JPH061073B2 - Scroll compressor - Google Patents

Scroll compressor

Info

Publication number
JPH061073B2
JPH061073B2 JP21132684A JP21132684A JPH061073B2 JP H061073 B2 JPH061073 B2 JP H061073B2 JP 21132684 A JP21132684 A JP 21132684A JP 21132684 A JP21132684 A JP 21132684A JP H061073 B2 JPH061073 B2 JP H061073B2
Authority
JP
Japan
Prior art keywords
pressure
chamber
back pressure
valve
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21132684A
Other languages
Japanese (ja)
Other versions
JPS6189990A (en
Inventor
哲哉 荒田
隆夫 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21132684A priority Critical patent/JPH061073B2/en
Priority to US06/678,487 priority patent/US4596520A/en
Priority to DE19843445321 priority patent/DE3445321A1/en
Priority to KR1019840007971A priority patent/KR850004306A/en
Publication of JPS6189990A publication Critical patent/JPS6189990A/en
Priority to KR2019880013207U priority patent/KR880004333Y1/en
Publication of JPH061073B2 publication Critical patent/JPH061073B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/005Axial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、スクロール圧縮機に係り、特に各軸受部への
給油が安定して行われる制御弁を備えたスクロール圧縮
機に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scroll compressor, and more particularly to a scroll compressor including a control valve for stably supplying oil to each bearing.

〔発明の背景〕[Background of the Invention]

冷凍機、空気調和機などに用いられる密閉形の給油式ス
クロール圧縮機は、スクロール圧縮機部と電動機部を、
フレームに支承された回転軸を介して連設し、この電動
圧縮機を密閉容器内に収納し、圧縮機部が上方に電動機
部が下方に配置されている。スクロール圧縮機部は、円
板状の鏡板と、この鏡板にインボリウトあるいはインボ
リウトに近い曲線で形成されたラップを直立して形成さ
れる旋回スクロール部材及び同様なスクロール部材の鏡
板の中心付近に吐出口、外周部に吸入口を開口する固定
スクロール部材を備え、両スクロール部材を互にラップ
を内側にして噛合わせ、上記吸入口には密閉容器を貫通
して吸入管が接続されている。旋回スクロール部材とフ
レームとの間には、旋回スクロール部材の自転を阻止す
るオルダム機構を設け、旋回スクロール部材に、回転軸
に連設した偏心軸を係合し、偏心軸の旋回運動によって
旋回スクロール部材を自転することなく旋回運動させ
て、両スクロール部材により形成される密閉空間内のガ
スを圧縮し、圧縮ガスを吐出ポートより吐出室(密閉容
器内)へ吐出し、通路を経て密閉容器内下部の電動機室
へ導びき、該電動機室で油を分離し、圧縮ガスのみ密閉
容器に接続する吐出管を介し機外へ送出される。
A hermetically sealed refueling scroll compressor used in refrigerators, air conditioners, etc., has a scroll compressor section and an electric motor section.
The electric compressors are connected to each other via a rotary shaft supported by a frame, and the electric compressor is housed in a hermetically sealed container. The compressor unit is arranged above and the electric motor unit is arranged below. The scroll compressor section is a circular disk-shaped end plate and an orbiting scroll member formed by erecting a wrap formed on the end plate with an involute or a curve close to the involute and a discharge port near the center of the end plate of a similar scroll member. A fixed scroll member having an intake port is provided on the outer peripheral portion, both scroll members are meshed with each other with the wraps inside, and an intake pipe is connected to the intake port through a closed container. An Oldham mechanism for preventing rotation of the orbiting scroll member is provided between the orbiting scroll member and the frame, an eccentric shaft connected to the rotating shaft is engaged with the orbiting scroll member, and the orbiting scroll is caused by the orbiting motion of the eccentric shaft. By rotating the member without rotating, the gas in the closed space formed by both scroll members is compressed, and the compressed gas is discharged from the discharge port into the discharge chamber (in the closed container), and is passed through the passageway in the closed container. It is led to a lower electric motor chamber, oil is separated in the electric motor chamber, and only compressed gas is sent out of the machine through a discharge pipe connected to a closed container.

このような構造のスクロール圧縮機では、固定スクロー
ル部材と旋回スクロール部材とを引離そうとする力が密
閉空間の圧縮過程のガスの圧力によって両スクロール部
材に作用する。両スクロール部材が離間すれば、圧縮ガ
スは低圧側の密閉空間にバイパスしてしまい圧縮性能は
低下する。そのため、旋回スクロール部材の鏡板の背面
にガス圧を作用させて旋回スクロール部材に軸方向押付
力を付与し、旋回スクロール部材を固定スクロール部材
に押し付けている。特開昭55−148994は上記押
付力を、旋回スクロール部材の鏡板の背面に形成された
背圧室に吸入圧力と吐出圧力の間の中間的な圧力を導び
いて、この中間的圧力にて旋回スクロール部材を固定ス
クロール部材に押し付け軸方向の密封を行っている。
In the scroll compressor having such a structure, the force for separating the fixed scroll member and the orbiting scroll member acts on both scroll members by the pressure of the gas in the compression process of the closed space. If the scroll members are separated from each other, the compressed gas is bypassed to the closed space on the low pressure side, and the compression performance is deteriorated. Therefore, a gas pressure is applied to the rear surface of the end plate of the orbiting scroll member to apply an axial pressing force to the orbiting scroll member, and the orbiting scroll member is pressed against the fixed scroll member. JP-A-55-148994 introduces the above pressing force into the back pressure chamber formed on the back surface of the end plate of the orbiting scroll member, at an intermediate pressure between the suction pressure and the discharge pressure, and at this intermediate pressure. The orbiting scroll member is pressed against the fixed scroll member to perform axial sealing.

また潤滑油は密閉容器の底部に溜められており、この油
は、密閉容器内の高圧(吐出)圧力と、上記背圧室の中
間的圧力との差圧により、回転軸内の給油孔を上昇し、
各軸受部へ給油される。
Lubricating oil is stored in the bottom part of the closed container, and this oil causes the oil supply hole in the rotary shaft to change due to the differential pressure between the high pressure (discharge) pressure in the closed container and the intermediate pressure in the back pressure chamber. Rise,
Oil is supplied to each bearing.

ところで、上記軸受部への給油量は、第10図に示すよ
うに吐出圧力と背圧室内圧力との差圧(以下、この差圧
を給油圧と称す)に比例する。そして、ある給油圧△P
以下では、油溜部の油面の高低差および給油孔の通路抵
抗により給油量が零となってしまうので、軸受に必要油
量Q0以上の給油量を確保するには、給油圧を一定値△
L(限界給油圧)以上に確保する必要がある。しかる
に、従来のスクロール圧縮機においては、前記給油圧と
圧力比(吐出圧力と吸入圧力との比)とが第11図に示
したような関係となるので、低圧力比となる運転条件、
即ち、吐出圧力が低く、吸入圧力が高い条件の時には背
圧室の圧力も高く、給油圧が限界給油圧△PL以下とな
ってしまい、給油量が不足し、軸受損傷事故を招く問題
点を有していた。
By the way, the amount of oil supplied to the bearing is proportional to the pressure difference between the discharge pressure and the back pressure chamber pressure (hereinafter, this pressure difference is referred to as the oil pressure supply), as shown in FIG. And a certain hydraulic pressure ΔP
In the following, the oil supply amount becomes zero due to the difference in height of the oil surface of the oil reservoir and the passage resistance of the oil supply hole. Therefore, in order to secure the oil supply amount of the required oil amount Q 0 or more in the bearing, the oil supply pressure is kept constant. Value △
It is necessary to secure more than P L (limit hydraulic pressure). However, in the conventional scroll compressor, since the supply hydraulic pressure and the pressure ratio (the ratio of the discharge pressure to the suction pressure) have the relationship as shown in FIG. 11, the operating condition for the low pressure ratio,
That is, when the discharge pressure is low and the suction pressure is high, the pressure in the back pressure chamber is also high, and the oil supply pressure becomes less than the limit oil supply pressure ΔP L , and the oil supply amount becomes insufficient, resulting in a bearing damage accident. Had.

