JPH06106312A - Immersion nozzle for continuous casting - Google Patents

Immersion nozzle for continuous casting

Info

Publication number
JPH06106312A
JPH06106312A JP27931392A JP27931392A JPH06106312A JP H06106312 A JPH06106312 A JP H06106312A JP 27931392 A JP27931392 A JP 27931392A JP 27931392 A JP27931392 A JP 27931392A JP H06106312 A JPH06106312 A JP H06106312A
Authority
JP
Japan
Prior art keywords
nozzle
inner hole
immersion nozzle
hole body
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27931392A
Other languages
Japanese (ja)
Inventor
Katsuhiro Sasai
勝浩 笹井
Yoshimasa Mizukami
義正 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27931392A priority Critical patent/JPH06106312A/en
Publication of JPH06106312A publication Critical patent/JPH06106312A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent bulging defect in a cast slab and improve the quality by arranging a connecting part partially and integratively connecting a nozzle body and an inner hole body corresponding to a gas blowing part to annular- state along a powder line and making SiO2 content in the inner hole body the specific value or lower. CONSTITUTION:In an immersion nozzle, the connecting part 4 partially and integratively connecting the nozzle body 2 and the immersion nozzle inner hole body 1 corresponding to the gas blowing part, is arranged as the annular- state along the powder line 3. Further, the SiO2 content in the inner hole body 1 is made to be <=5wt.%. By this immersion nozzle, the erosion resistance and the spalling resistance are secured and besides, the fine bubbles can stably be blown from the inner hole body 1. Therefore, not only the prevention from the bulging defect, but also the prevention from float-up separation of inclusions caused by the bubbles and from nozzle clogging, can further efficiently be executed. By this method, the quality of the cast slab produced by continuous casting method is stabilized and the yield is improved, too.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋼の連続鋳造におい
て、溶鋼をタンディッシュからモールド内へ鋳込むため
に使用されるガス吹き込み型浸漬ノズルに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas injection type immersion nozzle used for casting molten steel from a tundish into a mold in continuous casting of steel.

【0002】[0002]

【従来の技術】現在、連続鋳造においては、溶鋼を酸化
させることなくタンディッシュからモールド内に供給す
るために、浸漬ノズルが利用されている。浸漬ノズルの
材質としては、アルミナ及び炭素を主体とし、これに2
0wt%程度のシリカを含有するものが主流となってい
る。このような浸漬ノズルでは、鋳造時間の経過ととも
に鋼中析出物のアルミナ及び地金がノズル内壁に付着
し、激しい場合にはノズル閉塞を引き起こし鋳造を停止
する場合もあった。
2. Description of the Related Art At present, in continuous casting, an immersion nozzle is used to supply molten steel from a tundish into a mold without oxidizing it. As the material of the immersion nozzle, alumina and carbon are mainly used.
Those containing about 0 wt% silica are the mainstream. In such a submerged nozzle, alumina and metal ingots deposited in steel adhere to the inner wall of the nozzle as the casting time elapses, and when violent, the nozzle may be clogged and the casting may be stopped.

【0003】この問題を解決する手段の1つとして、例
えば、特公昭58−3467号公報に示されるように、
浸漬ノズル内孔と同心円となる多孔質の筒状耐火物(内
孔体)を浸漬ノズル本体に内挿し、この多孔質耐火物内
壁からArその他の不活性ガスを吹き込むことが知られ
ている。しかし、本方法により吹き込まれたArガス
は、一部モールド内で浮上中に凝固界面に捕捉され、気
泡として鋳片内に残留する。
As one of means for solving this problem, for example, as shown in Japanese Patent Publication No. 58-3467,
It is known to insert a porous cylindrical refractory (inner hole body) that is concentric with the inner hole of the immersion nozzle into the main body of the immersion nozzle and blow Ar or another inert gas from the inner wall of the porous refractory. However, the Ar gas blown by this method is partially trapped at the solidification interface while floating in the mold, and remains as bubbles in the slab.

