JPH06105296B2 - Scattered ray correction method of ECT device - Google Patents

Scattered ray correction method of ECT device

Info

Publication number
JPH06105296B2
JPH06105296B2 JP61232452A JP23245286A JPH06105296B2 JP H06105296 B2 JPH06105296 B2 JP H06105296B2 JP 61232452 A JP61232452 A JP 61232452A JP 23245286 A JP23245286 A JP 23245286A JP H06105296 B2 JPH06105296 B2 JP H06105296B2
Authority
JP
Japan
Prior art keywords
data
scattered
radiation
correction
filter function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61232452A
Other languages
Japanese (ja)
Other versions
JPS6385482A (en
Inventor
昌治 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP61232452A priority Critical patent/JPH06105296B2/en
Publication of JPS6385482A publication Critical patent/JPS6385482A/en
Publication of JPH06105296B2 publication Critical patent/JPH06105296B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

この発明は、放射線同位体(RI)で標識された化合物を
患者に投与して、その2次元的な分布を断層像として得
るECT装置(エミッション型コンピュータ断層撮影装
置)に関し、とくにその散乱線によって誤差を生じたデ
ータを補正する方法に関する。
The present invention relates to an ECT device (emission-type computer tomography device) which obtains a two-dimensional distribution of a compound labeled with a radioisotope (RI) into a patient, and particularly by its scattered rays. The present invention relates to a method of correcting data having an error.

【従来の技術】[Prior art]

患者に投与された標識化合物から放出される放射線は、
患者身体内を通過して外部に出るため、身体内で吸収さ
れて減衰したり、散乱されて誤った情報を提供したりす
ることにもなる。これらを補正するための方法が種々模
索されているが、なかでも散乱線の補正法は確立されて
いず、いろいろと試みられている。 たとえば、PET(ポジトロンECT)の場合、リング状検出
器配列の中に、RIを含む部分と含まない部分とを有する
ファントムを配置し、1つのプロファイルデータをとっ
てみると、本来RIが存在しない部分にも散乱線のために
誤って得られたデータが存在していることが分る。そこ
で、従来では、RI不存在部分のデータが散乱線による誤
ったデータのみであるとして、この部分のデータの平均
値を求め、この平均値をプロファイルデータの全体から
一律に差し引き演算して散乱線補正することなどが行な
われている。
The radiation emitted from the labeled compound administered to the patient is
As it passes through the patient's body to the outside, it may be absorbed and attenuated in the body, or scattered to provide erroneous information. Various methods for correcting these have been sought, but among them, a method for correcting scattered rays has not been established, and various methods have been tried. For example, in the case of PET (positron ECT), when a phantom having a portion containing RI and a portion not containing RI is arranged in the ring-shaped detector array and one profile data is taken, RI does not originally exist. It can be seen that there is data that was obtained erroneously due to scattered rays in the part as well. Therefore, in the past, assuming that the RI-free portion of the data is only erroneous data due to scattered rays, the average value of the data for this portion is calculated, and this average value is uniformly subtracted from the entire profile data to calculate scattered rays. Corrections are being made.

【発明が解決しようとする問題点】[Problems to be Solved by the Invention]

しかしながら、上記の従来の一例として示した補正法で
は、単に一定値を一律に差し引くというだけであるから
精度が悪いという問題がある。 また、スライス面(データ収集面)外にRIが分布する場
合、それに起因する散乱線成分によって誤差が生じ、こ
れが実際上大きな問題となっているが、この問題につい
ては全く無力である。 この発明は、スライス面内のRIによる散乱線成分だけで
なくスライス面外に分布するRIに起因する散乱線成分を
もあわせて見積もり、これらを補正することのできる、
ECT装置の散乱線補正法を提供することを目的とする。
However, the correction method shown as the above-mentioned conventional example has a problem in that the accuracy is poor because the constant value is simply subtracted uniformly. Further, when RI is distributed outside the slice plane (data collection plane), an error occurs due to the scattered ray component caused by it, and this is actually a big problem, but this problem is completely powerless. This invention, not only the scattered ray component due to RI in the slice plane, but also the scattered ray component due to RI distributed outside the slice plane can be estimated together, and these can be corrected.
It is an object of the present invention to provide a scattered radiation correction method for an ECT device.

