JPH06109540A - Optical measuring instrument - Google Patents

Optical measuring instrument

Info

Publication number
JPH06109540A
JPH06109540A JP25333692A JP25333692A JPH06109540A JP H06109540 A JPH06109540 A JP H06109540A JP 25333692 A JP25333692 A JP 25333692A JP 25333692 A JP25333692 A JP 25333692A JP H06109540 A JPH06109540 A JP H06109540A
Authority
JP
Japan
Prior art keywords
light receiving
diffraction grating
receiving element
thermal expansion
receiving container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25333692A
Other languages
Japanese (ja)
Inventor
Masataka Shichiri
雅隆 七里
Hitoshi Ishibashi
仁志 石橋
Susumu Uenaka
進 上中
Yasuki Otegi
安己 樗木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP25333692A priority Critical patent/JPH06109540A/en
Publication of JPH06109540A publication Critical patent/JPH06109540A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To obtain an optical measuring instrument in which thermal expansion of a light receiving chamber due to temperature rise causes no erroneous detection. CONSTITUTION:A concave diffraction grating 6 for introducing the bundle of measuring light entering into a light receiving chamber 5 to a light receiving element array 7 is fixed through a supporting member 11 to the diffraction grating fixing part 10 of the light receiving chamber 5. A supporting member 11 is formed such that the diffraction grating fixing part 12 thereof moves toward the light receiving element array 7 side through thermal expansion caused by temperature rise wherein thermal expansion amount of the supporting member 11 is set equal or substantially equal to that of the light receiving chamber 5 between the diffraction grating fixing part 10 and a light receiving element fixing part 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、受光容器内に入射する
測定用光線束を、前記受光容器内の受光素子固定部に固
定したアレイ型受光素子に導くための凹面回折格子を、
前記受光容器内に設けてある光測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a concave diffraction grating for guiding a measuring light beam entering a light receiving container to an array type light receiving element fixed to a light receiving element fixing portion in the light receiving container.
The present invention relates to a light measuring device provided in the light receiving container.

【0002】[0002]

【従来の技術】従来、この種の光測定装置としては、前
記凹面回折格子を、前記受光容器の回折格子固定部に直
接的に取り付けてあるものがあった。
2. Description of the Related Art Conventionally, as an optical measuring device of this type, there has been one in which the concave diffraction grating is directly attached to a diffraction grating fixing portion of the light receiving container.

【0003】[0003]

【発明が解決しようとする課題】上述した従来の光測定
装置によれば、温度上昇に伴って受光容器が熱膨張する
と、凹面回折格子とアレイ型受光素子との離間距離が伸
びて、凹面回折格子によって分光された測定光が、予め
設定されたアレイ型受光素子の照射部分からずれた箇所
に照射される危険性があり、測定光の計測結果に誤検出
が発生する問題がある。
According to the above-mentioned conventional optical measuring device, when the light receiving container thermally expands due to the temperature rise, the distance between the concave diffraction grating and the array type light receiving element increases, and the concave diffraction occurs. There is a risk that the measuring light dispersed by the grating will be irradiated to a portion deviated from the irradiation portion of the preset array type light receiving element, and there is a problem that erroneous detection occurs in the measurement result of the measuring light.

【0004】従って、本発明の目的は、上記問題点を解
消し、温度上昇に伴う受光容器の熱膨張が発生しても、
誤検出しない光測定装置を提供するところにある。
Therefore, an object of the present invention is to solve the above-mentioned problems and to achieve thermal expansion of the light receiving container due to temperature rise.
An object of the present invention is to provide an optical measuring device that does not erroneously detect.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
の本発明における光測定装置の特徴構成は、受光容器内
に入射する測定用光線束をアレイ型受光素子に導くため
の凹面回折格子を、支持部材を介して前記受光容器の回
折格子固定部に取り付け、前記支持部材を、その回折格
子取付部が温度上昇に伴う熱膨張によって、前記アレイ
型受光素子側に移動するように形成し、前記支持部材の
熱膨張量を、前記回折格子固定部と受光素子固定部との
間の前記受光容器の熱膨張量と同等またはほぼ同等に設
定してあるところにある。
To achieve this object, the optical measuring device according to the present invention is characterized in that a concave diffraction grating for guiding a measuring light beam entering the light receiving container to an array type light receiving element is used. Attaching to the diffraction grating fixing portion of the light receiving container via a supporting member, the supporting member is formed so as to move to the array type light receiving element side due to thermal expansion of the diffraction grating attaching portion due to temperature rise, The amount of thermal expansion of the support member is set to be equal to or substantially equal to the amount of thermal expansion of the light receiving container between the diffraction grating fixing portion and the light receiving element fixing portion.