【0004】この気泡は、大きなものほど熱間圧延、冷
間圧延後も圧着されず、鋼板表面にふくれ欠陥として現
れる。ここで、ふくれ欠陥とは熱間圧延、冷間圧延後の
鋼板表面に現れる欠陥で、幅1〜4mm、長さ数mmに
***した、あるいはこれら数mmの***が点状に連続し
300mmにも渡って連なったものをいう。このふくれ
欠陥は鋼板中の炭素濃度を極力低下させた、例えば炭素
濃度が50ppm以下の極低炭素鋼において、製品中の
固溶炭素を析出物として固定させるためにTiを添加さ
せた鋼種にとりわけ多く発生し、製品歩留まりの大幅な
低下を招いている。
The larger the bubbles, the more they are not pressure-bonded after hot rolling or cold rolling, and appear as swelling defects on the surface of the steel sheet. Here, the blistering defect is a defect that appears on the surface of the steel sheet after hot rolling or cold rolling, and is raised to a width of 1 to 4 mm and a length of several mm, or these raised portions of several mm are continuous in a dot shape to 300 mm. It is a string that has been crossed over. This swelling defect is caused especially by reducing the carbon concentration in the steel sheet as much as possible. It often occurs, causing a significant decrease in product yield.

【0005】そこで、浸漬ノズルの閉塞防止を確実に享
受しつつ、ふくれ欠陥の発生を抑制するために、溶鋼ト
ン当たり4Nl以下に制限したArと残余N2 との混合
ガスを用い、鋳片内部に捕捉されるガス気泡に基づく1
mmφ以上のピンホール数をトン当たり10個以内に低
減させる方法(特開昭62−38747号公報)が報告
され効果を発揮している。
Therefore, in order to surely enjoy the prevention of the clogging of the immersion nozzle and to suppress the occurrence of blistering defects, a mixed gas of Ar and the residual N 2 which is limited to 4 Nl or less per ton of molten steel is used, and the inside of the cast piece is used. Based on gas bubbles trapped in
A method of reducing the number of pinholes of mmφ or more to 10 or less per ton (Japanese Patent Laid-Open No. 62-38747) has been reported and is effective.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、浸漬ノ
ズルから窒素ガスを吹き込んだ場合には、特に鋳造速度
が速くなり窒素気泡が鋳片の奥深くまで持ち込まれ溶鋼
との接触時間が長くなると、溶鋼中に吸収され、既に存
在する以上に溶鋼中窒素濃度が増加する。この窒素成分
は薄鋼板の加工性、成形性に支障をきたす恐れがあり、
極力低いほうが好ましい。したがって、鋼材特性の一層
の向上が望まれる今日にあっては、窒素濃度が現状以上
に増加した場合には、材質を確保するために添加合金の
量が増加し、精練上のコスト増加をまぬがれない。
However, when nitrogen gas is blown from the immersion nozzle, if the casting speed becomes particularly high and nitrogen bubbles are brought deep into the slab and the contact time with the molten steel becomes long, the molten steel is Nitrogen concentration in molten steel increases more than it already exists. This nitrogen component may impair the workability and formability of the thin steel sheet,
It is preferably as low as possible. Therefore, in the present day when further improvement of steel material properties is desired, when the nitrogen concentration is increased beyond the current level, the amount of the additive alloy is increased to secure the material, and the cost for refining is not increased. Absent.

【0007】これらの問題点を鑑み、本発明は、ノズル
閉塞の防止に必要なガス吹き込み流量を確保した上で、
大幅な精練コストの増加もなく、また鋼材の材質を損ね
ることなく、常に安定してふくれ欠陥のない加工用鋼板
素材を鋳造できる連続鋳造用浸漬ノズルを提供すること
を目的とするものである。
In view of these problems, the present invention secures a gas blowing flow rate necessary for preventing nozzle clogging, and
It is an object of the present invention to provide a continuous casting immersion nozzle capable of casting a steel plate material for processing which is always stable and has no blistering defects, without significantly increasing the refining cost and without damaging the material of the steel material.

【0008】[0008]

【課題を解決するための手段】本発明は、ガス吹き込み
型連続鋳造用浸漬ノズルにおいて、ノズル本体とガス吹
き込み部にあたる内孔体を部分的に一体連結する連結部
を、パウダーラインに沿って環状に配置し、且つ内孔体
のSiO2 含有率を5wt%以下にしたことを特徴とす
る連続鋳造用浸漬ノズルに関するものである。
DISCLOSURE OF THE INVENTION The present invention relates to a gas-blowing-type continuous casting immersion nozzle in which a connecting portion for partially integrally connecting a nozzle body and an inner hole body corresponding to the gas-blowing portion is formed along a powder line. The present invention relates to an immersion nozzle for continuous casting, characterized in that the SiO 2 content of the inner hole body is set to 5 wt% or less.