【問題点を解決するための手段】[Means for solving problems]

この発明によるECT装置の散乱線補正法では、断層像を
得ようとする面内で1点を占めるように線源を配置し、
この線源のデータを、周囲に散乱体がない状態と、周囲
に散乱体があり且つスライス面外にも線源が分布してい
る状態とについて収集し、これらのデータの間の関係か
ら散乱線補正用フィルタ関数を求め、実際の被写体につ
いて得られたデータに対してこのフィルタ関数を作用さ
せて散乱線の補正を行なうことを特徴とする。
In the scattered radiation correction method of the ECT device according to the present invention, the radiation source is arranged so as to occupy one point in the plane to obtain a tomographic image,
The data of this radiation source was collected for the case where there were no scatterers in the surroundings and for the situation where there were scatterers in the surroundings and the radiation sources were distributed outside the slice plane, and the scattering between them was used to scatter. A feature is that a line-correction filter function is obtained, and this filter function is applied to data obtained for an actual subject to correct scattered rays.

【作用】[Action]

点線源のデータを、周囲に散乱体がない状態と、周囲に
散乱体があり且つスライス面外にも線源が分布している
状態とについて収集すると、後者の場合はスライス面の
内外の線源に起因する散乱線によってぼけた像が得られ
るため、プロファイルデータも散乱線がない場合に比べ
てなまったものとなる。これらの両データの比をとって
みると、それを散乱線によってぼけたデータを本来のデ
ータに戻すためのデータとして使えることが分る。 そこで、この両データの比に基づき散乱線補正用フィル
タ関数を作成して、このフィルタ関数を実際の被写体の
データに作用させれば、スライス面内外の線源に起因す
る散乱線の補正をすることができる。
When the data of the point source is collected for a state in which there are no scatterers in the surroundings and a state in which there are scatterers in the surroundings and the source is also distributed outside the slice plane, in the latter case the lines inside and outside the slice plane are Since a blurred image is obtained due to scattered rays originating from the source, the profile data is also blunt compared to the case without scattered rays. If you take the ratio of these two data, you can see that it can be used as data to restore the original data to the data blurred by scattered radiation. Therefore, if a scattered radiation correction filter function is created based on the ratio of these two data and this filter function is applied to the actual subject data, the scattered radiation caused by the radiation source inside and outside the slice plane is corrected. be able to.