特に、インバータで圧縮機を駆動する場合は、30Hz前
後の低速から60Hz以上の高速で運転される。このた
め、一定回転用圧縮機では圧縮機が停止していた軽負荷
の条件でも、インバータ駆動の場合は、圧縮機が低回転
で運転される。従って、圧力比が一定回転用圧縮機を用
いた場合より更に低下する条件が多くなり、この低速回
転時には給油圧が確保できない。
In particular, when the compressor is driven by the inverter, it is operated at a low speed of around 30 Hz to a high speed of 60 Hz or higher. Therefore, even when the compressor for constant rotation is stopped under a light load condition, the compressor is operated at a low speed when driven by an inverter. Therefore, there are many conditions under which the pressure ratio further decreases as compared with the case where the constant rotation compressor is used, and it is not possible to secure the supply oil pressure during this low speed rotation.

上記、背圧の異常上昇に対する対策例として、特開昭5
7−762291及び特開昭58−160583が提案
されているが、特開昭57−762291は背圧室の圧
力が吸入室の圧力とバネの押圧力より高くなったとき、
背圧室と吸入室が連通し、背圧室の圧力を下げ、背圧に
よる軸方向押付力を下げるものであり、また特開昭58
−160583は背圧室の圧力が、吐出室の圧力とバネ
の押圧力より高くなったとき背圧室と吐出室を連通し、
背圧室の圧力を下げるものであるが、両者とも、軸受給
油特性からみると、不十分である。
As an example of countermeasures against the above-mentioned abnormal increase in back pressure, Japanese Patent Application Laid-Open No.
7-762291 and JP-A-58-160583 are proposed, but JP-A-57-762291 discloses that when the pressure in the back pressure chamber becomes higher than the pressure in the suction chamber and the pressing force of the spring,
The back pressure chamber and the suction chamber communicate with each other to lower the pressure in the back pressure chamber and reduce the axial pressing force due to the back pressure.
-160583 connects the back pressure chamber and the discharge chamber when the pressure of the back pressure chamber becomes higher than the pressure of the discharge chamber and the pressing force of the spring,
Although it reduces the pressure in the back pressure chamber, both are insufficient from the viewpoint of bearing lubrication characteristics.

〔発明の目的〕[Object of the Invention]

本発明は上記に鑑みて発明されたもので、低圧力比とな
る運転条件においても、給油圧が限界給油圧以下になる
とことを防ぎ、各軸受に確実に給油を行うスクロール圧
縮機を提供することを目的とする。
The present invention has been invented in view of the above, and provides a scroll compressor that reliably supplies oil to each bearing while preventing the supply oil pressure from falling below the limit supply oil pressure even under operating conditions with a low pressure ratio. The purpose is to

〔発明の概要〕[Outline of Invention]

上記目的を達成するため本発明は、固定スクロール部材
及び旋回スクロール部材をラップを互いに内側にして噛
み合わせた圧縮機部と、前記旋回スクロール部材を回転
軸を介して旋回運動させる電動機と、前記回転軸を軸受
部を介して支承するフレームと、これらの部材を収納す
る密閉容器と、固定スクロールの中心部に開口する吐出
口と、固定スクロールの外周部に開口する吸入口と、旋
回スクロールとフレームとの間に形成した背圧室とを備
え、前記吸入口からガスを吸入し、両スクロール部材に
より形成される密閉空間を中心に移動させて容積を減少
しながらガスを圧縮し、吐出口から圧縮ガスを密閉容器
室に吐出しその後該容器内から外部に吐出する構成とし
て前記密閉容器内を吐出圧力に保持し、前記背圧室には
圧縮途中の圧力を導入して旋回スクロールに固定スクロ
ール側への押し付け力を付与し、且つ密閉容器内の圧力
と前記背圧室内の圧力との圧力差により密閉容器下部に
溜められた潤滑油を前記軸受部に供給するようにした密
閉形のスクロール圧縮機において、前記背圧室と吸入室
とを連通する通路手段(通路、連通孔)を設け、前記密
閉容器内の圧力と前記背圧室内の圧力との圧力差が、密
閉容器下部の潤滑油を前記軸受部に供給するに足る圧力
差(限界給油圧)以下になったとき前記背圧室と吸入室
とを連通させる前記通路手段の開閉手段(弁装置)を備
えたことを特徴とする。
To achieve the above object, the present invention provides a compressor unit in which a fixed scroll member and an orbiting scroll member are meshed with wraps inside each other, an electric motor for orbiting the orbiting scroll member via a rotating shaft, and the rotating member. A frame that supports the shaft through bearings, a closed container that houses these members, a discharge port that opens at the center of the fixed scroll, a suction port that opens at the outer periphery of the fixed scroll, an orbiting scroll and frame. A back pressure chamber formed between the suction port and the suction port, the gas is sucked from the suction port, the gas is compressed while the volume is reduced by moving the sealed space formed by both scroll members as a center, and the gas is discharged from the discharge port. The compressed gas is discharged into the closed container chamber and then discharged from the container to the outside, the inside of the closed container is maintained at a discharge pressure, and the back pressure chamber is filled with a pressure during compression. It is turned on to apply a pressing force to the fixed scroll side to the orbiting scroll, and the lubricating oil accumulated in the lower part of the closed container is supplied to the bearing part due to the pressure difference between the pressure inside the closed container and the pressure inside the back pressure chamber. In the hermetic scroll compressor, the passage means (passage, communication hole) for connecting the back pressure chamber and the suction chamber is provided, and the pressure between the pressure in the hermetic container and the pressure in the back pressure chamber is set. When the difference becomes equal to or less than the pressure difference (limit supply pressure) sufficient to supply the lubricating oil in the lower portion of the closed container to the bearing portion, the opening / closing means (valve device) for connecting the back pressure chamber and the suction chamber to each other. ) Is provided.