【0009】[0009]

【作用】発明者等は、ノズル閉塞を防止するための浸漬
ノズルからのArガス吹き込みは従来どうり積極的に実
施し、その上でふくれ欠陥につながらない熱延、冷延鋼
板用鋳片を鋳造できる連続鋳造用浸漬ノズルの研究開発
を続けてきた。以下では、最も一般的なアルミナグラフ
ァイト質ノズルについて詳細に説明する。
The inventors of the present invention have positively injected Ar gas from the dipping nozzle to prevent nozzle clogging, and cast hot-rolled and cold-rolled steel sheet slabs that do not lead to blistering defects. We have continued to research and develop a dipping nozzle for continuous casting. The most common alumina graphite nozzle will be described in detail below.

【0010】鋳片内に捕捉された気泡は、大きなものほ
ど熱間圧延、冷間圧延後にふくれ欠陥につながり易い。
そこで、本発明者等は浸漬ノズル内孔体の劣化によるA
r気泡径の粗大化がふくれ欠陥発生の原因と考え、特に
欠陥発生率の高いTiを含有する極低炭素鋼を鋳造した
浸漬ノズルについて詳細な調査を行った。
The larger the bubbles trapped in the slab, the more easily they will lead to swelling defects after hot rolling and cold rolling.
Therefore, the inventors of the present invention have considered that A
It is considered that the coarsening of the bubble diameter of r is the cause of the occurrence of blistering defects, and in particular, a detailed investigation was carried out on the immersion nozzle cast from the ultra-low carbon steel containing Ti, which has a high defect occurrence rate.

【0011】なお、浸漬ノズル内孔体の組成はシリカ2
6wt%、黒鉛24wt%、アルミナ50wt%であ
る、水中でのArガス吹き込み試験では、未使用内孔体
の平均気泡径が0.3mmであるのに対し、Tiを含有
する極低炭素鋼を鋳造した内孔体では平均気泡径が2.
0mmに達していた。
The composition of the pores in the immersion nozzle is silica 2
In an Ar gas blowing test in water containing 6 wt% of graphite, 24 wt% of graphite and 50 wt% of alumina, the average bubble diameter of the unused inner pores was 0.3 mm, whereas the ultra low carbon steel containing Ti was used. In the cast inner hole body, the average bubble diameter is 2.
It reached 0 mm.

【0012】また、気泡径が粗大化する原因を明らかに
するために浸漬ノズルから内孔体部を切り出し、溶鋼接
触面の組織観察及びEPMAによる面分析を行った。こ
れにより、内孔体中に含まれているシリカが溶鋼中のT
iにより間接的に還元され、組織中から消失すること
で、Ar気泡径が粗大化していることを見出した。
Further, in order to clarify the cause of the coarsening of the bubble diameter, the inner hole portion was cut out from the dipping nozzle, the structure of the molten steel contact surface was observed, and the surface analysis by EPMA was performed. As a result, the silica contained in the inner pores is
It was found that the Ar bubble diameter is coarsened by being indirectly reduced by i and disappearing from the tissue.

【0013】ここで、間接的な反応とは、(1)、
(2)、(3)式で示されるような反応で、シリカが耐
火物中に共存する黒鉛 耐火物中 SiO2 +C=SiO(ガス)+CO(ガス) (1) 耐火物/溶鋼界面 2SiO(ガス)+Ti=TiO2 +2Si (2) 2CO(ガス)+Ti=TiO2 +2 (3) と反応しSiOガスとCOガスを生成し、これらガスが
溶鋼中のTiにより還元されるものである。したがっ
て、Tiを含有する極低炭素鋼に発生するふくれ欠陥を
防止するためには内孔体中のシリカ含有率を低減し、
(1)式の反応を抑制することが有効となる。
Here, the indirect reaction is (1),
Graphite in which silica coexists in the refractory by the reactions represented by the formulas (2) and (3) SiO 2 + C = SiO (gas) + CO (gas) in the refractory (1) refractory / molten steel interface 2SiO ( Gas) + Ti = TiO 2 +2 Si (2) 2CO (gas) + Ti = TiO 2 +2 C (3) to generate SiO gas and CO gas, which are reduced by Ti in the molten steel Is. Therefore, in order to prevent the blistering defect that occurs in the ultra-low carbon steel containing Ti, the silica content in the inner pore body is reduced,
It is effective to suppress the reaction of formula (1).