【実施例】【Example】

PETに適用した一実施例について説明する。まず、第1
図のようにリング型のスライスシールド2の中に、この
スライスシールド2によって規定される断層面に垂直に
ライン状線源1を配置する。こうして断層面に点状線源
を置いたのと実質的に同じにする。リング型検出器配列
はスライスシールド2の外側に位置するがこの図では省
略している。ライン状線源1はGe-68により作製してあ
る。そしてこの状態で矢印で示した断層面につきデータ
収集を行ない、得られたサイノグラムをフーリエ変換し
て第2図に示すデータを得た。 つぎに、第3図に示すような、ライン状線源3の周囲に
散乱体4を有し、且つ背面側にRI部5を持つファントム
6を同様に配置する。このファントム6は全体の形状が
円柱状になるように形成されており、散乱体4は人体に
似た散乱特性を有する水やアルカリにより構成すればよ
いが、ここではアクリル製とした。また、ライン状線源
3とRI部5にはGe-68を用いた。RI部5のRI濃度はPET装
置で分解できる大きさに換算した場合のライン状線源3
と同程度の濃度としてある。このファントム6の矢印で
示す断層面に関するデータ収集を行なうと、線源3より
放出された放出線の一部が散乱体4で散乱するためデー
タにほけが加わり、さらに断層面外のRI部5からの放射
線もこの散乱体4で散乱してデータにぼけを生じさせる
ので、得られたサイノグラムのフーリエ変換後のデータ
は第5図のように低周波成分が増加したものとなる。 これら第2図および第5図に示したフーリエ変換後のデ
ータを、第5図のデータが散乱体4における吸収の影響
を受けていることを考慮して適当なスケーリングを行な
った後重ね合せれば第6図のようにほとんど重なり、低
周波部分で散乱線成分による差異が表われているに過ぎ
ない。そこで、これらフーリエ変化後のデータの比をと
ってみると、第7図のようなデータが得られる。 この第7図のデータは、散乱線によって誤差を含むよう
になったデータを元の誤差のない状態に戻すための補正
データとして考えることができる。そこで、第7図のデ
ータの近似曲線を求めて第8図のような散乱線補正用フ
ィルタ関数を作成する。 このようにして散乱線補正用フィルタ関数が得られた
ら、実際の被写体に関して収集されたプロファイルデー
タにこの関数を作用させてフィルタリングすれば、断層
面の内外に存在するRIに起因する散乱線の補正ができる
ことになる。この場合、画像再構成は、通常、プロファ
イルデータに対してフィルタリングした後このプロファ
イルデータを逆投影するというアルゴリズムで行なわれ
るので、そのフィルタリングに際して同時に上記の散乱
線補正用フィルタ関数を作用させればよく、こうするこ
とによって補正のために必要なデータ処理に要する時間
を短縮することができる。 なお、第3図、第4図に示したファントム6のRI部5の
形状やRI強度とオフエリア(実際にはRIの存在しない領
域)のカウント等を対応づけて、第8図の散乱線補正用
フィルタ関数を修正しておくことも望ましい。すなわ
ち、たとえばオフエリアのカウントが減算されるように
修正しておくことにより、より正確な補正が可能とな
る。
An example applied to PET will be described. First, the first
As shown in the drawing, the line-shaped radiation source 1 is arranged in the ring-shaped slice shield 2 perpendicularly to the slice plane defined by the slice shield 2. In this way, it becomes substantially the same as placing a point source on the fault plane. The ring detector array is located outside the slice shield 2 but is omitted in this figure. The linear source 1 is made of Ge-68. Then, in this state, data was collected on the cross section indicated by the arrow, and the obtained sinogram was Fourier transformed to obtain the data shown in FIG. Next, as shown in FIG. 3, a phantom 6 having a scatterer 4 around the linear radiation source 3 and an RI portion 5 on the back side is similarly arranged. The phantom 6 is formed so as to have a cylindrical shape as a whole, and the scatterer 4 may be made of water or alkali having a scattering characteristic similar to that of a human body, but is made of acrylic here. Further, Ge-68 was used for the linear radiation source 3 and the RI part 5. The line source 3 when the RI concentration in the RI part 5 is converted to a size that can be decomposed by a PET device
The same concentration as When the data on the fault plane indicated by the arrow of the phantom 6 is collected, a part of the emission line emitted from the radiation source 3 is scattered by the scatterer 4, and the data is ghosted. Since the radiation from is also scattered by the scatterer 4 and blurs the data, the data after Fourier transform of the obtained sinogram has an increased low frequency component as shown in FIG. The Fourier-transformed data shown in FIGS. 2 and 5 are subjected to appropriate scaling in consideration of the fact that the data shown in FIG. For example, as shown in FIG. 6, they are almost overlapped with each other, and only the difference due to the scattered ray component is shown in the low frequency part. Then, when the ratio of the data after the Fourier change is taken, the data as shown in FIG. 7 is obtained. The data shown in FIG. 7 can be considered as correction data for returning the data including an error due to scattered radiation to the original error-free state. Therefore, an approximate curve of the data shown in FIG. 7 is obtained and a scattered radiation correction filter function as shown in FIG. 8 is created. Once the scattered ray correction filter function is obtained in this way, this function is applied to the profile data collected for the actual subject to perform filtering to correct the scattered rays caused by RI existing inside and outside the tomographic plane. You will be able to In this case, image reconstruction is usually performed by an algorithm of back-projecting the profile data after filtering the profile data, so that the above-mentioned scattered radiation correction filter function may be applied at the same time when performing the filtering. By doing so, the time required for data processing necessary for correction can be shortened. The shape and the RI intensity of the RI part 5 of the phantom 6 shown in FIGS. 3 and 4 are associated with the counts of off-areas (regions where RI does not actually exist), and the scattered radiation of FIG. It is also desirable to modify the correction filter function. That is, for example, by correcting the off-area count so as to be subtracted, more accurate correction becomes possible.

