JPH06104894B2 - Target member for sputter and method for manufacturing the same - Google Patents

Target member for sputter and method for manufacturing the same

Info

Publication number
JPH06104894B2
JPH06104894B2 JP60230764A JP23076485A JPH06104894B2 JP H06104894 B2 JPH06104894 B2 JP H06104894B2 JP 60230764 A JP60230764 A JP 60230764A JP 23076485 A JP23076485 A JP 23076485A JP H06104894 B2 JPH06104894 B2 JP H06104894B2
Authority
JP
Japan
Prior art keywords
film
target member
grain size
sputtered
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60230764A
Other languages
Japanese (ja)
Other versions
JPS6289863A (en
Inventor
勉 乾
俊一郎 松本
丈夫 水口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP60230764A priority Critical patent/JPH06104894B2/en
Publication of JPS6289863A publication Critical patent/JPS6289863A/en
Publication of JPH06104894B2 publication Critical patent/JPH06104894B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は垂直磁化膜用のパーマロイ膜、磁気バブルの転
送回路膜等をスパッター法で作成するときに用いる、タ
ーゲット部材に関するものである。
The present invention relates to a target member used when a permalloy film for a perpendicular magnetization film, a transfer circuit film for magnetic bubbles, etc. is formed by a sputtering method.

〔従来の技術〕[Conventional technology]

軟磁性のパーマロイ薄膜は通常、真空蒸着法かスパッタ
ー法で作成される。蒸着の場合、ターゲット部材は電子
ビーム、高周波あるいは抵抗加熱で加熱・溶解される。
一方、スパッターの場合、通常Arイオンがターゲット部
材に衝突し、たたき出された原子が基板上に薄膜として
成長する。したがって、スパッターリングの方がターゲ
ット部材の属性が薄膜に転写される比率が大きいといえ
る。
The soft magnetic permalloy thin film is usually formed by a vacuum evaporation method or a sputtering method. In the case of vapor deposition, the target member is heated and melted by electron beam, high frequency or resistance heating.
On the other hand, in the case of sputtering, Ar ions normally collide with the target member, and the knocked out atoms grow as a thin film on the substrate. Therefore, it can be said that the ratio of the attribute of the target member transferred to the thin film is higher in the sputtering method.

蒸着法では一度溶解されるため、ターゲット部材に要求
される性質としては、 (1) 溶解したときガス放出が少ない、 (2) 溶湯表面に酸化物が浮上、凝集しない、 (3) 不純物が少ない、 等の冶金上の清浄性が要求される。そのため、蒸着用タ
ーゲット部材においては、材料が鋳造品の状態であるか
加工された状態であるかは大きな問題ではなかった。
Since it is once dissolved by the vapor deposition method, the properties required for the target member are (1) little gas emission when dissolved, (2) oxides do not float and do not aggregate on the surface of the melt, (3) few impurities , Metallurgical cleanliness is required. Therefore, in the vapor deposition target member, it did not matter whether the material is a cast product or a processed product.

スパッター用ターゲット部材においても、従来化学組成
上の管理が主で、金属組織的な結晶粒度、結晶繊維組織
と膜質についてあまり関心は払われていなかった。
Also in the target member for sputters, the conventional control has been mainly on the chemical composition, and little attention has been paid to the crystal grain size in terms of metallographic structure, crystal fiber structure and film quality.