【0014】しかしながら、シリカを含有しない浸漬ノ
ズル内孔体はシリカ消失に伴う気孔率、気孔径の増大が
ないため、Arガス吹き込み圧力は高いまま維持され
る。このため、パウダーによるノズル本体外周の溶損が
進行する連々鋳後半で、ガス吹き込み圧力に耐えきれず
ノズル外周に縦割れが発生する。
However, since the porosity and pore diameter of the submerged nozzle inner body which does not contain silica do not increase with the disappearance of silica, the Ar gas blowing pressure remains high. For this reason, in the latter half of continuous casting, in which melting of the outer circumference of the nozzle body due to the powder progresses, vertical cracks occur in the outer circumference of the nozzle due to inability to withstand the gas blowing pressure.

【0015】そこで、本発明者等はノズル本体外周のパ
ウダー溶損部への負荷を小さくし、割れ発生を防止する
方法について検討を行った結果、図1(イ)に示すよう
に、ノズル本体2と内孔体1を部分的に一体連結する連
結部4を、パウダーライン3に沿って環状に配置するこ
とにより、ノズル外周の縦割れを完全に防止できること
を見いだした。図1(ロ)はA−A′断面図である。
Therefore, the inventors of the present invention conducted a study on a method for reducing the load on the powder melt-damaged portion on the outer periphery of the nozzle body to prevent the occurrence of cracks, and as a result, as shown in FIG. It has been found that a vertical crack on the outer circumference of the nozzle can be completely prevented by arranging the connecting portion 4 that partially connects the inner hole body 1 and the inner hole body 2 in an annular shape along the powder line 3. FIG. 1B is a sectional view taken along the line AA '.

【0016】図2(イ)に、従来ノズルの形状を示す。
図2(ロ)はB−B′断面図である。浸漬ノズルのAr
ガス吹き込み圧力ΔP(kgf/cm2 )は、内孔体厚
みL(cm)、Arガス流量Q(cm3 /min/cm
2 )、気孔率ε、気孔径d(cm)及びArガスの粘度
μ(kgf/cm2 ・s)の関数として(4)式で与え
られる。
FIG. 2A shows the shape of a conventional nozzle.
FIG. 2B is a sectional view taken along the line BB '. Immersion nozzle Ar
The gas injection pressure ΔP (kgf / cm 2 ) is the inner hole body thickness L (cm) and the Ar gas flow rate Q (cm 3 / min / cm).
2 ), the porosity ε, the pore diameter d (cm) and the viscosity of Ar gas μ (kgf / cm 2 · s) are given by the equation (4).

【0017】一方、ノズル本体2の耐え得る圧力Pmax
(kgf/cm2 )は割れ発生の応力σmax (kgf/
cm2 )を用いて(5)式で求められる。ここで、a
(cm)とb(cm)は各々ノズル本体2の内径と外径
である。
On the other hand, the pressure P max that the nozzle body 2 can withstand
(Kgf / cm 2 ) is the stress σ max (kgf /
cm 2 ) and is calculated by the equation (5). Where a
(Cm) and b (cm) are the inner diameter and the outer diameter of the nozzle body 2, respectively.

【0018】内孔体1のシリカを低減したノズルでは気
孔率ε、気孔径dの増大がないため、(4)式から分か
るようにArガス吹き込み圧力ΔPは高いまま維持さ
れ、内孔体1とノズル本体2の間に設けられた均圧室5
にその圧力が直接作用する。一方、連々鋳の進行に伴い
パウダーライン3のノズル外径bが溶損により減少する
ため、(5)式から分かるようにノズル本体2の強度P
max は小さくなる。
Since the porosity ε and the pore diameter d do not increase in the silica-reduced nozzle of the inner pore body 1, the Ar gas blowing pressure ΔP is maintained high as can be seen from the equation (4), and the inner pore body 1 is maintained. Pressure equalizing chamber 5 provided between the nozzle body 2 and the nozzle body 2.
The pressure acts directly on. On the other hand, since the nozzle outer diameter b of the powder line 3 decreases due to melting loss as the continuous casting progresses, the strength P of the nozzle body 2 can be reduced as can be seen from the equation (5).
max becomes smaller.