【発明の効果】【The invention's effect】

この発明にかかるECT装置の散乱線補正法によれば、ス
ライス面内だけでなくスライス面外に分布するRIから放
出される放射線の散乱による誤差を補正することができ
る。また、補正用データは1度だけ収集しておけばよ
く、各被写体毎に、その都度補正用データ収集するとい
う時間や手間がかかることがない。しかも、そのために
特別な装置を必要とすることもなく安価で、簡便に補正
用データを得ることができる。さらに、補正用データを
用いて実際の被写体のデータを補正するデータ処理を短
時間で行なうことができる。
According to the scattered radiation correction method of the ECT apparatus according to the present invention, it is possible to correct an error due to scattering of radiation emitted from RI distributed not only inside the slice plane but also outside the slice plane. Further, the correction data only needs to be collected once, and the time and labor for collecting the correction data for each subject is not required. Moreover, no special device is required for that purpose, and the correction data can be obtained easily at low cost. Further, the data processing for correcting the actual object data using the correction data can be performed in a short time.

【図面の簡単な説明】[Brief description of drawings]

第1図乃至第8図はこの発明の一実施例を説明するため
のもので、第1図はライン状線源の散乱体のない状態で
のデータを収集することを示す模式図、第2図は第1図
で得られたサイノグラムのフーリエ変換後のデータを示
すグラフ、第3図はライン状線源の周囲に散乱体があり
且つスライス面外にRIが分布している状態でのデータを
収集することを示す模式図、第4図はファントムの正面
図、第5図は第3図で得られたサイノグラムのフーリエ
変換後のデータを示すグラフ、第6図は第2図と第5図
のデータを重ね合せたグラフ、第7図は第2図および第
5図のデータの比を示すグラフ、第8図は散乱線補正用
フィルタ関数を表わすグラフである。 1……リング型スライスシールド 1、3……ライン状線源、4……散乱体 5……RI部、6……ファントム
FIGS. 1 to 8 are for explaining one embodiment of the present invention, and FIG. 1 is a schematic view showing collecting data of a linear radiation source in a scatter-free state, and FIG. The figure is a graph showing the data after Fourier transform of the sinogram obtained in Fig. 1, and Fig. 3 is the data in the state where there are scatterers around the line source and RI is distributed outside the slice plane. FIG. 4 is a front view of the phantom, FIG. 5 is a graph showing data after Fourier transform of the sinogram obtained in FIG. 3, and FIG. 6 is FIG. 2 and FIG. FIG. 7 is a graph showing the ratio of the data shown in FIGS. 2 and 5, and FIG. 8 is a graph showing the scattered radiation correction filter function. 1 ... Ring type slice shield 1, 3 ... Line source, 4 ... Scatterer 5 ... RI part, 6 ... Phantom