【0006】[0006]

【作用】本発明における光測定装置の特徴構成によれ
ば、温度上昇に伴って受光容器が熱膨張し、回折格子固
定部とアレイ型受光素子との間隔が、前記受光容器の熱
膨張量の分だけ伸びる場合、凹面回折格子を受光容器に
取り付けている支持部材も熱膨張し、前記回折格子取付
部に取り付けられた凹面回折格子を前記アレイ型受光素
子側に前記熱膨張量の分だけ移動させる。
According to the characteristic construction of the optical measuring device of the present invention, the light receiving container thermally expands as the temperature rises, and the distance between the diffraction grating fixing portion and the array type light receiving element is determined by the thermal expansion amount of the light receiving container. In the case of extension by the amount, the supporting member that attaches the concave diffraction grating to the light receiving container also thermally expands, and the concave diffraction grating attached to the diffraction grating attachment part is moved to the array type light receiving element side by the amount of the thermal expansion amount. Let

【0007】即ち、受光容器が熱膨張したにせよ、凹面
回折格子とアレイ型受光素子との離間距離は変動しない
ために、凹面回折格子によって分光された測定光は、常
にアレイ型受光素子の予め設定された箇所に到達するこ
とが可能となる。
That is, since the distance between the concave diffraction grating and the array type light receiving element does not change even if the light receiving container thermally expands, the measuring light dispersed by the concave surface diffraction grating is always in advance of the array type light receiving element. It is possible to reach the set location.

【0008】[0008]

【発明の効果】従って、本発明の光測定装置によれば、
温度上昇に伴う受光容器の熱膨張が発生しても、誤検出
をしなくなったので、光測定装置の精度低下を防止する
ことが可能となり、併せて広範囲の温度環境における光
測定を実現することが可能になった。
Therefore, according to the optical measuring device of the present invention,
Even if thermal expansion of the light receiving container occurs due to temperature rise, erroneous detection will not occur, so it is possible to prevent deterioration of accuracy of the optical measurement device and also realize optical measurement in a wide temperature environment. Became possible.

【0009】[0009]

【実施例】以下に本発明における光測定装置の一実施例
である玄米を試料Sとする分光分析装置について説明す
る。
EXAMPLE A spectroscopic analyzer using brown rice as a sample S, which is an example of the optical measuring device according to the present invention, will be described below.

【0010】分光分析装置は、図1に示すように、光源
1と、光源1からの光線束を成形する第一光学系2と、
第一光学系2からの光線束が照射される試料保持部3
と、その試料保持部3で保持された試料Sを透過した光
線束を集光する第二光学系4と、その第二光学系4によ
り集光された測定用光線束を分光分析する受光容器の一
例である分光分析部5とを光軸Pに沿って配置して構成
してある。
As shown in FIG. 1, the spectroscopic analyzer includes a light source 1, a first optical system 2 for shaping a light beam from the light source 1,
Sample holder 3 irradiated with the light beam from the first optical system 2
And a second optical system 4 for condensing the light beam transmitted through the sample S held by the sample holder 3 and a light receiving container for spectrally analyzing the measuring light beam condensed by the second optical system 4. The spectroscopic analysis section 5 as an example is arranged along the optical axis P.

【0011】前記光源1は、タングステン−ハロゲン電
球によって構成してある。前記第一光学系2は、前記試
料保持部3に向かう光線束を平行光線束に成形するレン
ズやスリットで構成してある。前記試料保持部3は、石
英硝子製の容器3aによって構成してあり、その容器3
a内には、試料Sとして玄米を収容してある。前記第二
光学系4は、前記試料Sを透過した光線束を前記分光分
析部5の入射孔5a位置で集光させる集光レンズ4a
と、光路への有害光の進入を防止する暗箱4bとで構成
してある。
The light source 1 is composed of a tungsten-halogen bulb. The first optical system 2 is composed of a lens and a slit that form a bundle of light rays directed to the sample holder 3 into a bundle of parallel light rays. The sample holder 3 is composed of a container 3a made of quartz glass.
Brown rice is contained as a sample S in a. The second optical system 4 condenses the light flux that has passed through the sample S at the position of the entrance hole 5a of the spectroscopic analysis unit 5 to a condenser lens 4a.
And a dark box 4b that prevents harmful light from entering the optical path.