本発明は溶解以降のターゲット部材の製造工程がスパッ
ター膜の特性に影響するかを調査究明した結果に基づく
ものである。
The present invention is based on the result of investigation and investigation as to whether or not the manufacturing process of the target member after melting affects the characteristics of the sputtered film.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

スパッタリングによって、パーマロイ薄膜をPETフィル
ム上に作製したとき、例えば鋳造ままの状態から機械加
工で採取したターゲットを使用すると形態的には均一な
膜厚が得にくいという欠点があった。同時にターゲット
面のエッチングも均一でなく、結晶粒ごとに大きくエッ
チング度合が変化している。すなわち、鋳造状態の場合
結晶粒が数ミリ角以上と大きく、表面に提出している結
晶面から構成原子が飛散する状況が異なるため、膜質の
ムラを生じたと推定される。
When a permalloy thin film was formed on a PET film by sputtering, for example, if a target taken by machining from the as-cast state was used, it was difficult to obtain a uniform film thickness in terms of morphology. At the same time, the etching of the target surface is not uniform, and the degree of etching greatly changes for each crystal grain. That is, it is presumed that, in the cast state, the crystal grains are large, such as several millimeters square or more, and the constituent atoms are scattered from the crystal plane submitted to the surface, which causes unevenness in the film quality.

また、上記のような場合放電条件を一定にコントロール
する為に、絶えずモニターをしながら制御する必要があ
り、膜質自体小さい保持力が得られにくいという欠点が
あった。
In addition, in the above case, it is necessary to constantly monitor and control the discharge conditions in order to control the discharge conditions at a constant level, and there is a drawback that it is difficult to obtain a holding force with a small film quality.

本発明はターゲット部材の製造法を各種かえ、テストし
た時、金属組織的な結晶粒度を管理することにより、均
一な膜厚でかつ低い保磁力がえられやすいスパッター用
ターゲット部材を提供するものである。
INDUSTRIAL APPLICABILITY The present invention provides a target member for sputtering, which has a uniform film thickness and can easily obtain a low coercive force by controlling the grain size of the metallographic structure when the target member manufacturing method is changed and tested. is there.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はFe-Ni合金の低保磁力でかつ均一な膜厚(以下
膜の均一性と称する)をえるためにターゲット部材の組
成と製造工程を検討しえられた結果に基づくものであ
る。
The present invention is based on the result of studying the composition and manufacturing process of the target member in order to obtain a low coercive force and uniform film thickness (hereinafter referred to as film uniformity) of the Fe-Ni alloy.

本発明のターゲット部材の組成として、重量比でNi 70
〜85%、Mo 2〜6%、残部実質的にFeとしたのは、成分
的にNiが70%未満および85%を越えると軟磁性が劣り、
またMoが2%未満では保磁力が大きく、6%を越えると
飽和磁化が小さくなるため、Ni 70〜85%、Mo 2〜6%
に限定した。
The composition of the target member of the present invention has a weight ratio of Ni 70
~ 85%, Mo 2-6%, and the balance being substantially Fe, because the composition is Ni less than 70% and more than 85%, soft magnetism is poor,
When Mo is less than 2%, the coercive force is large, and when it exceeds 6%, the saturation magnetization is small. Therefore, Ni 70 to 85%, Mo 2 to 6%
Limited to.

本発明の場合、結晶粒を鋼塊状態より細かくかつスパッ
ター膜の均一性と低保磁力をえるためJISオーステナイ
ト結晶粒度番号No.3のものより細かくする。そのため、
熱間あるいは冷間加工後、再結晶温度をTRとすると、TR
≦T≦TR+400℃の温度Tで焼鈍を行う必要がある。
In the case of the present invention, the crystal grains are finer than those in the steel ingot state and finer than those of JIS austenite grain size number No. 3 in order to obtain the uniformity of the sputtered film and the low coercive force. for that reason,
After hot or cold working, the recrystallization temperature When T R, T R
Annealing must be performed at a temperature T of ≤T≤T R + 400 ° C.

重量%でNi 70〜85%、Mo 2〜6%、残部実質的にFeよ
りなる合金では、鋼塊を分塊する加工が、熱間圧延では
問題ないが、ハンマー分塊では疵を発生することがあ
る。熱間加工が圧延のみならず、ハンマー、プレス加工
を可能とするためにSi、Mn、Mgの1種または2種以上を
含有させるものである。
With alloys consisting of Ni 70-85% by weight, Mo 2-6% by weight, and the balance being substantially Fe, the process of delumping steel ingots is not a problem in hot rolling, but flaws occur in hammer delumping. Sometimes. In order to enable not only rolling but also hammering and pressing in hot working, one or more kinds of Si, Mn, and Mg are contained.

