JPH061050B2 - Combustion device for diesel engine - Google Patents

Combustion device for diesel engine

Info

Publication number
JPH061050B2
JPH061050B2 JP59066625A JP6662584A JPH061050B2 JP H061050 B2 JPH061050 B2 JP H061050B2 JP 59066625 A JP59066625 A JP 59066625A JP 6662584 A JP6662584 A JP 6662584A JP H061050 B2 JPH061050 B2 JP H061050B2
Authority
JP
Japan
Prior art keywords
spray
nozzle
nozzles
combustion chamber
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59066625A
Other languages
Japanese (ja)
Other versions
JPS60212615A (en
Inventor
裕司 小田
洋 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP59066625A priority Critical patent/JPH061050B2/en
Publication of JPS60212615A publication Critical patent/JPS60212615A/en
Publication of JPH061050B2 publication Critical patent/JPH061050B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/14Engines characterised by precombustion chambers with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

【発明の詳細な説明】 本発明は側方噴射式(中央噴射式に対して)ディーゼル
機関に関する。
The present invention relates to side-injection (as opposed to central-injection) diesel engines.

第1図はこの種機関の要部を示す断面図である。01は燃
焼室、02はピストン、03は排気弁、04は燃料弁、05は燃
料噴霧である。第2図は第1図のII−II矢視断面図で、
04は燃料弁、06,07,08は燃料噴霧を示す。第3図は第1
図の燃料弁04の先端図で、09,10,11は噴口(等噴口径、
等間隔)である。
FIG. 1 is a sectional view showing a main part of this type of engine. 01 is a combustion chamber, 02 is a piston, 03 is an exhaust valve, 04 is a fuel valve, and 05 is a fuel spray. 2 is a sectional view taken along the line II-II of FIG.
Reference numeral 04 indicates a fuel valve, and 06, 07, 08 indicate fuel spray. Figure 3 is the first
In the front view of the fuel valve 04 in the figure, 09,10,11 are nozzles (equal nozzle diameters,
Equidistant).

上記構成において、ピストン02の上昇により燃焼室01内
の空気は圧縮され高温高圧となり、上死点近傍で燃料弁
04より燃料が噴射されて、第2図に3噴口の場合を示す
ように、燃料噴霧06〜08を形成する。これらの噴霧はで
きるだけ燃焼室内の全領域の空気を利用できるように形
成され、さらに比較的強い空気渦流により燃料と空気の
混合が促進されるため、空気利用率、燃焼効率の高い燃
焼が行われるが、以下に示すような欠点を有している。
In the above configuration, the air in the combustion chamber 01 is compressed by the rise of the piston 02 to a high temperature and high pressure, and the fuel valve is discharged near the top dead center.
Fuel is injected from 04 to form fuel sprays 06 to 08 as shown in FIG. These sprays are formed so that the air in the entire region of the combustion chamber can be used as much as possible, and the relatively strong air vortex promotes the mixing of fuel and air, so combustion with high air utilization rate and combustion efficiency is performed. However, it has the following drawbacks.

第2図に示すように、噴射された燃料は空気渦流Swに
より曲げられながら火災となって発達する。このとき燃
料噴霧と空気渦流の相対速度の差及び渦流の上流、下流
の位置の相違により、空気渦流の影響は燃焼室中央側の
噴霧に強く、外周側の噴霧に弱く働く。ところが、噴霧
の貫徹力はそれぞれの噴霧とも同等であるため、中央側
の噴霧は大きく曲げられ、外周側の噴霧は曲げられる量
が少ない。従って、燃料弁近傍の外周側の噴霧の外側に
未利用空気領域が残り、また全噴霧の一かたまりの形で
発達し、この領域では噴霧あるいは火災同志が干渉し燃
焼が阻害される。さらに中央部の噴霧が大きく曲げられ
るため、燃焼室中央部に空気の未利用領域が存在し、空
気利用率が低下する。さらに、全燃料噴霧が同時に向い
側の燃焼室壁に到達するため、この部分で空気不足の状
態となり燃焼が阻害される。
As shown in FIG. 2, the injected fuel is bent by the air swirl Sw and develops into a fire. At this time, due to the difference in relative velocity between the fuel spray and the air vortex and the difference in the upstream and downstream positions of the vortex, the effect of the air vortex is strong on the spray on the central side of the combustion chamber and weak on the spray on the outer peripheral side. However, since the penetration force of the spray is the same as that of each spray, the spray on the center side is greatly bent, and the spray on the outer peripheral side is bent by a small amount. Therefore, an unused air region remains outside the spray on the outer peripheral side in the vicinity of the fuel valve, and develops in the form of a lump of the total spray. In this region, the spray or the fires interfere with each other and combustion is hindered. Furthermore, since the spray in the central portion is largely bent, there is an unused area of air in the central portion of the combustion chamber, and the air utilization rate decreases. Further, since all the fuel sprays reach the wall of the combustion chamber on the opposite side at the same time, an air deficiency occurs in this portion, which hinders combustion.