【0012】前記分光分析部5は、前記第二光学系4に
隣接するアルミニウム製の暗箱5bを設け、その暗箱5
b内で、入射光線束を分光反射する分光部としての凹面
回折格子6と、分光反射された各波長毎の光線束強度を
検出するアレイ型受光素子7とを設けて構成してある。
また、前記暗箱5b内の測定用光路における前記入射孔
5aと前記凹面回折格子6との間には、前記入射孔5a
からの入射光線束を凹面回折格子6に向けて反射させる
反射鏡8を設けてある。即ち、前記分光分析部5はポリ
クロメータ型の分光計である。
The spectroscopic analysis section 5 is provided with an aluminum dark box 5b adjacent to the second optical system 4, and the dark box 5 is provided.
In b, a concave diffraction grating 6 as a spectroscopic unit that spectrally reflects the incident light flux, and an array type light receiving element 7 that detects the intensity of the spectrally reflected light flux for each wavelength are provided.
The entrance hole 5a is provided between the entrance hole 5a and the concave diffraction grating 6 in the measurement optical path in the dark box 5b.
A reflecting mirror 8 is provided for reflecting the incident light flux from the above toward the concave diffraction grating 6. That is, the spectroscopic analysis section 5 is a polychromator type spectrometer.

【0013】前記アレイ型受光素子7は、前記凹面回折
格子6による光線束の分散光路上の前記暗箱5bに設け
た受光素子固定部9に固定設置してあり、シリコン(S
i)又は硫化鉛(PbS)又はゲルマニウム(Ge)セ
ンサで構成してある。
The array type light receiving element 7 is fixedly installed in the light receiving element fixing portion 9 provided in the dark box 5b on the dispersion optical path of the light flux by the concave diffraction grating 6, and is made of silicon (S
i) or lead sulfide (PbS) or germanium (Ge) sensor.

【0014】一方、前記アレイ型受光素子7の対向面側
の前記暗箱5bに設けた回折格子固定部10には、支持
部材11の基端部を取り付け固定してあり、更に、その
支持部材11先端側の回折格子取付部12には、前記凹
面回折格子6を取り付け固定した状態に支持してある。
また、前記支持部材11は、ポリエチレンによって構成
してある。
On the other hand, a base end portion of a supporting member 11 is fixedly attached to the diffraction grating fixing portion 10 provided in the dark box 5b on the opposite surface side of the array type light receiving element 7, and the supporting member 11 is also fixed. The concave diffraction grating 6 is mounted and supported on the diffraction grating mounting portion 12 on the tip side.
The support member 11 is made of polyethylene.

【0015】通常、凹面回折格子6を用いてスリット
(入射孔5a)から出た光を分光し、平面上に焦点を結
ばせる場合、スリットから回折格子6までの距離と、回
折格子6とアレイ型受光素子7との距離をほぼ等しく、
且つ、入射光線束と回折格子6の垂線との角度、及び、
分光光束と回折格子垂線との角度を、共に小さくするこ
とで、以下の近似が成立する。
Usually, when the light emitted from the slit (incident hole 5a) is dispersed by using the concave diffraction grating 6 and focused on a plane, the distance from the slit to the diffraction grating 6, the diffraction grating 6 and the array. Type light receiving element 7 is almost equal in distance,
And, the angle between the incident ray bundle and the perpendicular of the diffraction grating 6, and
The following approximation is established by reducing both the angle between the spectral beam and the perpendicular of the diffraction grating.