【0019】その結果、連々鋳後半でΔP>Pmax の条
件になり、ガス均圧室5からノズル本体側への圧力によ
り、ノズルに縦割れが発生する。なお、従来ノズルで
は、シリカ消失に基づく気孔率、気孔径の増大により、
Arガス吹き込み圧力ΔPも低下するため、現状の使用
条件では連々鋳後半で割れ発生の条件ΔP>Pmax を満
たすことはない。
As a result, the condition of ΔP> P max is continuously satisfied in the latter half of casting, and vertical cracking occurs in the nozzle due to the pressure from the gas pressure equalizing chamber 5 to the nozzle body side. In the conventional nozzle, due to the increase in porosity and pore diameter due to the disappearance of silica,
Since the Ar gas blowing pressure ΔP is also lowered, the condition ΔP> P max for crack generation in the latter half of the casting is not satisfied under the current usage conditions.

【0020】しかし、図1に示すように、ノズル本体2
と内孔体1を部分的に一体連結する連結部4を、パウダ
ーライン3に沿って環状に配置すれば、ガス均圧室5だ
けを設けている時よりもノズル強度は極めて向上する。
このため、連々鋳後半でΔP>Pmax の条件になること
はなく、浸漬ノズル外周の縦割れを防止できる。なお、
パウダーライン部以外の強度補償を目的として、補助的
にパウダーライン部以外にノズル本体と内孔体の連結部
を設けることも可能である。
However, as shown in FIG. 1, the nozzle body 2
By arranging the connecting portion 4 that partially connects the inner hole body 1 and the inner hole body 1 in an annular shape along the powder line 3, the nozzle strength is significantly improved as compared with the case where only the gas pressure equalizing chamber 5 is provided.
Therefore, the condition of ΔP> P max is not satisfied in the latter half of continuous casting, and vertical cracks on the outer circumference of the immersion nozzle can be prevented. In addition,
For the purpose of compensating the strength other than the powder line portion, it is possible to additionally provide a connecting portion between the nozzle body and the inner hole body in addition to the powder line portion.

【0021】以上の結果から、本発明により、割れ発生
を防止すると共に、気孔径拡大が抑制され微細な気泡を
長時間安定して吹き込むことができるため、ふくれ欠陥
防止に非常に有効な浸漬ノズルを提供できる。
From the above results, according to the present invention, the occurrence of cracking can be prevented, the expansion of the pore diameter can be suppressed, and fine air bubbles can be stably blown in for a long time. Can be provided.

【0022】本発明において、内孔体にはふくれ欠陥防
止の観点からシリカを含有しないことが好ましいが、必
要な場合には5wt%以下に限って添加しても良い。こ
れは、シリカ含有率が5wt%以下であれば、反応速度
が非常に遅くなること、さらにシリカが全て消失しても
気泡径が大きくする程気孔率や気孔径が増大しないため
である。
In the present invention, it is preferable that silica is not contained in the inner pore body from the viewpoint of preventing blistering defects, but if necessary, it may be added in an amount of 5 wt% or less. This is because if the silica content is 5 wt% or less, the reaction rate becomes very slow, and further, even if all the silica disappears, the porosity and the pore diameter do not increase as the bubble diameter increases.

【0023】アルミナは耐蝕性を付与する役割を持ち、
内孔体への好ましい配合率が30〜80wt%である。
30wt%未満では耐蝕性が不十分で、80wt%を超
えると熱膨張率が大きくなり耐スポーリング性が低下す
る。
Alumina has a role of imparting corrosion resistance,
The preferable compounding ratio to the inner pore body is 30 to 80 wt%.
If it is less than 30 wt%, the corrosion resistance is insufficient, and if it exceeds 80 wt%, the coefficient of thermal expansion becomes large and the spalling resistance decreases.

【0024】黒鉛は成形性及び耐スポーリング性に優れ
ていることから、内孔体には耐蝕性を低下させない範囲
で黒鉛を添加する。内孔体への黒鉛の配合範囲について
は5〜40wt%程度が好ましい。5wt%未満では成
形性及び耐スポーリング性が低下し、40wt%を超え
ると黒鉛の酸化や溶鋼中への溶出により耐蝕性が低下す
る。また、高熱伝導率のためノズル詰まりを生ずる恐れ
もある。
Since graphite is excellent in moldability and spalling resistance, graphite is added to the inner pores within a range not deteriorating the corrosion resistance. The blending range of graphite in the inner pores is preferably about 5 to 40 wt%. If it is less than 5 wt%, the formability and spalling resistance are lowered, and if it exceeds 40 wt%, the corrosion resistance is lowered due to oxidation of graphite and elution into molten steel. Further, the high thermal conductivity may cause nozzle clogging.