すなわち、Siが0.01%未満、Mnが0.1%未満、Mgが0.000
1%未満ではハンマー加工による分塊性が改善されな
い。またSiが2%を越えると飽和磁化が小さくなり、Mn
およびMgがそれぞれ2%、0.02%を越えると保磁力が大
きくなってしまうため、Si 0.01〜2%、Mn 0.1〜2
%、Mg 0.0001〜0.02%と限定した。
That is, Si is less than 0.01%, Mn is less than 0.1%, and Mg is 0.000.
If it is less than 1%, the agglomeration property due to hammering is not improved. Also, when Si exceeds 2%, the saturation magnetization becomes small and Mn
And Mg exceed 2% and 0.02%, respectively, the coercive force becomes large, so Si 0.01-2%, Mn 0.1-2
%, Mg 0.0001 to 0.02%.

次にスパッター面の結晶粒度を限定した理由は、結晶粒
がJISオーステナイト結晶粒度番号No.3のものより大き
いとスパッター膜の膜厚変動が大きく、保磁力もHc≧5
〔Oe〕と軟磁性が劣るが、それより結晶粒が細いと保磁
力が小さい膜がえられるため、ターゲットのスパッター
される面の結晶粒を結晶粒度番号No.3より細かいものと
限定した。
Next, the reason for limiting the crystal grain size on the sputtered surface is that if the crystal grain size is larger than that of JIS austenite grain size number No. 3, the film thickness variation of the sputter film is large and the coercive force is also Hc ≧ 5.
Although the soft magnetism is inferior to [Oe], a film with a smaller coercive force can be obtained if the crystal grains are smaller than that, so the crystal grains on the sputtered surface of the target were limited to those finer than the grain size No. 3.

ここで結晶粒度番号でNo.3より細かいというのはJIS G0
551において、結晶粒が平均断面積で0.0156mm2より小さ
いことを意味する。
Here, the grain size number smaller than No. 3 is JIS G0.
In 551, it means that the crystal grains have an average cross-sectional area smaller than 0.0156 mm 2 .

〔実施例〕〔Example〕

高周波真空誘導溶解炉において第1表に化学組成を示す
合金を溶解し、4cm×9cm×20cmの鋼塊を製造した。次に
ロットにより、熱間圧延かハンマー加工で板厚5mm、巾1
20mmの板材を製作し、焼鈍を行ったのち、直径112mmの
ターゲット部材に加工した。
An alloy having a chemical composition shown in Table 1 was melted in a high frequency vacuum induction melting furnace to produce a steel ingot of 4 cm × 9 cm × 20 cm. Next, depending on the lot, the plate thickness is 5 mm and width is 1 by hot rolling or hammering.
A 20 mm plate material was produced, annealed, and then processed into a target member having a diameter of 112 mm.

上記ターゲット部材を使用して、厚み45μのPETフィル
ム上に膜厚0.4μのスパッター膜をRF法で作成し、振動
磁力計で保持力Hcを測定した。
Using the target member, a 0.4 μm-thick sputter film was formed on a PET film having a thickness of 45 μm by the RF method, and the holding force Hc was measured by a vibrating magnetometer.

また、スパッター膜の均一性はPETフィルムを薬品で除
去したのち、透過電顕で観察して評価を行った。第1図
(a)、(b)にそれぞれ均一膜および不均一膜の電顕
写真を示すが、評価はこの方法に従って行った。
The uniformity of the sputtered film was evaluated by observing it with a transmission electron microscope after removing the PET film with a chemical. 1 (a) and 1 (b) show electron microscope photographs of the uniform film and the nonuniform film, respectively, and the evaluation was performed according to this method.