【0016】本実施例の分光分析装置によれば、例え
ば、前記暗箱5bの線膨張率α0=20×10-6/℃、
前記支持部材11の線膨張率α1=200×10-6
℃、前記アレイ型受光素子7の固定されている暗箱面Y
の垂線Xに沿う凹面回折格子6と前記アレイ型受光素子
7との離間距離ι1=200mm、前記支持部材11の
長さをι2とする図2に示す分光分析部5内の各構成配
置をとれば、 (ι1+ι2)・α0=ι2・α1 の関係が成立し、支持部材11の長さを ι2≒22.2mm とすることで、温度変化による熱膨張が分光分析部5に
発生したとしても、前記凹面回折格子6とアレイ型受光
素子7との離間距離変動を抑えた状態で測定光線束の計
測を実施することが可能となる。
According to the spectroscopic analyzer of this embodiment, for example, the linear expansion coefficient α 0 of the dark box 5b is 20 × 10 −6 / ° C.,
Linear expansion coefficient of the support member 11 α 1 = 200 × 10 −6 /
C., dark box surface Y on which the array type light receiving element 7 is fixed
2, the distance between the concave diffraction grating 6 and the array type light-receiving element 7 along the perpendicular X is ι 1 = 200 mm, and the length of the support member 11 is ι 2 in the spectroscopic analysis section 5 shown in FIG. Then, the relationship of (ι 1 + ι 2 ) · α 0 = ι 2 · α 1 is established, and by setting the length of the support member 11 to be ι 2 ≈22.2 mm, the thermal expansion due to temperature change is spectroscopic. Even if it occurs in the analysis unit 5, it is possible to measure the measurement light flux while suppressing the variation in the separation distance between the concave diffraction grating 6 and the array type light receiving element 7.

【0017】〔別実施例〕以下に別実施例を説明する。 〈1〉 先の実施例では、光源1にタングステン−ハロ
ゲン電球を用いているが、これに限定するものではな
く、試料S及び測定目的に応じて適宜設定可能であり、
赤外線全域で連続スペクトル放射を持つ光源1としての
熱放射体(黒体炉)や、その他水銀灯、Ne放電管等の
光源1や、ラマン散乱を測定するための単色光を発光す
るレーザ等を用いることができ、その構成も適宜変更可
能である。さらには、光測定装置は、先の実施例では、
分光分析装置を一例として説明したが、これに限定され
るものではなく、他の光測定装置であってもよく、それ
らを総称して光測定装置という。また、当然のことなが
ら、試料Sは玄米に限定するものではない。 〈2〉 前記暗箱5bおよび前記支持部材11は、アル
ミニウム製およびポリエチレン製に限るものではなく、
他の材質によって形成して合ってもよい。但し、その場
合は、α0<α1の関係が条件となる。要するに、前記垂
線Xに沿った暗箱5bの熱膨張量と支持部材11の熱膨
張量を前記分光分析部5内で等しく維持できるように構
成してあればよい。
[Other Embodiment] Another embodiment will be described below. <1> In the above embodiment, the tungsten-halogen bulb is used as the light source 1, but the light source 1 is not limited to this, and can be appropriately set according to the sample S and the measurement purpose.
A thermal radiator (black body furnace) as a light source 1 having continuous spectrum radiation in the entire infrared region, other light sources 1 such as a mercury lamp and a Ne discharge tube, and a laser emitting monochromatic light for measuring Raman scattering are used. However, the configuration can be changed as appropriate. Furthermore, the light measurement device, in the previous embodiment,
Although the spectroscopic analysis device has been described as an example, the spectroscopic analysis device is not limited to this and may be another optical measurement device, and they are collectively referred to as an optical measurement device. Further, as a matter of course, the sample S is not limited to brown rice. <2> The dark box 5b and the support member 11 are not limited to aluminum and polyethylene,
They may be formed of other materials to fit together. However, in that case, the condition is that α 01 . In short, it suffices that the thermal expansion amount of the dark box 5b and the thermal expansion amount of the support member 11 along the perpendicular line X be kept equal in the spectroscopic analysis unit 5.

【0018】尚、特許請求の範囲の項に、図面との対照
を便利にするために符号を記すが、該記入により本発明
は添付図面の構成に限定されるものではない。
It should be noted that reference numerals are added to the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の分光分析装置の構成概念図FIG. 1 is a conceptual diagram of a configuration of a spectroscopic analyzer according to an embodiment.

【図2】実施例の分光分析装置の分光分析部内の構成配
置を表す概念図
FIG. 2 is a conceptual diagram showing a configuration arrangement in a spectroscopic analysis unit of a spectroscopic analysis device of an embodiment.