【0025】浸漬ノズル内孔体の基本的な構成成分は以
上であるが、この他にもノズル材質への添加物として既
に知られている材料を、本発明の効果を損なわない範囲
で含有させてもよい。その材料としては、例えば炭化珪
素、ジルコニア、ジルコン、各種金属粉等である。これ
ら構成成分から成る耐火物を用いて、ノズル内孔体を構
成する際、ノズル本体に関しても同一材料を使用するこ
とが望ましいが、溶鋼と接触しない部分に関しては、従
来のシリカを含有する組成の材料を用いることもでき、
また両者の中間的な材質を介在させることも可能であ
る。
Although the basic constituent components of the submerged nozzle inner hole body are as described above, other materials already known as additives to the nozzle material are contained within a range not impairing the effects of the present invention. May be. Examples of the material thereof include silicon carbide, zirconia, zircon, and various metal powders. It is desirable to use the same material for the nozzle body when constructing the nozzle inner hole using a refractory composed of these constituents, but for the part that does not come into contact with the molten steel, the conventional composition containing silica is used. Materials can also be used,
It is also possible to interpose a material intermediate between the two.

【0026】以上の説明は浸漬ノズルの材質として最も
一般的なアルミナグラファイト質に関するものである
が、内孔体材質としてグラファイトとその他の成分、例
えばジルコニア、スピネル、カルシア、マグネシア等を
組み合せたものにおいても、本発明は同様の効果を得る
ことが可能である。
The above description relates to the most common alumina graphite material as the material of the immersion nozzle, but in the case of a combination of graphite and other components such as zirconia, spinel, calcia, magnesia etc. as the material of the inner pore body. However, the present invention can obtain the same effect.

【0027】[0027]

【実施例】以下に、実施例及び比較例について表1を挙
げて、本発明について説明する。
EXAMPLES The present invention will be described below with reference to Table 1 for Examples and Comparative Examples.

【0028】[0028]

【表1】 [Table 1]

【0029】表1に示した原料含有物に樹脂バインダー
としてフェノール樹脂を外掛けで15wt%添加して混
練し、アイソスタティックプレスを用いて 1.0t/
cm2の圧力で図1及び図2のノズル形状に成形した。
なお、パウダーライン部の耐火物はジルコニアを75w
t%、Cを25wt%含有するジルコニアグラファイト
質に統一し、その他の部位は全て表1の成分とした。さ
らに、この成形体を1200℃の温度で還元焼成し、連
続鋳造用ガス吹き込み型浸漬ノズル(外径185mm
φ、内径90mmφ、吐出孔径70mmφ、吐出孔角度
35度の逆Y型ノズル)を作製した。
15 wt% of a phenol resin was added as a resin binder to the raw material-containing materials shown in Table 1 by external coating, and the mixture was kneaded.
Molded into a nozzle shape as shown in FIGS. 1 and 2 with a pressure of cm 2 .
The powder line refractory is zirconia 75w
The zirconia graphite material containing t% and C in an amount of 25 wt% was unified, and the other parts were all the components shown in Table 1. Furthermore, this molded body is reduction-fired at a temperature of 1200 ° C., and a gas blowing type immersion nozzle for continuous casting (outer diameter 185 mm
φ, inner diameter 90 mmφ, discharge hole diameter 70 mmφ, discharge hole angle 35 °).