これらにより、従来のシステムでは燃焼室内への空間
的、時間的な燃料配分が適当でなく、空気利用率、燃焼
効率が不十分となる。
As a result, in the conventional system, the spatial and temporal fuel distribution into the combustion chamber is not appropriate, and the air utilization rate and combustion efficiency become insufficient.

本発明の目的は上記の点に着目し、側方噴射式(中央噴
射に対して)ディーゼル機関において、燃焼室内への空
間的、時間的な燃料の分散を良好にし、空気利用率、燃
料効率の高い燃焼を行うことのできる燃焼装置を提供す
ることであり、その特徴とするところは、シリンダヘッ
ドの燃焼室周辺部にそれぞれ複数個の噴口を持つ複数個
の燃料弁を有し同燃焼室内に空気渦流が形成されるディ
ーゼル機関の燃焼装置において、上記燃料弁の複数個の
噴口のうち、隣接する2個ずつの噴口を各々1組の噴口
群とし、燃焼室の外周部である外側に噴霧を形成する外
側の噴口群ほどその噴口径を燃焼室の中央部である内側
に噴霧を形成する内側の噴口群の噴口径よりも順に小さ
くなるように形成し、最も外側の噴口を除いて上記の各
噴口群では、隣接する噴口の噴口径をd,dN+1とし
た時その平均値d=(d+dN+1)/2と噴口の間隔
Sとの比が(S/d)<5であり、隣接する噴口の水平面へ
の投影における各噴口の軸心線のなす角度αと垂直面へ
の投影における各噴口の軸心線のなす角度βが、噴口か
ら離れるにつれて軸心線が近づく場合を正として、それ
ぞれ−9°<α<11°かつ−9°<β<11°となるよう
に噴口が形成され、形成された各々の噴霧群はそれぞれ
合体し、合体した噴霧群は一本の噴霧として発達すると
共に、上記の合体より噴口数がnを正の整数とした時に
2n+1個の場合、全体としてn+1本の噴霧を形成
し、最も外側の噴口は同噴口により形成される噴霧と隣
の噴霧とが合体せず単独で発達するように噴射方向を離
して隣の噴口の軸心線との角度α、βがα<−9°かつ
β<−9°となるように形成されたことである。
The object of the present invention is to pay attention to the above points, and in a side-injection type (relative to central injection) diesel engine, improves spatial and temporal fuel dispersion in the combustion chamber, and improves air utilization rate and fuel efficiency. The present invention is to provide a combustion device capable of performing high combustion, which is characterized by having a plurality of fuel valves each having a plurality of injection ports in the periphery of the combustion chamber of the cylinder head. In a combustion device of a diesel engine in which an air vortex is formed in the interior of the combustion valve, two adjacent nozzles of the plurality of nozzles of the fuel valve are set as a group of nozzles, respectively. The outer nozzles forming the spray are formed so that their diameters become smaller in order than the inner nozzles forming the spray inside the central part of the combustion chamber, except for the outermost nozzles. Adjacent to each of the above nozzle groups That hole of injection caliber d N, d N + 1 and the average value d = when (d N + d N + 1 ) / ratio of the spacing S 2 and injection ports (S / d) <5, and If the angle α formed by the axial center line of each nozzle in the projection of the adjacent nozzles on the horizontal plane and the angle β formed by the axial center line of each nozzle in the vertical plane are close to each other as the distance from the nozzle decreases. As a result, the spray holes are formed so that they are −9 ° <α <11 ° and −9 ° <β <11 °, respectively, and the formed spray groups are respectively combined, and the combined spray group is a single spray. As a result of the above combination, when the number of nozzles is 2n + 1 when n is a positive integer, n + 1 sprays are formed as a whole, and the outermost nozzle is adjacent to the spray formed by the same nozzle. The angles α and β with the axis of the adjacent nozzles are α <-9 °, separated from each other so that the spray does not combine and develops independently. One beta <is that which is formed so as to -9 °.

