (en) * 1998-09-14 2012-02-01 Ibiden Co., Ltd. Process for manufacturing a multilayer printed circuit board
JP2010205809A (en) * 2009-03-02 2010-09-16 Nec Infrontia Corp Multilayer printed wiring board and method of manufacturing the same
JP2014068047A (en) * 2014-01-23 2014-04-17 Nec Infrontia Corp Method for manufacturing multilayer printed wiring board

Similar Documents

Publication Publication Date Title
US6240636B1 (en) Method for producing vias in the manufacture of printed circuit boards
JP4300687B2 (en) Manufacturing method of multilayer printed wiring board using adhesive film
JP3142270B2 (en) Manufacturing method of printed wiring board
JP2000022337A (en) Multilayer wiring board and its manufacture
JP4489899B2 (en) Method for manufacturing double-sided circuit board for multilayer printed wiring board
US5993945A (en) Process for high resolution photoimageable dielectric
JPH1027960A (en) Manufacture of multi-layer printed wiring board
JPH1075069A (en) Manufacture of build-up multi-layer printed circuit board using yag laser
JPH09246724A (en) Multilayer printed wiring board manufacturing method
JPH07106765A (en) Multilayered adhesive sheet and manufacture of multilayered wiring board using same
JPH06112649A (en) Manufacture of interlayer connector of multilayer printed board
JP2002043753A (en) Manufacturing method of multilayer printed circuit board
JP4240243B2 (en) Manufacturing method of build-up multilayer wiring board
US6022670A (en) Process for high resolution photoimageable dielectric
JP2000036659A (en) Manufacture of build-up multilayer interconnection board
JPH11204942A (en) Manufacture of multilayer wiring board
JP2000091750A (en) Method for forming through hole, multilayered printed wiring board and manufacture thereof and through hole forming substrate
JP2003283134A (en) Printed-wiring board and method of manufacturing the same
JPH10190235A (en) Manufacture of multilayer interconnection board
JP2001015919A (en) Multilayer printed wiring board, circuit-board therefor and its manufacture
JPH10190234A (en) Manufacture of multilayer interconnection board
JP4545866B2 (en) Method for manufacturing circuit board for multilayer printed wiring board
JP2003046245A (en) Manufacturing method of multilayer printed wiring board
JPH1187923A (en) Manufacture of multilayered wiring board
JP4545865B2 (en) Method for manufacturing circuit board for multilayer printed wiring board