【0030】このようにして得られた浸漬ノズルを用い
て、Tiを0.08wt%含有する炭素濃度30ppm
の極低炭素鋼を400分間鋳造した。この際、Arガス
吹き込み流量は溶鋼トン当たり6Nl一定とした。本発
明の実施例及び比較例とも鋳造寸法は、厚み245mm
×幅1500mmで、8500mm長さに切断して1コ
イル単位とした。このスラブを常法により熱間圧延、冷
間圧延し、最終的に厚み0.7mm×幅1500mmコ
イルの冷延鋼板とした。ふくれ欠陥防止に対する浸漬ノ
ズル耐火物の評価は、水中でのAr吹き込み試験により
得られた気泡径と、冷間圧延後の検査ラインで目視観察
を行い、1コイル当たりに発生するふくれ欠陥の個数
(ふくれ欠陥指標)により評価した。また、浸漬ノズル
の割れ発生については浸漬ノズルに亀裂が生じた時間を
指標として評価した。表2に、実施例及び比較例の品質
評価結果を示す。
Using the immersion nozzle thus obtained, a carbon concentration of 0.08 wt% of Ti and a carbon concentration of 30 ppm
Of ultra low carbon steel was cast for 400 minutes. At this time, the flow rate of Ar gas blown was fixed at 6 Nl per ton of molten steel. The casting size is 245 mm in thickness in both the example of the present invention and the comparative example.
× Width 1500 mm, cut into length 8500 mm to make one coil unit. The slab was hot-rolled and cold-rolled by a conventional method to finally obtain a cold-rolled steel sheet having a thickness of 0.7 mm and a width of 1500 mm. The evaluation of the immersion nozzle refractory for blistering defect prevention was carried out by visually observing the bubble diameter obtained by the Ar blowing test in water and the inspection line after cold rolling (the number of blistering defects generated per coil ( It was evaluated by the blistering defect index). Further, the occurrence of cracks in the immersion nozzle was evaluated using the time at which the immersion nozzle was cracked as an index. Table 2 shows the quality evaluation results of the examples and comparative examples.

【0031】[0031]

【表2】 [Table 2]

【0032】表2に示す如く、実施例ではノズル本体と
内孔体を部分的に一体連結する連結部を、パウダーライ
ンに沿って環状に配置し、且つシリカ含有率を5wt%
以下にしたことで、Arガス吹き込み圧力による割れ発
生もなく、常に安定してふくれ欠陥を防止できた。これ
に対し、比較例1は内孔体のシリカ含有率が高かったた
め、Ar気泡径が拡大し、ふくれ欠陥が発生した。しか
し、内孔体中のシリカ消失により気孔率、気孔径が増大
したため、内孔体に連結部を設けない状態でも割れの発
生はなかった。また、比較例2はノズル本体と内孔体を
部分的に一体連結する連結部をパウダーラインに沿って
環状に配置しなかったために、鋳造後半で強度が低下
し、内孔体に亀裂が発生した。このため、鋳造開始後3
20分で鋳造を停止した。しかし、内孔体のシリカ含有
率が5wt%以下であったため、ふくれ欠陥は発生しな
かった。
As shown in Table 2, in the embodiment, the connecting portion for partially integrally connecting the nozzle body and the inner hole body is arranged annularly along the powder line, and the silica content is 5 wt%.
By the following, the swelling defect could be always stably prevented without the occurrence of cracks due to the Ar gas blowing pressure. On the other hand, in Comparative Example 1, the silica content of the inner pores was high, so the Ar bubble diameter was enlarged and swelling defects occurred. However, since the porosity and the pore diameter increased due to the disappearance of silica in the inner pores, no cracks were generated even when the inner pores were not provided with the connecting portion. Further, in Comparative Example 2, since the connecting portion for partially integrally connecting the nozzle body and the inner hole body was not arranged annularly along the powder line, the strength was lowered in the latter half of casting, and the inner hole body was cracked. did. Therefore, 3
Casting was stopped in 20 minutes. However, since the silica content of the inner pores was 5 wt% or less, no blistering defect occurred.

【0033】[0033]

【発明の効果】以上に説明したように、本発明の連続鋳
造用浸漬ノズルによれば、耐蝕性及び耐スポーリング性
を確保した上で、内孔体から微細な気泡を安定して吹き
込むことができる。したがって、ふくれ欠陥の防止に留
まらず、気泡による介在物の浮上分離及びノズル閉塞の
防止をより効率的に行うことができる。以上の効果によ
り、連続鋳造法で製造される鋼板の品質は非常に安定
し、歩留まりも格段に向上する。
As described above, according to the immersion nozzle for continuous casting of the present invention, it is possible to stably blow fine air bubbles from the inner hole while ensuring the corrosion resistance and the spalling resistance. You can Therefore, it is possible not only to prevent the blistering defect but also to more efficiently prevent the floating separation of inclusions and the nozzle blockage due to bubbles. Due to the above effects, the quality of the steel sheet produced by the continuous casting method is very stable and the yield is remarkably improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】(イ)本発明の実施例である浸漬ノズルの縦断
面の構造を示す。 (ロ)本発明の浸漬ノズルのA−A′構造断面を示す。
FIG. 1A shows a structure of a vertical cross section of an immersion nozzle according to an embodiment of the present invention. (B) A sectional view taken along the line AA ′ of the immersion nozzle of the present invention.