以下図面を参照して本発明による実施例につき説明す
る。
Embodiments according to the present invention will be described below with reference to the drawings.

第4図は本発明による1実施例の燃料弁の先端部を示す
説明図(5噴口の場合)、第5図は本発明による燃料弁
を用いた場合の隣接する2本の噴霧の合体を示す説明図
である。噴口N3とN4の例、噴口N1とN2も同様であ
る。第6図は噴口及び噴口軸心線の水平面への投影図、
即ち第4図のVI矢視図、第7図は噴口及び噴口軸心線の
垂直面への投影図、即ち第4図のVII矢視図である。第
8図はα=β=0の場合のS/dによる合体の到達距離増
大への効果を示す線図で、x0は噴霧一本の到達距離、
xは合体時の到達距離である。第9図はS/d=3の場合
のα、βによる合体の到達距離への効果を示す線図であ
る。第10図は本発明による実施例の燃料弁を用いた場合
の燃焼室内の燃料分散状態を示す説明図である。5噴口
で内側2本と中央2本の噴口径をそれぞれ等しく、中央
を小径に、内側を大径にし、かつそれぞれを合体させ、
最も外側の噴口を噴口径を最小にし噴霧が合体しないよ
うに形成した場合である。第11図は本発明による実施例
の燃料弁を用いた場合の燃焼室の燃料分散状態を示す説
明図である。5噴口で、最も内側の噴口径が最大で外側
に向って順次噴口径が小さくなり、最も外側の噴口の噴
口径が最小で、かつ内側2本と中央2本とを合体させ、
最も外側の噴口を噴霧が合体しないように形成した場合
である。なお、5噴口以外の場合も噴口径と合体のため
の噴射方向の設定及び最も外側の噴口の噴射方向の設定
は同様である。
FIG. 4 is an explanatory view showing the tip portion of the fuel valve of one embodiment according to the present invention (in the case of 5 injection holes), and FIG. 5 shows a combination of two adjacent sprays when the fuel valve according to the present invention is used. It is an explanatory view shown. The same applies to the examples of the nozzles N 3 and N 4 , and the nozzles N 1 and N 2 . FIG. 6 is a projection view of the nozzle and the center line of the nozzle on the horizontal plane,
That is, FIG. 4 is a view taken in the direction of arrow VI, and FIG. 7 is a projection view of the nozzle and the axis line of the nozzle onto a vertical plane, that is, a view taken in the direction of arrow VII of FIG. FIG. 8 is a diagram showing the effect of S / d on increasing the reach distance of coalescence when α = β = 0, where x 0 is the reach distance of one spray,
x is the reach distance at the time of uniting. FIG. 9 is a diagram showing the effect of α and β on the reaching distance of coalescence when S / d = 3. FIG. 10 is an explanatory view showing a fuel dispersion state in the combustion chamber when the fuel valve of the embodiment according to the present invention is used. In the 5 nozzles, the inner 2 nozzles and the center 2 nozzles have the same diameter, the center has a small diameter, the inside has a large diameter, and they are united.
This is a case in which the outermost nozzles are formed so that the nozzle diameters are minimized so that the sprays do not coalesce. FIG. 11 is an explanatory diagram showing a fuel dispersion state in the combustion chamber when the fuel valve of the embodiment according to the present invention is used. In 5 nozzles, the innermost nozzle diameter is the largest and the nozzle diameters become smaller toward the outer one in order, the outermost nozzle holes have the smallest nozzle diameter, and the inner two nozzles and the central two nozzles are combined,
This is the case where the outermost nozzles are formed so that the sprays do not coalesce. In addition, in the case of the nozzles other than the five nozzles, the setting of the nozzle diameter and the jetting direction for coalescence and the setting of the jetting direction of the outermost nozzles are the same.

一般に噴口数が2n個の場合(nは正の整数)、合体に
より全体としてn本の噴霧を形成する。また、噴口数が
2n+1個の場合、合体により全体としてn+1本の噴
霧を形成する。
Generally, when the number of injection holes is 2n (n is a positive integer), n sprays are formed as a whole by coalescence. In addition, when the number of nozzles is 2n + 1, n + 1 sprays are formed as a whole by uniting.