【符号の説明】[Explanation of symbols]

5 受光容器 6 凹面回折格子 7 アレイ型受光素子 9 受光素子固定部 10 回折格子固定部 11 支持部材 12 回折格子取付部 5 Light receiving container 6 Concave diffraction grating 7 Array type light receiving element 9 Light receiving element fixing part 10 Diffraction grating fixing part 11 Supporting member 12 Diffraction grating mounting part

フロントページの続き (72)発明者 樗木 安己 兵庫県尼崎市浜1丁目1番1号 株式会社 クボタ技術開発研究所内Front page continuation (72) Inventor Yasuki Hisaki 1-1-1 Hama, Amagasaki City, Hyogo Prefecture Kubota Technology Development Laboratory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 受光容器(5)内に入射する測定用光線
束を、前記受光容器(5)内の受光素子固定部(9)に
固定されたアレイ型受光素子(7)に導くための凹面回
折格子(6)を、前記受光容器(5)内に設けてある光
測定装置であって、 前記凹面回折格子(6)を、支持部材(11)を介して
前記受光容器(5)の回折格子固定部(10)に取り付
け、前記支持部材(11)を、その回折格子取付部(1
2)が温度上昇に伴う熱膨張によって、前記アレイ型受
光素子(7)側に移動するように形成し、前記支持部材
(11)の熱膨張量を、前記回折格子固定部(10)と
前記アレイ型受光素子(7)との間の前記受光容器
(5)の熱膨張量と同等またはほぼ同等に設定してある
光測定装置。
1. A method for guiding a measuring light beam entering a light receiving container (5) to an array type light receiving element (7) fixed to a light receiving element fixing portion (9) in the light receiving container (5). An optical measuring device, wherein a concave diffraction grating (6) is provided in the light receiving container (5), wherein the concave diffraction grating (6) is attached to the light receiving container (5) via a support member (11). The support member (11) is attached to the diffraction grating fixing portion (10), and the support member (11) is attached to the diffraction grating attaching portion (1).
2) is formed so as to move toward the array type light receiving element (7) side by thermal expansion due to temperature rise, and the thermal expansion amount of the support member (11) is set to the diffraction grating fixing portion (10) and An optical measuring device, which is set to be equal or almost equal to the thermal expansion amount of the light receiving container (5) between the array type light receiving element (7).
JP25333692A 1992-09-24 1992-09-24 Optical measuring instrument Pending JPH06109540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25333692A JPH06109540A (en) 1992-09-24 1992-09-24 Optical measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25333692A JPH06109540A (en) 1992-09-24 1992-09-24 Optical measuring instrument

Publications (1)

Publication Number Publication Date
JPH06109540A true JPH06109540A (en) 1994-04-19

Family

ID=17249903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25333692A Pending JPH06109540A (en) 1992-09-24 1992-09-24 Optical measuring instrument

Country Status (1)

Country Link
JP (1) JPH06109540A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8462342B2 (en) 2010-10-28 2013-06-11 Canon Kabushiki Kaisha Spectral colorimetric apparatus and image forming apparatus including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8462342B2 (en) 2010-10-28 2013-06-11 Canon Kabushiki Kaisha Spectral colorimetric apparatus and image forming apparatus including the same

Similar Documents

Publication Publication Date Title
US4241998A (en) Spectrophotometer
US6580507B2 (en) Single source, single detector chip, multiple-longitudinal channel electromagnetic radiation absorbance and fluorescence monitoring system
US5923035A (en) Infrared absorption measuring device
US4966458A (en) Optical system for a multidetector array spectrograph
JPH04504908A (en) Light emitter/receiver
US4875773A (en) Optical system for a multidetector array spectrograph
EP2494334B1 (en) Device for radiation absorption measurements and method for calibration thereof
EP3748339B1 (en) Device for gas analysis using raman spectroscopy
JP2000186959A (en) Cented sphere spectrophotometer
US4755056A (en) Instrument for spectroscopy having metal halide lamp as light source
KR20180129583A (en) Detector for low temperature transmission pyrometry
JP4797233B2 (en) Compact sample concentration measuring device
JPH06109540A (en) Optical measuring instrument
JP3140297B2 (en) Spectrometer
JP4737896B2 (en) Sample concentration measuring device
JPH0712718A (en) Spectral analysis device
JPH06109539A (en) Optical measuring instrument
CN218445140U (en) Atomic fluorescence photometer
JPH0720042A (en) Device for spectroscopic analysis
JP7194580B2 (en) spectrometer
SU1038811A1 (en) Device for measuring radiation receiver relative spectral sensitivit
JPH04313032A (en) Device for spectroscopic analysis
JPH02227637A (en) Fluorophotometer
JPH06241900A (en) Spectrochemical analyzer
SU673951A1 (en) Device for determining optical path transparency