上記特徴を有する本発明によれば、密閉容器内の圧力と
前記背圧室内の圧力との圧力差が密閉容器下部の潤滑油
を前記軸受部に供給するに足る圧力差(限界給油圧)以
下になると、前記開閉手段が開の状態となり、背圧室と
吸入室とが連通手段を介して連通されるから、背圧室の
ガスは吸入室側に流出し、背圧室の圧力は吸入室の圧力
程度に低下する。この結果、密閉容器内の圧力と前記背
圧室内の圧力との圧力差が大きくなり、その圧力差は限
界給油圧となるから、密閉容器下部の潤滑油を軸受部に
十分に供給することができる。したがって、本発明によ
れば、吐出圧力が低下し、吸入圧力が上昇する低圧力比
運転時においても、必要な軸受給油圧を確保することが
できる。
According to the invention having the above characteristics, the pressure difference between the pressure in the closed container and the pressure in the back pressure chamber is equal to or less than the pressure difference (limit hydraulic pressure) sufficient to supply the lubricating oil in the lower part of the closed container to the bearing portion. Then, the opening / closing means is opened and the back pressure chamber and the suction chamber are communicated with each other through the communication means, so that the gas in the back pressure chamber flows out to the suction chamber side and the pressure in the back pressure chamber is sucked. The pressure drops to about the chamber pressure. As a result, the pressure difference between the pressure in the closed container and the pressure in the back pressure chamber becomes large, and the pressure difference becomes the limit hydraulic pressure, so that the lubricating oil in the lower part of the closed container can be sufficiently supplied to the bearing portion. it can. Therefore, according to the present invention, it is possible to secure the necessary bearing hydraulic pressure even during the low pressure ratio operation in which the discharge pressure decreases and the suction pressure increases.

〔発明の実施例〕Example of Invention

以下、本発明の一実施例を第1図にもとずき説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図に示すスクロール圧縮機は、密閉容器1内に、圧
縮機部2と電動機部3が収納されている。圧縮機部2は
固定スクロール部材5と旋回スクロール部材6を互に噛
合せて圧縮室(密閉空間)9が形成される。固定スクロ
ール部材5は、円板状の鏡板5aと、これに直立しイン
ボリウト曲線あるいはこれに近似の曲線に形成されたラ
ップ5bとからなり、その中心部に吐出口10、外周部
に吸入口7を備えている。旋回スクロール部材6は円板
状の鏡板6aと、これに直立し、固定スクロールのラッ
プと同一形状に形成されたラップ6bと、鏡板の反ラッ
プ面に形成されたボス6cとからなっている。フレーム
11は中央部に軸受部11aを形成し、この軸受部に回
転軸14が支承され、回転軸先端の偏心軸14aは、上
記ボス6cに旋回運動が可能なように挿入されてる。ま
たフレーム11には固定スクロール部材5が複数本のボ
ルトによって固定され、旋回スクロール部材6はオルダ
ムリングおよびオルダムキーよりなるオルダム機構12
によってフレーム11に支承され、旋回スクロール部材
6は固定スクロール部材5に対して、自転しないで旋回
運動をするように形成されている。回転軸14には下部
に電動機部3を直結している。固定スクロール部材5の
吸入口7には密閉容器1を貫通して吸入管17が接続さ
れ、吐出口10が開口している吐出室1aは通路(図示
せず)介して下部室1bと連通し、更に、密閉容器1を
貫通する吐出管19に連通している。
In the scroll compressor shown in FIG. 1, a compressor unit 2 and an electric motor unit 3 are housed in a closed container 1. In the compressor unit 2, a fixed scroll member 5 and an orbiting scroll member 6 are meshed with each other to form a compression chamber (closed space) 9. The fixed scroll member 5 is composed of a disk-shaped end plate 5a and a wrap 5b which stands upright on the end plate 5a and which is formed in an involute curve or a curve similar to this, and has a discharge port 10 at the center thereof and a suction port 7 at the outer peripheral portion thereof. Is equipped with. The orbiting scroll member 6 is composed of a disk-shaped end plate 6a, a wrap 6b which stands upright on the end plate 6a and has the same shape as the wrap of the fixed scroll, and a boss 6c formed on the non-lap surface of the end plate. The frame 11 has a bearing portion 11a formed at the center thereof, and the rotary shaft 14 is supported by the bearing portion, and the eccentric shaft 14a at the tip of the rotary shaft is inserted into the boss 6c so as to be capable of turning motion. The fixed scroll member 5 is fixed to the frame 11 by a plurality of bolts, and the orbiting scroll member 6 is an Oldham mechanism 12 including an Oldham ring and an Oldham key.
The orbiting scroll member 6 is supported by the frame 11 and is formed so as to orbit the fixed scroll member 5 without rotating. The electric motor unit 3 is directly connected to the lower portion of the rotary shaft 14. A suction pipe 17 is connected to the suction port 7 of the fixed scroll member 5 through the closed container 1, and the discharge chamber 1a having the discharge port 10 opened communicates with the lower chamber 1b through a passage (not shown). Further, it communicates with a discharge pipe 19 penetrating the closed container 1.

他方、旋回スクロール部材6の背面とフレーム11で囲
まれた空間20(これを「背圧室」と称する)には、旋
回、固定の両スクロールで形成される複数の密閉空間内
のガス圧によるスラスト方向のガス力(この力は、旋回
スクロール部材6を下方に押し下げようとする離反力と
なる。)に対抗するため吸入圧力(低圧側圧力)と吐出
圧力の中間の圧力が作用する。この中間圧力の設定は旋
回スクロール6の鏡板6aに細孔21を設け、この細孔
21を介してスクロール内部のガスを背圧室20に導
き、旋回スクロールの背面にガスを作用させて行う。
On the other hand, in the space 20 surrounded by the back surface of the orbiting scroll member 6 and the frame 11 (referred to as "back pressure chamber"), the gas pressure in a plurality of closed spaces formed by both orbiting and fixed scrolls causes An intermediate pressure between the suction pressure (low pressure side pressure) and the discharge pressure acts in order to counter the gas force in the thrust direction (this force acts as a separating force for pushing down the orbiting scroll member 6). This intermediate pressure is set by providing the end plate 6a of the orbiting scroll 6 with a fine hole 21, guiding the gas inside the scroll to the back pressure chamber 20 through the fine hole 21, and causing the gas to act on the back surface of the orbiting scroll.

回転軸14及び偏心軸14aには各軸受部へ給油を行う
ための給油孔14cが回転軸14の下端から偏心軸14
aの上端面まで穿設され、回転軸下端部14dは密閉容
器1底部の潤滑油22内に浸漬されている。また、偏心
軸部14aの下部には、旋回スクロールボス部6cの先
端面に対向させる主軸受上部にバランスウェイト14e
が、回転軸14と係合し一体化して形成されている。
The rotating shaft 14 and the eccentric shaft 14a have oil supply holes 14c for supplying oil to the respective bearings from the lower end of the rotating shaft 14 to the eccentric shaft 14a.
The upper end surface of a is bored, and the lower end portion 14d of the rotating shaft is immersed in the lubricating oil 22 at the bottom portion of the closed container 1. Further, a balance weight 14e is provided on the lower portion of the eccentric shaft portion 14a and on an upper portion of the main bearing which faces the tip end surface of the orbiting scroll boss portion 6c.
Are engaged with the rotary shaft 14 and are integrally formed.

30は弁装置で、吐出室1aと背圧室20の圧力差によ
り、吸入室8と背圧室20とを連通したり、遮断したり
するように作動する。
Reference numeral 30 denotes a valve device, which operates so as to connect or block the suction chamber 8 and the back pressure chamber 20 depending on the pressure difference between the discharge chamber 1a and the back pressure chamber 20.

上記弁装置部分の詳細を第2図に示す。The details of the valve device portion are shown in FIG.