第4図のN1〜N5は本発明による燃料弁の噴口(5噴口
の場合)を示す。
N 1 to N 5 of FIG. 4 shows the injection port of the fuel valve according to the invention (for 5 nozzle hole).

第5図の2θは噴口の拡がり角度を示す。2θ in FIG. 5 indicates the spread angle of the injection port.

第10図において、12は燃焼室、13は燃料弁、14〜18は
本発明の燃料弁を用いた場合に形成される燃料噴霧、S
wは燃焼室内空気渦流を示す。第11図においても第10図
の場合と同様である。
In FIG. 10, 12 is a combustion chamber, 13 is a fuel valve, 14-18 are fuel sprays formed when the fuel valve of the present invention is used, S
w represents the air vortex in the combustion chamber. The same applies to FIG. 11 as in FIG.

上記構成の場合の作用について述べる。The operation of the above configuration will be described.

本発明による燃料弁を用いた場合、全体の噴口面積をそ
ろえて、噴口数を増した時(たとえば3孔から4〜5孔
にした場合)、一噴口あたりの噴口面積は絞られ、各噴
霧は微粒化が促進されて空気導入のよい噴霧が形成され
る。
When the fuel valve according to the present invention is used, when the total area of the nozzles is made uniform and the number of nozzles is increased (for example, when 3 holes are changed to 4 to 5 holes), the nozzle area per nozzle is narrowed and each spray is sprayed. The atomization is promoted and a spray with good air introduction is formed.

また外側の噴口径を小さく内側の噴口径を大きくするこ
とにより、内側の噴霧と外側の噴霧で貫徹力と到達距離
に差を持たせ、かつそれぞれを合体させることにより外
側の噴霧、内側の噴霧それぞれの貫徹力が増す。
Also, by making the outer nozzle diameter smaller and the inner nozzle diameter larger, the penetration force and the reaching distance are made different between the inner spray and the outer spray, and by combining them, the outer spray and the inner spray are combined. Each one's penetration power increases.

最も外側の噴口により合体した噴霧の外側に合体しない
噴霧が一本形成される。
A spray that does not coalesce is formed outside the spray that has coalesced by the outermost nozzle.

これにより第10図,第11図に5孔噴口の例を示すように
空気導入特性が良く十分な貫徹力を持ち、なおかつ内側
の噴霧の到達距離が外側の噴霧より長いような燃料噴霧
が2本形成され、さらにそれよりも外側の空間に単独で
1本噴霧が形成される。
As a result, as shown in the example of the five-hole injection port in FIGS. 10 and 11, there is a fuel spray that has good air introduction characteristics and sufficient penetration force, and the inner spray reaches a longer distance than the outer spray. The main spray is formed, and one spray is independently formed in a space outside the main spray.

上述の場合には次の効果がある。In the above case, there are the following effects.

従来の燃料弁を用いた装置では、各噴霧の貫徹力は同等
であるため空気渦流により内側の噴霧が大きく曲げら
れ噴霧同志の干渉が多くなり燃焼が阻害され、また燃
焼室中央に未利用の空間が残り、空気利用率が低下す
る。さらに、燃料弁の正面(反対側)の壁に全噴霧が
同時期に到達し空気不足となり、燃焼が阻害され、燃
料弁近傍の外側の噴霧と外周壁の間に未利用空間が残
り、空気利用率が低下する等の欠点がある。ここで、全
体の噴霧内への空気導入量を増すため、噴霧の数を増す
と、必然的に各噴口の噴口径が小さくなり、噴霧の貫徹
力が減少して相対的に空気渦流の影響が大きい状態とな
り、上記の燃焼阻害、空気利用率の低下がより大きくな
る。
In the conventional device using a fuel valve, since the penetration force of each spray is equal, the inner spray is greatly bent by the air vortex, the interference between sprays increases, and combustion is impeded. Space remains, reducing air utilization. Furthermore, all sprays reach the wall on the front side (opposite side) of the fuel valve at the same time and air shortage occurs, combustion is obstructed, and unused space remains between the outer spray near the fuel valve and the outer peripheral wall. There are drawbacks such as reduced utilization. Here, in order to increase the amount of air introduced into the entire spray, increasing the number of sprays inevitably reduces the nozzle diameter of each spray port, reducing the penetration force of the spray and the relative effects of air vortex flow. Is large, and the above-mentioned combustion inhibition and reduction in the air utilization rate become larger.