【図2】(イ)比較例の浸漬ノズルの縦断面の構造を示
す。 (ロ)比較例の浸漬ノズルのB−B′断面を示す。
FIG. 2 (a) shows a structure of a vertical cross section of a submerged nozzle of a comparative example. (B) A BB ′ cross section of the immersion nozzle of the comparative example is shown.

【符号の説明】[Explanation of symbols]

1 浸漬ノズル内孔体 2 浸漬ノズル本体 3 パウダーライン部 4 連結部 5 ガス均圧室 1 Immersion Nozzle Inner Porous Body 2 Immersion Nozzle Main Body 3 Powder Line Part 4 Connection Part 5 Gas Equalization Chamber

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ガス吹き込み型連続鋳造用浸漬ノズルに
おいて、ノズル本体とガス吹き込み部にあたる内孔体を
部分的に一体連結する連結部を、パウダーラインに沿っ
て環状に配置し、且つ内孔体のSiO2 含有率を5wt
%以下にしたことを特徴とする連続鋳造用浸漬ノズル。
1. In a gas-blowing type continuous casting immersion nozzle, a connecting portion for partially integrally connecting a nozzle body and an inner hole body corresponding to a gas blowing section is annularly arranged along a powder line, and the inner hole body is formed. SiO 2 content of 5 wt
% Immersion nozzle for continuous casting.
JP27931392A 1992-09-25 1992-09-25 Immersion nozzle for continuous casting Withdrawn JPH06106312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27931392A JPH06106312A (en) 1992-09-25 1992-09-25 Immersion nozzle for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27931392A JPH06106312A (en) 1992-09-25 1992-09-25 Immersion nozzle for continuous casting

Publications (1)

Publication Number Publication Date
JPH06106312A true JPH06106312A (en) 1994-04-19

Family

ID=17609430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27931392A Withdrawn JPH06106312A (en) 1992-09-25 1992-09-25 Immersion nozzle for continuous casting

Country Status (1)

Country Link
JP (1) JPH06106312A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114042906A (en) * 2021-11-15 2022-02-15 攀钢集团研究院有限公司 Submerged nozzle and method for improving heavy rail non-metallic inclusion control
CN114054739A (en) * 2021-11-15 2022-02-18 攀钢集团研究院有限公司 Submerged nozzle for promoting high efficiency and high cleanness and continuous casting production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114042906A (en) * 2021-11-15 2022-02-15 攀钢集团研究院有限公司 Submerged nozzle and method for improving heavy rail non-metallic inclusion control
CN114054739A (en) * 2021-11-15 2022-02-18 攀钢集团研究院有限公司 Submerged nozzle for promoting high efficiency and high cleanness and continuous casting production method

Similar Documents

Publication Publication Date Title
EP1671721B1 (en) Immersion nozzle for continuous casting of steel and method for continuous casting of steel using the immersion nozzle
JPH0839214A (en) Nozzle for continuous casting
JP2706201B2 (en) Nozzle bore for continuous casting
CN113458377A (en) Anti-caking tundish breathable water feeding port
JPH06106312A (en) Immersion nozzle for continuous casting
JPH06106313A (en) Immersion nozzle for continuous casting
GB2081702A (en) Immersion Nozzle for Continuous Casting of Molten Steel
JP2554320Y2 (en) Immersion nozzle for continuous casting
JP3124421B2 (en) Immersion nozzle for continuous casting
JP2991881B2 (en) Immersion nozzle for continuous casting
JPH05123840A (en) Immersion nozzle for continuous casting
JPH05123839A (en) Immersion nozzle for continuous casting
JPH05154630A (en) Immersion nozzle for continuous casting
JPH0515953A (en) Immersion nozzle for continuous casting
KR100239938B1 (en) Immersion nozzle for continuous casting
JP3328803B2 (en) Nozzle for continuous casting of steel
GB2056430A (en) Immersion Nozzle for Continuous Casting of Molten Steel
JP2891757B2 (en) Immersion nozzle
JP2004268142A (en) Immersion nozzle for continuous casting of steel
JPH0531557A (en) Immersion nozzle for continuous casting
JP2937450B2 (en) Immersion nozzle for continuous casting
KR950008603B1 (en) Composition of refractories
JPH05285613A (en) Immersion nozzle for continuous casting
JP2004268143A (en) Immersion nozzle for continuous casting of steel
JPH04147752A (en) Immersion nozzle for continuous casting

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991130