比較部材として、ターゲット部材を鋼塊から採取したも
のと、焼鈍温度を高くして結晶粒を大きくした事例を第
1表の試料番号No.1〜3に示す。試料番号No.4〜9は本
発明部材で膜の均一性と低保磁力がえられていることが
わかる。
Samples Nos. 1 to 3 in Table 1 show a target member taken from a steel ingot as a comparative member and an example in which the annealing temperature is increased to increase the crystal grains. It can be seen that Sample Nos. 4 to 9 have the film uniformity and low coercive force in the members of the present invention.

〔発明の効果〕〔The invention's effect〕

本発明によれば、従来パーマロイ・ターゲットを用いて
垂直磁化用下地膜や磁気バブルの転送膜をスパッター法
で製造した時の、膜の不均一性による感度の局部変動や
高保磁力による動作速度の低下や誤動作を防止できる。
すなわち、本発明のターゲット部材はスパッター膜の均
一性、低保磁力をもたらすもので、工業上非常に有益で
あるとみなされる。
According to the present invention, when a base film for perpendicular magnetization or a transfer film of magnetic bubbles is manufactured by a sputtering method using a conventional Permalloy target, local variations in sensitivity due to film non-uniformity and operating speed due to high coercive force It is possible to prevent deterioration and malfunction.
That is, the target member of the present invention brings about uniformity of the sputtered film and low coercive force, and is considered to be very useful industrially.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)、(b)はそれぞれPETフィルム上にスパ
ッタ膜をPF法で作成した場合の均一膜を示す金属組織電
子顕微鏡写真、不均一膜を示す金属組織電子顕微鏡写真
(倍率×20,000)である。
FIGS. 1 (a) and 1 (b) are a metallographic electron micrograph showing a uniform film and a metallographic electron micrograph showing a non-uniform film, respectively, when a sputtered film is formed on a PET film by the PF method (magnification x20,000). ).

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】重量%において、Ni 70〜85%、Mo 2〜6
%、残部実質的にFeよりなる合金において、スパッター
される面の結晶粒がJISオーステナイト結晶粒度番号No.
3より細かいことを特徴とするスパッター用ターゲット
部材。
1. In weight%, Ni 70 to 85%, Mo 2 to 6
%, With the balance being essentially Fe, the crystal grains on the sputtered surface are JIS austenite grain size number No.
Target member for spatter characterized by finer than 3.
【請求項2】重量%において、Ni 70〜85%、Mo 2〜6
%およびSi 0.01〜2%、Mn 0.1〜2%、Mg 0.0001〜0.
02%の1種または2種以上を含有し、残部実質的にFeよ
りなる合金において、スパッターされる面の結晶粒がJI
Sオーステナイト結晶粒度番号No.3より細かいことを特
徴とするスパッター用ターゲット部材。
2. Ni-70 to 85% and Mo 2 to 6 in% by weight
% And Si 0.01-2%, Mn 0.1-2%, Mg 0.0001-0.
In an alloy containing 02% of 1 or 2 or more and the balance substantially consisting of Fe, the crystal grains on the sputtered surface are JI.
S Austenite grain size No. 3 is a finer target material for sputtering.
【請求項3】重量%において、Ni 70〜85%、Mo 2〜6
%、またはさらにSi 0.01〜2%、Mn 0.1〜2%、Mg 0.
0001〜0.02%の1種または2種以上を含有し、残部実質
的にFeよりなる合金を熱間加工した後、再結晶温度以
上、再結晶温度+400℃以下の温度で焼鈍し、スパッタ
される面の結晶粒をJISオーステナイト結晶粒度番号No.
3より細かくすることを特徴とするスパッター用ターゲ
ット部材の製造方法。
3. In weight%, Ni 70 to 85%, Mo 2 to 6
%, Or Si 0.01 to 2%, Mn 0.1 to 2%, Mg 0.
After hot working an alloy containing 0001 to 0.02% of one or more kinds and the balance substantially consisting of Fe, it is annealed at a temperature of not less than recrystallization temperature and not more than recrystallization temperature + 400 ° C and sputtered. The surface grain is JIS austenite grain size number No.
3 A method of manufacturing a target member for sputtering, which is characterized by making it finer.
JP60230764A 1985-10-16 1985-10-16 Target member for sputter and method for manufacturing the same Expired - Lifetime JPH06104894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60230764A JPH06104894B2 (en) 1985-10-16 1985-10-16 Target member for sputter and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60230764A JPH06104894B2 (en) 1985-10-16 1985-10-16 Target member for sputter and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPS6289863A JPS6289863A (en) 1987-04-24
JPH06104894B2 true JPH06104894B2 (en) 1994-12-21