固定スクロール5の外周近くには軸方向に外壁から円筒
状の弁室31が穿設され、弁室31の底部は、軸心部に
軸心方向に細孔32を穿ち、角部で弁座31aを形成
し、該細孔32は通路33を介し吸入室8に開口連通す
る。また上記弁室31の側部には斜め方向に連通孔34
を穿設し、更にフレーム11に形成された通路35,3
6を介し背圧室20に連通している。37は弁室に内装
された弁体で、段付円筒部と円錐部にて形成され、大径
部37aは弁室31の内壁に小間隙を保持して摺動する
ように形成され、小径部37bは外周にバネ38を装着
し、更に小径部37bに連なって円錐部37cが形成さ
れている。上記構造の弁体はバネ38にて、円錐部37
cが弁座31aと離間する方向に押圧されている。39
は弁体37の移動を規制する止め輪である。
A cylindrical valve chamber 31 is bored from the outer wall in the axial direction near the outer circumference of the fixed scroll 5, and a bottom portion of the valve chamber 31 has a bore 32 bored in the axial direction in the axial center and a valve seat at a corner. 31a is formed, and the pore 32 communicates with the suction chamber 8 through the passage 33. In addition, a communication hole 34 is formed in a side portion of the valve chamber 31 in an oblique direction.
And the passages 35 and 3 formed in the frame 11
It communicates with the back pressure chamber 20 via 6. Reference numeral 37 denotes a valve element incorporated in the valve chamber, which is formed of a stepped cylindrical portion and a conical portion, and a large diameter portion 37a is formed so as to slide on the inner wall of the valve chamber 31 with a small gap and has a small diameter. A spring 38 is attached to the outer circumference of the portion 37b, and a conical portion 37c is formed so as to be continuous with the small diameter portion 37b. The valve element having the above structure is composed of a spring 38 and a conical portion 37.
c is pressed in a direction away from the valve seat 31a. 39
Is a retaining ring that restricts the movement of the valve body 37.

また、弁体37の上端面に吐出圧が作用する受圧面37
dを有し、また弁室31内には通路35,36、連通孔
35を介し背圧室20の圧力が作用している。
Further, the pressure receiving surface 37 on which the discharge pressure acts on the upper end surface of the valve body 37.
The pressure of the back pressure chamber 20 acts on the valve chamber 31 through the passages 35 and 36 and the communication hole 35.

上記構造の弁装置は、受圧面37dに作用する吐出圧
が、弁室31に作用する背圧室20の圧力とバネ38の
押圧力との和より大きければ、弁体37を下方に押圧
し、円錐部37cが弁座31aを閉塞し、背圧室20と
吸入室8は遮断される。
The valve device having the above structure pushes the valve body 37 downward if the discharge pressure acting on the pressure receiving surface 37d is larger than the sum of the pressure of the back pressure chamber 20 acting on the valve chamber 31 and the pressing force of the spring 38. The conical portion 37c closes the valve seat 31a, and the back pressure chamber 20 and the suction chamber 8 are shut off from each other.

また受圧面37dに作用する吐出圧より、弁室31に作
用している背圧室20の圧力とバネ38の押圧力の和が
大きければ、弁体37は図示のように押し上げられ、弁
座31aを開放し、背圧室20と吸入室8は連通する。
If the sum of the pressure of the back pressure chamber 20 acting on the valve chamber 31 and the pressing force of the spring 38 is larger than the discharge pressure acting on the pressure receiving surface 37d, the valve body 37 is pushed up as shown in the figure, and the valve seat 37 is pushed. The back pressure chamber 20 and the suction chamber 8 communicate with each other by opening 31a.

上記構造のスクロール圧縮機は、電動機3を直結した回
転軸14の回転により、偏心軸14aが偏心回転するこ
とにより、ボス6cを介し、旋回スクロール部材6は旋
回運動をする。この旋回運動により、密閉室(圧縮室)
9は次第に中心に移動して容積が減少する。低温低圧の
冷媒ガスは吸入管17から吸入口7を経て固定スクロー
ル内の外周部の吸入室8に入り、上記のように圧縮され
て圧力を高め中央の吐出口10から吐出室1aに吐出さ
れる。この高温,高圧の冷媒ガスは通路を介し下部室1
bに流入し、次いで吐出管19から外部へ吐出される。
In the scroll compressor having the above-described structure, the eccentric shaft 14a is eccentrically rotated by the rotation of the rotary shaft 14 directly connected to the electric motor 3, so that the orbiting scroll member 6 makes an orbiting motion via the boss 6c. Due to this turning motion, the closed chamber (compression chamber)
9 gradually moves to the center and its volume decreases. The low-temperature low-pressure refrigerant gas passes from the suction pipe 17 through the suction port 7 and enters the suction chamber 8 at the outer peripheral portion in the fixed scroll, and is compressed as described above to increase the pressure and is discharged from the central discharge port 10 to the discharge chamber 1a. It This high-temperature, high-pressure refrigerant gas is passed through the passage to the lower chamber 1
It flows into b and is then discharged from the discharge pipe 19 to the outside.

次に潤滑油の流れについて説明する。Next, the flow of lubricating oil will be described.

潤滑油22内に浸漬された回転軸下端14dは高圧の吐
出圧力Pdの雰囲気にあり他方、下流となる旋回ボス6
cの軸受部のまわりは、中間圧力Pmの雰囲気にあるた
め、(Pd−Pm)の圧力差によって、容器底部の潤滑
油22は給油孔14c内を上昇する。給油孔14c内を
上昇した潤滑油は、軸受11aへ給油されると共に、偏
心軸14aの上聞空間23(旋回スクロールボス部6c
のボス部底面と偏心軸部14aの上端面との隙間の部分
で、この空間は油圧室となる。以後「油圧室」23と称
す。)に至る。該油圧室23の潤滑油は、ほゞ吐出圧力
Pdに等しい圧力であり、また旋回ボス6cの軸受及び
軸受11aに至った潤滑油は、おのおのの軸受隙間を通
って背圧室20へ排油される。背圧室20に至った潤滑
油はオルダムリング部12などを潤滑した後、前記細孔
を介して両スクロールで形成される圧縮室9に注入さ
れ、ひいてはスクロールラップの内部で、前記冷媒ガス
と混合される。
The lower end 14d of the rotary shaft immersed in the lubricating oil 22 is in the atmosphere of the high discharge pressure Pd, while the swivel boss 6 is located downstream.
Since there is an atmosphere of intermediate pressure Pm around the bearing part of c, the lubricating oil 22 at the bottom of the container rises in the oil supply hole 14c due to the pressure difference of (Pd-Pm). The lubricating oil that has risen in the oil supply hole 14c is supplied to the bearing 11a, and the upper space 23 of the eccentric shaft 14a (the orbiting scroll boss portion 6c
This space serves as a hydraulic chamber in the gap between the bottom surface of the boss portion and the upper end surface of the eccentric shaft portion 14a. Hereinafter, it will be referred to as the "hydraulic chamber" 23. ). The lubricating oil in the hydraulic chamber 23 has a pressure almost equal to the discharge pressure Pd, and the lubricating oil reaching the bearing of the swivel boss 6c and the bearing 11a is discharged to the back pressure chamber 20 through the bearing gaps. To be done. The lubricating oil that has reached the back pressure chamber 20 lubricates the Oldham ring portion 12 and the like, and then is injected into the compression chamber 9 formed by both scrolls through the pores, and by the inside of the scroll wrap, the lubricating oil Mixed.