まず本発明による異噴口径化と合体による効果から述べ
る。外側の噴口を小さく内側の噴口を相対的に大きく
し、かつ外側の噴霧群と内側の噴霧群を合体させること
により内側の噴霧群の貫徹力を外側の噴霧よりも大きく
し(到達距離も長くし)、上記の欠点を防ぐことがで
きる。また、同時に内側の噴霧の直進性が特に増し、燃
焼室中央部に燃料を分散することができるため、の欠
点を改善することができる。また、内側と外側の噴霧の
到達距離に差を持たせているため、燃料弁と反対側の壁
に到達する時期が内側の噴霧と外側の噴霧で異なるた
め、の空気不足の状態も改善される。
First, the effect of the different injection port diameters and the coalescence according to the present invention will be described. The outer nozzle is made smaller and the inner nozzle is made relatively larger, and the outer spray group and the inner spray group are combined to make the penetration force of the inner spray group larger than that of the outer spray group (the reach distance is also longer. However, the above drawbacks can be prevented. At the same time, the straightness of the inner spray is particularly increased, and the fuel can be dispersed in the central portion of the combustion chamber. In addition, because the difference in the arrival distance of the inner and outer sprays is different, the time at which the fuel reaches the wall on the opposite side of the fuel valve differs between the inner spray and the outer spray, so the air shortage condition is also improved. It

ここで噴霧の合体についての条件を述べる。噴霧の拡が
りは第5図に示す2θであり、通常は2θ=15°前後
である。また、第6図に示すように隣接する2本の噴霧
の水平面への投影において、各噴霧の軸心線のなす角度
をαとし、垂直面への投影における各噴霧の軸心線のな
す角度をβとすると(α、βとの噴口から遠ざかるにつ
れて噴霧が接近する場合を正とする)、隣接する二噴口
が平行の場合(即ちα=β=0°の場合)、噴口径d
〔本発明の場合、2つの噴口径の平均値=(d+d
N+1)/2〕と噴口間隔Sの比S/dにより合体の状態が決
まり、第8図の実験結果に示すように、S/d<5で特に
貫徹力増大の効果が大きく得られ、S/d<5とすること
が望ましい(xは隣接する二本の噴霧の全体としての到
達距離、x0は噴霧一本の場合の到達距離)。
Here, the conditions for coalescence of sprays will be described. The spread of the spray is 2θ shown in FIG. 5, and is usually around 2θ = 15 °. Further, as shown in FIG. 6, in the projection of two adjacent sprays on the horizontal plane, the angle formed by the axis of each spray is α, and the angle formed by the axis of each spray in the projection on the vertical plane. Let β be β (the case where the spray approaches with the distance from α and β is positive), and if the two adjacent nozzles are parallel (that is, α = β = 0 °), the nozzle diameter d
[In the case of the present invention, the average value of the two nozzle diameters = (d N + d
N + 1 ) / 2] and the ratio S / d of the nozzle spacing S determines the state of coalescence, and as shown in the experimental results in FIG. 8, the effect of increasing the penetration force is particularly large when S / d <5. , S / d <5 (x is the total reach of two adjacent sprays, x 0 is the reach of a single spray).

噴霧が平行でない場合及び同一平面上にない場合(空間
的にねじれの位置関係にある場合)でも、第9図にS/d
=3の時の実験結果を示すように、特に−9°<α<11
°、−9°<β<11°の時、到達距離は噴霧一本の場合
よりも大きくなり、噴霧合体による貫徹力増大の効果が
得られる。
Even if the sprays are not parallel and they are not on the same plane (in a spatially twisted positional relationship), S / d is shown in Fig. 9.
As shown in the experimental results when = 3, especially −9 ° <α <11
When °, -9 ° <β <11 °, the reaching distance becomes larger than that in the case of one spray, and the effect of increasing the penetration force by spray coalescence can be obtained.

しかし、上述の装置では合体させた噴霧は貫徹力が大き
く、燃料弁近くでは空気渦流により流される量が少なく
直進するため、燃料弁近傍の空気流れ下流側の燃焼室外
周部に燃料が分散されない領域が残り、の欠点が改善
されない。
However, in the above-mentioned device, the combined spray has a large penetration force, and since the amount of air swirled by the air vortex is small near the fuel valve and goes straight, fuel is not dispersed in the outer periphery of the combustion chamber on the downstream side of the air flow near the fuel valve. The area remains and the drawbacks of are not remedied.