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】断層像を得ようとする面内で1点を占める
ように線源を配置し、この線源のデータを、周囲に散乱
体がない状態と、周囲に散乱体があり且つスライス面外
にも線源が分布している状態とについて収集し、これら
のデータの間の関係から散乱線補正用フィルタ関数を求
め、実際の被写体について得られたデータに対してこの
フィルタ関数を作用させて散乱線の補正を行なうことを
特徴とするECT装置の散乱線補正法。
1. A radiation source is arranged so as to occupy one point in a plane where a tomographic image is to be obtained, and data of this radiation source is used in a state where there is no scatterer in the surroundings and when there is a scatterer in the surroundings. The state where the radiation source is distributed outside the slice plane is also collected, the filter function for scattered radiation correction is obtained from the relationship between these data, and this filter function is applied to the data obtained for the actual subject. A method for correcting scattered rays in an ECT device, which is characterized by causing it to correct scattered rays.
JP61232452A 1986-09-30 1986-09-30 Scattered ray correction method of ECT device Expired - Lifetime JPH06105296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61232452A JPH06105296B2 (en) 1986-09-30 1986-09-30 Scattered ray correction method of ECT device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61232452A JPH06105296B2 (en) 1986-09-30 1986-09-30 Scattered ray correction method of ECT device

Publications (2)

Publication Number Publication Date
JPS6385482A JPS6385482A (en) 1988-04-15
JPH06105296B2 true JPH06105296B2 (en) 1994-12-21

Family

ID=16939504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61232452A Expired - Lifetime JPH06105296B2 (en) 1986-09-30 1986-09-30 Scattered ray correction method of ECT device

Country Status (1)

Country Link
JP (1) JPH06105296B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8971405B2 (en) 2001-09-18 2015-03-03 Microsoft Technology Licensing, Llc Block transform and quantization for image and video coding

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5140810B2 (en) * 2005-09-28 2013-02-13 財団法人ヒューマンサイエンス振興財団 Tomographic image overlay display method and computer program for displaying tomographic images superimposed
JP2007218769A (en) * 2006-02-17 2007-08-30 Shimadzu Corp Nuclear medicine imaging device
JP6281640B2 (en) * 2014-07-03 2018-02-21 株式会社ニコン X-ray apparatus, image forming method, structure manufacturing method, and structure manufacturing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8971405B2 (en) 2001-09-18 2015-03-03 Microsoft Technology Licensing, Llc Block transform and quantization for image and video coding

Also Published As

Publication number Publication date
JPS6385482A (en) 1988-04-15

Similar Documents

Publication Publication Date Title
US7507968B2 (en) Systems and methods for correcting a positron emission tomography emission image
US8577114B2 (en) Extension of truncated CT images for use with emission tomography in multimodality medical images
US20090232375A1 (en) Iterative reconstruction with enhanced noise control filtering
US8575554B2 (en) Methods and systems for scatter estimation in positron emission tomography
US20120141006A1 (en) Reconstruction of a region-of-interest image
US10719961B2 (en) Systems and methods for improved PET imaging
CN110599559B (en) Multi-energy metal artifact reduction
US20190287275A1 (en) Time-of-flight (tof) pet image reconstruction using locally modified tof kernels
JP2007286020A (en) Image reconstruction method
US7856129B2 (en) Acceleration of Joseph's method for full 3D reconstruction of nuclear medical images from projection data
US20150071515A1 (en) Image reconstruction method and device for tilted helical scan
US6921902B2 (en) Scatter correction device for radiative tomographic scanner
US7844096B2 (en) Spatially localized noise adaptive smoothing of emission tomography images
US6470206B2 (en) Addition tomographic image producing method and X-ray CT apparatus
KR20120138451A (en) X-ray computed tomography system and scatter correction method using the same
US7853314B2 (en) Methods and apparatus for improving image quality
JP3089050B2 (en) SPECT image reconstruction method
JPH06105296B2 (en) Scattered ray correction method of ECT device
Webb et al. A comparison of attenuation correction methods for quantitative single photon emission computed tomography
US20210065414A1 (en) System and method for sinogram sparsified metal artifact reduction
US7155047B2 (en) Methods and apparatus for assessing image quality
US9996951B2 (en) Computerized tomographic image exposure and reconstruction method
Kalantari et al. Quantification and reduction of the collimator-detector response effect in SPECT by applying a system model during iterative image reconstruction: a simulation study
Kitamura et al. 3D continuous emission and spiral transmission scanning for high-throughput whole-body PET
JPH06105295B2 (en) Scattered ray correction method of ECT device