次に冷媒ガスとともに潤滑油は昇圧作用を受け吐出ガス
に伴なわれて、吐出口10、吐出室1a、通路を介し下
部室1bに至り、該室1bにて油は分離して滴下し密閉
容器底部の油溜りに溜る。
Next, the lubricating oil is pressurized with the refrigerant gas and is accompanied by the discharge gas to reach the lower chamber 1b through the discharge port 10, the discharge chamber 1a, and the passage, and the oil is separated and dripped in the chamber 1b to seal it. Collect in the oil sump at the bottom of the container.

上記作用は定常運転時の作用であり、即ち吐出圧力が吸
入圧力及び背圧室の圧力より十分高い高圧力比運転時に
は弁装置30の受圧面37aに作用する吐出圧力は、弁
室31に作用する背圧室20の圧力より十分高い為、ば
ね38の抗力に打勝って弁体37を押し下げ、円錐部3
7cが弁座31aを閉塞し、背圧室20と吸入室8とは
遮断されており、スクロール圧縮機構部は上述の圧縮作
用を行なう。
The above operation is an operation during steady operation, that is, the discharge pressure acting on the pressure receiving surface 37a of the valve device 30 acts on the valve chamber 31 during the high pressure ratio operation in which the discharge pressure is sufficiently higher than the suction pressure and the pressure of the back pressure chamber. Since the pressure is sufficiently higher than the pressure of the back pressure chamber 20, the valve body 37 is pushed down by overcoming the reaction force of the spring 38, and
The valve seat 31a is closed by 7c, the back pressure chamber 20 and the suction chamber 8 are shut off, and the scroll compression mechanism section performs the above-described compression action.

背圧室20の圧力は、通常吸入圧力で決定されるため、
吸入圧力が上昇するにつれて背圧室20の圧力も上昇す
る。従って冷房運転時の低温条件または暖房運転中の除
霜運転等の、吐出圧力が低く吸入圧力が高くなる条件、
即ち、低圧力比運転時には、吸入圧力の上昇に伴ない背
圧室20の圧力も上昇し、この背圧室20の圧力とバネ
38の押圧力の和が吐出室1aの圧力より大きくなると
弁体37は押し上げられて弁座31aを開放し背圧室2
0と吸入室8は連通する。この連通により背圧室20の
ガスは吸入室8に流入し背圧室20の圧力は低下する。
従って給油圧である吐出圧力と背圧室20の圧力との差
圧は確保され、軸受への給油量は確保される。即ち、吐
出圧力が低く、吸入圧力が高い低圧力比運転において、
吐出圧力と背圧室の圧力との差圧による給油圧が限界給
油圧に近づくと、弁装置30の上記作動により背圧室2
0の圧力を下げ給油圧を限界給油圧以上に保持すること
になる。上記弁装置30には、バネ38が装着され、こ
のバネ38の押圧力は弁室31に作用する圧力(背圧室
の圧力)を増加させる方向、即ち、弁体37を吐出室側
に押圧する方向に作用しているため、吐出圧力と背圧室
の圧力との圧力差が吐出圧力の方が高い正の圧力レベル
にあっても、設定レベル以下であれば、バネ38の押圧
力が付加されるため、弁体37は上述のように作動され
る。例えば一例として、吐出圧力と吸入圧力との圧力比
が2以下であれば、そのときの吐出圧と背圧室の圧力と
圧力差により弁体が作動するように設定することができ
る。第3図は上記実施例の圧力比と給油圧との関係を示
し、第4図は圧力比と圧縮機入力との関係を示す。図中
破線は従来例の値を示す。
Since the pressure of the back pressure chamber 20 is usually determined by the suction pressure,
As the suction pressure increases, the pressure in the back pressure chamber 20 also increases. Therefore, the discharge pressure is low and the suction pressure is high, such as low temperature conditions during cooling operation or defrosting operation during heating operation,
That is, during the low pressure ratio operation, the pressure of the back pressure chamber 20 also rises as the suction pressure rises, and when the sum of the pressure of the back pressure chamber 20 and the pressing force of the spring 38 becomes larger than the pressure of the discharge chamber 1a, The body 37 is pushed up to open the valve seat 31a, and the back pressure chamber 2
0 and the suction chamber 8 communicate with each other. By this communication, the gas in the back pressure chamber 20 flows into the suction chamber 8 and the pressure in the back pressure chamber 20 drops.
Therefore, the pressure difference between the discharge pressure, which is the oil supply pressure, and the pressure in the back pressure chamber 20 is secured, and the amount of oil supplied to the bearing is secured. That is, in low pressure ratio operation where the discharge pressure is low and the suction pressure is high,
When the hydraulic pressure due to the pressure difference between the discharge pressure and the pressure in the back pressure chamber approaches the critical hydraulic pressure, the above operation of the valve device 30 causes the back pressure chamber 2 to move.
The pressure of 0 is reduced to keep the hydraulic pressure above the critical hydraulic pressure. A spring 38 is attached to the valve device 30, and the pressing force of the spring 38 increases the pressure acting on the valve chamber 31 (pressure in the back pressure chamber), that is, presses the valve element 37 toward the discharge chamber. Therefore, even if the pressure difference between the discharge pressure and the pressure in the back pressure chamber is at a higher positive pressure level than the discharge pressure, if the pressure difference is below the set level, the pressing force of the spring 38 is Since it is added, the valve element 37 is operated as described above. For example, if the pressure ratio between the discharge pressure and the suction pressure is 2 or less, the valve body can be set to operate according to the pressure difference between the discharge pressure and the pressure in the back pressure chamber at that time. FIG. 3 shows the relationship between the pressure ratio and the hydraulic pressure in the above embodiment, and FIG. 4 shows the relationship between the pressure ratio and the compressor input. The broken line in the figure indicates the value of the conventional example.

図中εは従来構造における圧力比の下限を示し、これ
以下の圧力比になると給油圧が限界値△PL以下とな
り、軸受給油不足が生じて圧縮機入力が急上昇する。こ
の状態が長時間続くと軸受が焼付く。
In the figure, ε B represents the lower limit of the pressure ratio in the conventional structure, and if the pressure ratio is lower than this, the hydraulic pressure becomes less than the limit value ΔPL, the bearing hydraulic supply becomes insufficient, and the compressor input sharply increases. If this state continues for a long time, the bearing will seize.