そこで、最も外側の噴霧を隣の噴霧と合体せず単独で発
達するように噴射方向を隣の噴口に対してα<−9°か
つβ<−9°となるように設定することにより、上述の
未利用空気領域に近づけて噴射し、さらに合体させてい
ないため、貫徹力が弱く空気渦流に流され易いことなど
から、未利用空気領域に燃料を分散させることができ、
の欠点が改善され空気利用率が向上し、結果として燃
焼効率の高い燃焼が得られる。
Therefore, by setting the injection direction to be α <-9 ° and β <-9 ° with respect to the adjacent nozzle so that the outermost spray does not combine with the adjacent spray and independently develops, Since the fuel is injected close to the unused air region, and is not further combined, the penetration force is weak and the air swirl easily causes the fuel to be dispersed in the unused air region.
The drawbacks are improved and the air utilization rate is improved, resulting in combustion with high combustion efficiency.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の側方噴射式ディーゼル機関の要部を示す
断面図、第2図は第1図のII−II矢視断面図、第3図は
第1図の燃料弁の先端部を示す説明図、第4図は本発明
による1実施例の先端部を示す説明図、第5図は本発明
による燃料弁を用いた場合の隣接する2本の噴霧の合体
を示す説明図、第6図は第4図のVI矢視図、第7図は第
4図のVII矢視図、第8図はS/dによる合体の到達距離増
大への効果を示す線図、第9図はα、βによる合体の到
達距離への効果を示す線図、第10図は本発明による1実
施例の燃料弁を用いた場合の燃焼室内の燃料分散状態を
示す説明図、第11図は本発明による他の実施例の燃料弁
を用いた場合の燃焼室内の燃料分散状態を示す説明図で
ある。 13…燃料弁,14〜18…燃料噴霧,N1〜N5…噴口。
FIG. 1 is a cross-sectional view showing a main part of a conventional side-injection diesel engine, FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 1, and FIG. 3 shows a tip portion of the fuel valve of FIG. FIG. 4 is an explanatory view showing a tip portion of one embodiment according to the present invention, and FIG. 5 is an explanatory view showing a combination of two adjacent sprays when the fuel valve according to the present invention is used, FIG. 6 is a view taken in the direction of arrow VI of FIG. 4, FIG. 7 is a view taken in the direction of arrow VII of FIG. 4, FIG. 8 is a diagram showing the effect of S / d on increasing the reach of coalescence, and FIG. Fig. 10 is a diagram showing the effect of α and β on the reaching distance of coalescence, Fig. 10 is an explanatory diagram showing the fuel dispersion state in the combustion chamber when the fuel valve of one embodiment according to the present invention is used, and Fig. 11 is this It is explanatory drawing which shows the fuel dispersion state in the combustion chamber when the fuel valve of the other Example by invention is used. 13 ... fuel valve, 14-18 ... fuel spray, N 1 to N 5 ... nozzle hole.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】シリンダヘッドの燃焼室周辺部にそれぞれ
複数個の噴口を持ち複数個の燃料弁を有し同燃焼室内に
空気渦流が形成されるディーゼル機関の燃焼装置におい
て、上記燃料弁の複数個の噴口のうち、隣接する2個ず
つの噴口を各々1組の噴口群とし、燃焼室の外周部であ
る外側に噴霧を形成する外側の噴口群ほどその噴口径を
燃焼室の中央部である内側に噴霧を形成する内側の噴口
群の噴口径よりも順に小さくなるように形成し、最も外
側の噴口を除いて上記の各噴口群では、隣接する噴口の
噴口径をd,dN+1とした時その平均値d=(d
N+1)/2と噴口の間隔Sとの比が(S/d)<5であり、
隣接する噴口の水平面への投影における各噴口の軸心線
のなす角度αと垂直面への投影における各噴口の軸心線
のなす角度βが、噴口から離れるにつれて軸心線が近づ
く場合を正として、それぞれ−9°<α<11°かつ−9
°<β<11°となるように噴口が形成され、形成された
各々の噴霧群はそれぞれ合体し、合体した噴霧群は一本
の噴霧として発達すると共に、上記の合体により噴口数
がnを正の整数とした時に2n+1個の場合、全体とし
てn+1本の噴霧を形成し、最も外側の噴口は同噴口に
より形成される噴霧と隣の噴霧とが合体せず単独で発達
するように噴射方向を離して隣の噴口の軸心線との角度
α、βがα<−9°かつβ<−9°となるように形成さ
れたことを特徴とするディーゼル機関の燃焼装置。
1. A combustion device for a diesel engine, wherein a plurality of fuel valves are provided in the periphery of a combustion chamber of a cylinder head, a plurality of fuel valves are provided, and an air vortex is formed in the combustion chamber. Out of the individual nozzles, two adjacent nozzles are each set as a group of nozzles, and the outer nozzles that form the spray on the outer periphery of the combustion chamber have a smaller diameter at the center of the combustion chamber. It is formed so that it becomes smaller in order than the inner diameter of the inner nozzle group that forms the spray inside, and in each of the above nozzle groups except the outermost nozzle holes, the nozzle diameters of the adjacent nozzle holes are d N , d N When +1 is set, the average value d = (d N +
The ratio of d N + 1 ) / 2 to the distance S between the nozzles is (S / d) <5,
If the angle α formed by the axial center line of each nozzle in the projection of the adjacent nozzles on the horizontal plane and the angle β formed by the axial center line of each nozzle in the vertical plane are close to each other as the distance from the nozzle decreases. Respectively, -9 ° <α <11 ° and -9
The nozzles are formed so that ° <β <11 °, and the formed spray groups are united with each other, and the combined spray group develops as a single spray. When 2n + 1 is used as a positive integer, n + 1 sprays are formed as a whole, and the outermost nozzle has a spraying direction so that the spray formed by the same nozzle and the adjacent spray do not merge and develop independently. Is formed so that the angles α and β with respect to the axis of the adjacent nozzle are α <−9 ° and β <−9 °.
JP59066625A 1984-04-05 1984-04-05 Combustion device for diesel engine Expired - Lifetime JPH061050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59066625A JPH061050B2 (en) 1984-04-05 1984-04-05 Combustion device for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59066625A JPH061050B2 (en) 1984-04-05 1984-04-05 Combustion device for diesel engine