Family

ID=16912895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60230764A Expired - Lifetime JPH06104894B2 (en) 1985-10-16 1985-10-16 Target member for sputter and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JPH06104894B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63216966A (en) * 1987-03-06 1988-09-09 Toshiba Corp Target for sputtering
US20030031928A1 (en) 1999-05-20 2003-02-13 Saint-Gobain Vitrage Electrochemical device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540096B2 (en) * 1973-11-15 1980-10-15
JPS5854185B2 (en) * 1975-09-09 1983-12-03 大同特殊鋼株式会社 Powder for high permeability sintered iron-nickel alloys
JPS57203771A (en) * 1981-06-10 1982-12-14 Mitsubishi Metal Corp Manufacture of target for vapor-deposition
JPS58164780A (en) * 1982-03-23 1983-09-29 Hitachi Metals Ltd Formation of target for sputtering

Also Published As

Publication number Publication date
JPS6289863A (en) 1987-04-24

Similar Documents

Publication Publication Date Title
EP0281141B1 (en) Sputtering target
KR100499173B1 (en) Method of making low magnetic permeability cobalt sputter targets
US9551065B2 (en) Al-based alloy sputtering target and Cu-based alloy sputtering target
WO2003062487A1 (en) Target of high-purity nickel or nickel alloy and its producing method
JP4718664B2 (en) Manufacturing method of sputtering target
US6780295B2 (en) Method for making Ni-Si magnetron sputtering targets and targets made thereby
JPH06104894B2 (en) Target member for sputter and method for manufacturing the same
JPH06104893B2 (en) Target member for sputter and method for manufacturing the same
JPH06104895B2 (en) Target material
JP2001073125A (en) Co-Ta ALLOY SPUTTERING TARGET AND ITS PRODUCTION
JPH08260136A (en) Sputtering target made of cobalt-base alloy having high magnetich field penetration factor
JP4006620B2 (en) Manufacturing method of high purity nickel target and high purity nickel target
JP3532063B2 (en) Sputtering target and film forming method
JP2000239835A (en) Sputtering target
US20050183797A1 (en) Fine grained sputtering targets of cobalt and nickel base alloys made via casting in metal molds followed by hot forging and annealing and methods of making same
JP6791313B1 (en) Nickel alloy sputtering target
JP3445563B2 (en) Fe-Cr-Ni alloy plate for electron gun electrode
JP2002069626A (en) Sputtering target and its production method
WO2022102765A1 (en) Platinum-base sputtering target and manufacturing method thereof
JP4224880B2 (en) Co-Ni alloy sputtering target and manufacturing method thereof
KR20010034218A (en) Co-Ti ALLOY SPUTTERING TARGET AND MANUFACTURING METHOD THEREOF
JP2001076955A (en) Magnetic sputtering target and manufacture thereof
US20060118407A1 (en) Methods for making low silicon content ni-si sputtering targets and targets made thereby
JP3228356B2 (en) Material for evaporation
JPH0790562A (en) High-purity titanium sputtering target