インバータ駆動用空調機において、冷房負荷の減少に伴
なって、圧縮機の回転数を減少させると吸入圧力が上昇
し、吐出圧力が下降し、圧力比が低下する。背圧室20
内の圧力は吸入圧力の上昇とともに上昇するから、軸受
給油圧力となる吐出圧力と背圧室20内の差圧は減少す
る。又、同時に、第2図に示した弁体37に作用する力
も減少し、設定した作動点以下の力となると弁体37が
持上げられて通路32が開口し、背圧室20が吸入室8
に連通する。このため、背圧室20内の圧力が低下し、
従来の限界圧力比ε 以下の低圧力比においても軸受給油圧力が確保される。
さらに圧力比を低下させ給油圧が限界値△PLになると
きの圧力比が本発明の限界比εとなる。このεは、
背圧室20と吸入室8の連通路の抵抗などにより決ま
り、1以上であれば任意に設定できる。この線図で明ら
かなように低圧力比運転においても十分に給油圧を確保
でき、圧縮機入力が異常に上昇する現象もみられず安定
した運転が行なわれる。
In the inverter-driven air conditioner, when the rotation speed of the compressor is reduced as the cooling load is reduced, the suction pressure increases, the discharge pressure decreases, and the pressure ratio decreases. Back pressure chamber 20
Since the internal pressure increases as the suction pressure increases, the discharge pressure, which is the bearing oil supply pressure, and the differential pressure in the back pressure chamber 20 decrease. At the same time, the force acting on the valve element 37 shown in FIG. 2 is also reduced, and when the force is less than the set operating point, the valve element 37 is lifted and the passage 32 is opened, and the back pressure chamber 20 becomes the suction chamber 8.
Communicate with. Therefore, the pressure in the back pressure chamber 20 decreases,
The bearing oil supply pressure is ensured even at a low pressure ratio equal to or lower than the conventional limit pressure ratio ε b .
Further, the pressure ratio when the pressure ratio is further reduced and the supply oil pressure reaches the limit value ΔPL becomes the limit ratio ε A of the present invention. This ε A is
It is determined by the resistance of the communication passage between the back pressure chamber 20 and the suction chamber 8 and the like, and can be arbitrarily set as long as it is 1 or more. As is apparent from this diagram, sufficient hydraulic pressure can be secured even in low pressure ratio operation, and stable operation can be performed without the phenomenon that the compressor input rises abnormally.

第5図は本発明の他の実施例を示し、この実施例が第2
図の実施例と相違するところは、弁体47の大径部47
aの端部に弁室31の内壁とのシールを確実に行なうO
リング47eを嵌装している構造及び弁室31の弁座を
形成する細孔32と吸入室8を連通する通路43及び弁
室31と背圧室20を連通する連通路44及び通路45
の形状である。その他の部分は第2図の実施例と同様で
あり同符号を付しその説明を省略する。
FIG. 5 shows another embodiment of the present invention, which is the second embodiment.
The difference from the illustrated embodiment is that the large diameter portion 47 of the valve body 47 is
O for surely sealing the end of a with the inner wall of the valve chamber 31
A structure in which a ring 47e is fitted and a passage 43 that communicates the pore 32 that forms the valve seat of the valve chamber 31 with the suction chamber 8 and a communication passage 44 and the passage 45 that communicates between the valve chamber 31 and the back pressure chamber 20.
Is the shape of. The other parts are the same as those in the embodiment of FIG.

上記実施例はOリング47eにより弁体の大径部47a
と弁室31内壁とのシールが確実に行なわれる。弁体4
7の作動は第2図の実施例と同様に作動し給油圧が確保
される。
In the above embodiment, the large diameter portion 47a of the valve body is provided by the O-ring 47e.
The inner wall of the valve chamber 31 is reliably sealed. Disc 4
The operation of 7 operates in the same manner as the embodiment of FIG. 2 and the hydraulic pressure is secured.

第6図は更に他の実施例を示し、この実施例が第5図の
実施例と相違するところは、弁体57の大径部57a
と、円錐部57cと小径部57bを一部形成した弁頭と
をベローズ58にて連結し、前記実施例のバネに代えて
ベローズ58の押圧力をバネ力に用いたものであり、そ
の他の部分は第5図の実施例と同様であり、同符号を付
しその説明を省略する。この実施例の弁体57の作動は
第2図、第5図の実施例と同様に作動し給油圧が確保さ
れる。
FIG. 6 shows still another embodiment. The difference between this embodiment and the embodiment of FIG. 5 is that the large diameter portion 57a of the valve body 57 is provided.
And the conical portion 57c and the valve head partially formed with the small diameter portion 57b are connected by the bellows 58, and the pressing force of the bellows 58 is used for the spring force instead of the spring of the above-mentioned embodiment. The parts are the same as those in the embodiment of FIG. The valve element 57 of this embodiment operates in the same manner as the embodiment of FIGS. 2 and 5 to secure the hydraulic pressure.

第7図は更に他の実施例を示し、この実施例が第5図の
実施例と相違するところは、弁室61の外壁開口端部に
貫通孔69aを穿った円板状の止め栓69を嵌着し、こ
の止め栓69と弁体67との間に、中央部に円孔81a
が開口した皿形のシール板(ゴムまたは樹脂性)81が
配設されている。このシール板81は第5図の実施例の
Oリングに相当するものである。その他の部分は第5図
の実施例と同様であり、同符号を付しその説明を省略す
る。
FIG. 7 shows still another embodiment. The difference of this embodiment from the embodiment of FIG. 5 is that a disc-like stopper plug 69 having a through hole 69a at the outer wall opening end of the valve chamber 61 is formed. Between the stopper 69 and the valve body 67, and insert a circular hole 81a in the center.
A dish-shaped seal plate (rubber or resin) 81 having an opening is provided. This seal plate 81 corresponds to the O-ring of the embodiment shown in FIG. The other parts are the same as in the embodiment of FIG. 5, and are assigned the same reference numerals and explanations thereof are omitted.

上記実施例は、皿形のシール板81の周辺部が弁室61
に摺接し、弁室61の内壁とシールされ、また中央部は
弁体67の大径部67aの受圧面67dに接し該受圧面
との間がシールされ、このシール板81は弁体67にか
ゝる吐出圧により弁体67と共に移動し、吐出室側1a
と弁室61側とのシールを確実に行う。
In the above embodiment, the peripheral portion of the dish-shaped seal plate 81 is the valve chamber 61.
Slidably in contact with the inner wall of the valve chamber 61, and the central portion is in contact with the pressure receiving surface 67d of the large diameter portion 67a of the valve body 67 and is sealed between the pressure receiving surface and the seal plate 81. Due to such discharge pressure, it moves together with the valve element 67, and the discharge chamber side 1a
The valve chamber 61 side is reliably sealed.

弁体67の作動は前記実施例と同様に作動し、給油圧が
確保される。
The valve body 67 operates in the same manner as in the above-mentioned embodiment, and the hydraulic pressure is secured.

第8図、第9図は更に他の弁装置70の実施例を示し、
弁体を、板バネに弁頭を取付けて形成された実施例であ
る。固定スクロール5の外壁部から適宜深さに円筒状の
弁室71を形成し、弁室71の底部は中心部に軸心方向
に細孔72を穿ち吸入室8に開口し、角部で弁座71a
を形成している。また弁室71の底部の周縁には斜め方
向に連通孔74aを、軸心方向に連通孔74bを穿設
し、更にフレーム11に形成された通路75、76を介
し背圧室20に連通している。77は弁室に内装された
弁体で、円板部77bの端部に円錐部77cを形成し、
この弁体は円形の板バネ78の中心部に固着され、環状
の押え板79と共に複数本のボルト90で固定スクロー
ル5に取付けられている。また固定スクロールの弁室7
1の開口部周辺は図示のように板バネ78が変位する曲
面に対応するように凹面91に形成されている。
8 and 9 show still another embodiment of the valve device 70,
It is an embodiment in which a valve body is formed by attaching a valve head to a leaf spring. A cylindrical valve chamber 71 is formed at an appropriate depth from the outer wall portion of the fixed scroll 5, and the bottom portion of the valve chamber 71 has a hole 72 formed in the central portion in the axial direction to open to the suction chamber 8 and a valve at a corner portion. Seat 71a
Is formed. Further, a communication hole 74a is formed obliquely in the peripheral edge of the bottom of the valve chamber 71, and a communication hole 74b is formed in the axial direction, and further communicated with the back pressure chamber 20 through passages 75, 76 formed in the frame 11. ing. Reference numeral 77 is a valve element installed in the valve chamber, and a conical portion 77c is formed at the end of the disc portion 77b,
This valve body is fixed to the central portion of a circular leaf spring 78, and is attached to the fixed scroll 5 with a plurality of bolts 90 together with an annular holding plate 79. The fixed scroll valve chamber 7
The periphery of the first opening is formed as a concave surface 91 so as to correspond to the curved surface on which the leaf spring 78 is displaced as shown in the figure.