Publications (2)

Publication Number Publication Date
JPS60212615A JPS60212615A (en) 1985-10-24
JPH061050B2 true JPH061050B2 (en) 1994-01-05

Family

ID=13321255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59066625A Expired - Lifetime JPH061050B2 (en) 1984-04-05 1984-04-05 Combustion device for diesel engine

Country Status (1)

Country Link
JP (1) JPH061050B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4428326B2 (en) * 2004-11-05 2010-03-10 株式会社デンソー Fuel injection nozzle
JP5798898B2 (en) * 2011-11-24 2015-10-21 三菱重工業株式会社 Fuel injection device

Also Published As

Publication number Publication date
JPS60212615A (en) 1985-10-24

Similar Documents

Publication Publication Date Title
US6553960B1 (en) Combustion system for direct injection diesel engines
US6783085B2 (en) Fuel injector swirl nozzle assembly
US5351475A (en) Aerodynamic fuel injection system for a gas turbine combustion chamber
US4087050A (en) Swirl type pressure fuel atomizer
US8146837B2 (en) Radially outward flowing air-blast fuel injection for gas turbine engine
US9284933B2 (en) Fuel nozzle with discrete jet inner air swirler
CN108431399B (en) Orifice plate and valve
JP2017525924A (en) Multifunctional fuel nozzle with atomizer array
JP6410924B2 (en) Multifunctional fuel nozzle with dual orifice atomizer
JPH0637851B2 (en) Combustion device for a diesel engine
CN109579052B (en) Flame stabilizer
CN100512973C (en) Double-swirl spray nozzle
JPH061050B2 (en) Combustion device for diesel engine
EP0667172B1 (en) Fire extinguishing head
JPH061048B2 (en) Combustion device for diesel engine
EP0684378B1 (en) Cylinder cover for diesel engine
JPH0119062B2 (en)
JPH061049B2 (en) Combustion device for diesel engine
US10808602B2 (en) Internal combustion engine
GB2066896A (en) Air-compression direct-injection internal combustion engine
JP3888579B2 (en) Fuel injection nozzle
JPH03124914A (en) Vortex chamber of diesel engine
JPS6341580Y2 (en)
CN209743059U (en) Piston, cylinder block, diesel engine and automobile
JPH0658164B2 (en) Porous spray nozzle