上記構造の弁装置70は、板バネ78の上面に吐出室1
aの圧力が作用し、弁室71には背圧室20の圧力が作
用している。吐出室の圧力が吸入室及び背圧室の圧力よ
り十分高い通常運転時は、吐出室の圧力より背圧室の圧
力と板バネ78の抗圧力との和の方が低く、上記圧力差
により板バネ78は押され、図示の如く変位し、弁体の
円錐部77cが弁座71aを閉塞し、背圧室20と吸入
室8とは遮断されている。低圧力比運転時には、板バネ
78に作用する圧力差が減少し、背圧室20の圧力と板
バネ78の復帰しようとする抗圧力の和が吐出室1aの
圧力より大きくなると変位していた板バネ78が復帰
し、弁体77も共に上方に移動し円錐部77cは弁座7
1aより離れ、弁座71aは開放される。
In the valve device 70 having the above structure, the discharge chamber 1 is provided on the upper surface of the leaf spring 78.
The pressure of a acts, and the pressure of the back pressure chamber 20 acts on the valve chamber 71. During normal operation in which the pressure in the discharge chamber is sufficiently higher than the pressures in the suction chamber and the back pressure chamber, the sum of the pressure in the back pressure chamber and the coercive pressure of the leaf spring 78 is lower than the pressure in the discharge chamber, and the pressure difference causes The leaf spring 78 is pushed and displaced as shown in the drawing, the conical portion 77c of the valve body closes the valve seat 71a, and the back pressure chamber 20 and the suction chamber 8 are shut off. During the low pressure ratio operation, the pressure difference acting on the leaf spring 78 is reduced, and when the sum of the pressure of the back pressure chamber 20 and the coercive pressure of the leaf spring 78 to be restored becomes larger than the pressure of the discharge chamber 1a, it is displaced. The leaf spring 78 returns, the valve body 77 also moves upward, and the conical portion 77c moves to the valve seat 7
The valve seat 71a is opened apart from 1a.

従って背圧室20と吸入室8は連通し、背圧室20のガ
スは吸入室8に流入し、背圧室20の圧力は低下し、給
油圧である吐出圧力と背圧室の圧力との差圧が確保さ
れ、給油量が確保される。
Therefore, the back pressure chamber 20 and the suction chamber 8 communicate with each other, the gas in the back pressure chamber 20 flows into the suction chamber 8, the pressure in the back pressure chamber 20 decreases, and the discharge pressure, which is the hydraulic pressure, and the pressure in the back pressure chamber. The differential pressure is secured and the amount of oil supply is secured.

上記の弁体77の作動圧力差は第2図の実施例と同様
に、背圧室20の圧力には板バネ38の抗圧力が加わる
ため、吐出圧と背圧室との圧力差が正の圧力レベルにお
いて弁体77は作動する。板バネ38のバネ力を適宜設
定することにより弁体が作動する正の圧力レベルの値は
適宜設定することができる。
As in the embodiment shown in FIG. 2, since the coercive pressure of the leaf spring 38 is applied to the pressure of the back pressure chamber 20, the pressure difference between the discharge pressure and the back pressure chamber is positive. The valve body 77 operates at the pressure level of. By setting the spring force of the leaf spring 38 appropriately, the value of the positive pressure level at which the valve element operates can be set appropriately.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、冷房運転時の低温
条件または暖房運転時の除霜運転等、吐出圧力が低下し
吸入圧力が上昇する低圧力比運転時においても、必要な
軸受給油圧を確保し、旋回軸受、主軸受等各摺動部に確
実に給油を行うことが出来る。
As described above, according to the present invention, even when the low pressure ratio operation in which the discharge pressure decreases and the suction pressure increases such as the low temperature condition during the cooling operation or the defrosting operation during the heating operation, the required bearing hydraulic pressure is required. Therefore, it is possible to reliably supply oil to the sliding parts such as the slewing bearing and the main bearing.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す密閉形スクロール圧縮
機の縦断面図、第2図は第1図の制御弁部分の拡大断面
図、第3図は上記実施例の給油圧と圧力比との関係を示
す線図、第4図は同じく圧縮機入力と圧力比との関係を
示す線図である。第5図は制御弁部分の他の実施例を示
す縦断面図、第6図は更に他の実施例を示す制御弁部分
の縦断面図、第7図は更に他の実施例を示す制御弁部分
の縦断面図、第8図は更に他の実施例を示す制御弁部分
の縦断面図、第9図は第8図の制御弁部分の分解図を示
す。第10図は給油圧と給油量との関係を示す線図、第
11図は従来の圧力比と給油圧との関係を示す線図であ
る。 30…弁装置 31…弁室 37…弁体 38…
バネ 47…弁体 57…弁体 58…ベローズ
67…弁体 77…弁体 78…板バネ 8
1…止メ板
FIG. 1 is a vertical sectional view of a hermetic scroll compressor showing an embodiment of the present invention, FIG. 2 is an enlarged sectional view of a control valve portion of FIG. 1, and FIG. 3 is a hydraulic pressure and pressure of the above embodiment. FIG. 4 is a diagram showing the relationship with the ratio, and FIG. 4 is a diagram showing the relationship between the compressor input and the pressure ratio. FIG. 5 is a vertical sectional view showing another embodiment of the control valve portion, FIG. 6 is a vertical sectional view of a control valve portion showing still another embodiment, and FIG. 7 is a control valve showing still another embodiment. 8 is a vertical sectional view of a portion of the control valve, FIG. 8 is a vertical sectional view of a control valve portion showing still another embodiment, and FIG. 9 is an exploded view of the control valve portion of FIG. FIG. 10 is a diagram showing the relationship between the oil pressure and the oil supply amount, and FIG. 11 is a diagram showing the relationship between the conventional pressure ratio and the oil pressure. 30 ... Valve device 31 ... Valve chamber 37 ... Valve body 38 ...
Spring 47 ... Valve body 57 ... Valve body 58 ... Bellows 67 ... Valve body 77 ... Valve body 78 ... Leaf spring 8
1 ... stop plate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】固定スクロール部材(5)及び旋回スクロ
ール部材(6)ラップを互いに内側にして噛み合わせた
圧縮機部(2)と、前記旋回スクロール部材を回転軸
(14)を介して旋回運動させる電動機(3)と、前記
回転軸を軸受部(11a)を介して支承するフレーム
(11)と、これらの部材を収納する密閉容器(1)
と、固定スクロールの中心部に開口する吐出口(10)
と、固定スクロールの外周部に開口する吸入口(7)
と、旋回スクロールとフレームとの間に形成した背圧室
(20)とを備え、前記吸入口からガスを吸入し、両ス
クロール部材により形成される密閉空間を中心に移動さ
せて容積を減少しながらガスを圧縮し、吐出口から圧縮
ガスを密閉容器室に吐出しその後該容器内から外部に吐
出する構成として前記密閉容器内を吐出圧力に保持し、
前記背圧室には圧縮途中の圧力を導入して旋回スクロー
ルに固定スクロール側への押し付け力を付与し、且つ密
閉容器内の圧力と前記背圧室内の圧力との圧力差により
密閉容器下部に溜められた潤滑油(22)を前記軸受部
に供給するようにした密閉形のスクロール圧縮機におい
て、前記背圧室と吸入室とを連通する通路手段(33〜
36,43〜45,74a,74b,75,76)を設
け、前記密閉容器内の圧力と前記背圧室内の圧力との圧
力差が、密閉容器下部の潤滑油を前記軸受部に供給する
に足る圧力差(限界給油圧)以下になったとき前記背圧
室と吸入室とを連通させる前記通路手段の開閉手段(3
0,37,47,57,67,70,77)を備えたこ
とを特徴とするスクロール圧縮機。
1. A compressor unit (2) in which a fixed scroll member (5) and an orbiting scroll member (6) wrap are intermeshed with each other, and an orbiting motion of the orbiting scroll member via a rotating shaft (14). An electric motor (3), a frame (11) for supporting the rotary shaft via a bearing (11a), and a closed container (1) for accommodating these members.
And a discharge port (10) opening at the center of the fixed scroll
And a suction port (7) opening to the outer periphery of the fixed scroll
And a back pressure chamber (20) formed between the orbiting scroll and the frame, sucks gas from the suction port, and moves the gas around a sealed space formed by both scroll members to reduce the volume. While compressing the gas, the compressed gas is discharged from the discharge port into the closed container chamber and then discharged from the inside of the container to the outside to maintain the discharge pressure in the closed container,
A pressure during compression is introduced into the back pressure chamber to apply a pressing force to the fixed scroll side to the orbiting scroll, and a pressure difference between the pressure in the closed pressure chamber and the pressure in the back pressure chamber causes the pressure to be applied to the lower portion of the closed pressure chamber. In a hermetic scroll compressor adapted to supply the accumulated lubricating oil (22) to the bearing portion, a passage means (33 to 30) for connecting the back pressure chamber and the suction chamber to each other.
36, 43 to 45, 74a, 74b, 75, 76), and the pressure difference between the pressure in the closed container and the pressure in the back pressure chamber causes the lubricating oil in the lower part of the closed container to be supplied to the bearing portion. Opening / closing means (3) for the passage means for connecting the back pressure chamber and the suction chamber when the pressure difference becomes equal to or less than a sufficient pressure difference (limit hydraulic pressure).
0, 37, 47, 57, 67, 70, 77).
【請求項2】前記開閉手段は、固定スクロールの外壁に
開口する弁室(31)を有し、この弁室は弁座部を吸入
室(8)に連通させると共に側部を背圧室(20)に連
通させ、かつ前記弁室に内装された弁体(37)を有
し、この弁体を吐出室側に付勢するバネ(38)を備え
ていることを特徴とする特許請求の範囲第1項記載のス
クロール圧縮機。
2. The opening / closing means has a valve chamber (31) opening to the outer wall of the fixed scroll, the valve chamber communicating the valve seat portion with the suction chamber (8) and the side portion with the back pressure chamber (8). 20) which has a valve body (37) which is communicated with 20) and which is installed in the valve chamber, and which is provided with a spring (38) for urging the valve body toward the discharge chamber. A scroll compressor as set forth in claim 1.
JP21132684A 1983-12-04 1984-10-11 Scroll compressor Expired - Lifetime JPH061073B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP21132684A JPH061073B2 (en) 1984-10-11 1984-10-11 Scroll compressor
US06/678,487 US4596520A (en) 1983-12-14 1984-12-05 Hermetic scroll compressor with pressure differential control means for a back-pressure chamber
DE19843445321 DE3445321A1 (en) 1983-12-14 1984-12-12 SEALED SPIRAL COMPRESSOR
KR1019840007971A KR850004306A (en) 1983-12-14 1984-12-14 Hermetic Shroud Compressor
KR2019880013207U KR880004333Y1 (en) 1983-12-04 1988-08-11 Hermetic scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21132684A JPH061073B2 (en) 1984-10-11 1984-10-11 Scroll compressor

Publications (2)

Publication Number Publication Date
JPS6189990A JPS6189990A (en) 1986-05-08
JPH061073B2 true JPH061073B2 (en) 1994-01-05

Family

ID=16604100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21132684A Expired - Lifetime JPH061073B2 (en) 1983-12-04 1984-10-11 Scroll compressor

Country Status (1)

Country Link
JP (1) JPH061073B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63108587U (en) * 1986-12-31 1988-07-13
US4840545A (en) * 1988-05-16 1989-06-20 American Standard Inc. Scroll compressor relief valve
US5141407A (en) * 1990-10-01 1992-08-25 Copeland Corporation Scroll machine with overheating protection
US5591014A (en) * 1993-11-29 1997-01-07 Copeland Corporation Scroll machine with reverse rotation protection
US5707210A (en) * 1995-10-13 1998-01-13 Copeland Corporation Scroll machine with overheating protection
JP3874469B2 (en) * 1996-10-04 2007-01-31 株式会社日立製作所 Scroll compressor
KR100547331B1 (en) * 2004-01-09 2006-01-26 엘지전자 주식회사 Scroll compressor
KR100624384B1 (en) 2005-03-30 2006-09-20 엘지전자 주식회사 The orifice structure of oil suppling bolt for scroll compressor
JP2009036069A (en) * 2007-08-01 2009-02-19 Sanden Corp Scroll type fluid machine
KR101484538B1 (en) 2008-10-15 2015-01-20 엘지전자 주식회사 Scoroll compressor and refrigsrator having the same
JP5018832B2 (en) * 2009-06-15 2012-09-05 株式会社日立製作所 Scroll compressor
JP2015206329A (en) * 2014-04-23 2015-11-19 日立アプライアンス株式会社 scroll compressor

Also Published As

Publication number Publication date
JPS6189990A (en) 1986-05-08

Similar Documents

Publication Publication Date Title
US4596520A (en) Hermetic scroll compressor with pressure differential control means for a back-pressure chamber
US4560330A (en) Scroll device with suction chamber pressure relief
KR880002907Y1 (en) Scroll-type compressor
US5090880A (en) Scroll compressor with discharge valves
US20080152526A1 (en) Vapor injection system for a scroll compressor
KR20030021117A (en) Compressor discharge valve
JPH0631625B2 (en) Scroll fluid machinery
US4875840A (en) Compressor lubrication system with vent
JP4519489B2 (en) Scroll compressor
JPH061073B2 (en) Scroll compressor
JP2007138868A (en) Scroll compressor
JPS58160583A (en) Scroll type fluidic machine
JPH05149269A (en) Scroll type fluid machine
JP2580411B2 (en) Hermetic scroll compressor
JPH0754784A (en) Shaft through scroll compressor
JPS62178789A (en) Scroll compressor
JP3136132B2 (en) Scroll compressor
JPS60243388A (en) Scroll compressor
JPH05187370A (en) Scroll gas compressor
JPH05106567A (en) Sealed type scroll compressor
JPH1077977A (en) Scroll type compressor
JP2674562B2 (en) Scroll refrigerant compressor with refueling control means
JPH025917B2 (en)
JPS62139991A (en) Scroll type compressor
JP2548517B2 (en) Closed scroll fluid device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term