JPH06104108A - Nd-fe-co-b type sintered magnet - Google Patents

Nd-fe-co-b type sintered magnet

Info

Publication number
JPH06104108A
JPH06104108A JP4249113A JP24911392A JPH06104108A JP H06104108 A JPH06104108 A JP H06104108A JP 4249113 A JP4249113 A JP 4249113A JP 24911392 A JP24911392 A JP 24911392A JP H06104108 A JPH06104108 A JP H06104108A
Authority
JP
Japan
Prior art keywords
sintered magnet
content
coercive force
type sintered
max
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4249113A
Other languages
Japanese (ja)
Other versions
JP3080275B2 (en
Inventor
Satoshi Yamaguchi
山口  聡
Kimio Uchida
公穂 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP04249113A priority Critical patent/JP3080275B2/en
Priority to DE4331563A priority patent/DE4331563A1/en
Publication of JPH06104108A publication Critical patent/JPH06104108A/en
Application granted granted Critical
Publication of JP3080275B2 publication Critical patent/JP3080275B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a Nd-Fe-Co-B type sintered magnet excellent in corrosion resistance and heat resistance. CONSTITUTION:A Nd-Fe-Co-B type sintered magnet which comprises 28 to 32wt.% of R (where R is at least one selected from Y and rare earth elements, and 3.0 to 8.0wt.% of R is Dy and the remainder of R is one or two of Nd and Pr, Nd being contained in R by 50 at% or more), 0.1 to 1.0wt.% of Al, 0.5 to 2.0wt.% of B, 0.1 to 2.0wt.% of Nb, and unavoidable impurities, with the remainder being composed of a composition mainly consisting of Fe. In addition, having a coercive force iHc of 20kOe or greater and a maximum magnetic energy product (BH) max of 30MGOe or greater, it is excellent in corrosion resistance and heat resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はネオジム(Nd)、鉄
(Fe)、コバルト(Co)及びホウ素(B)を主成分
とする永久磁石に関し、特に優れた耐食性、耐熱性を有
するNd−Fe−Co−B型焼結永久磁石に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet containing neodymium (Nd), iron (Fe), cobalt (Co) and boron (B) as main components, and particularly Nd-Fe having excellent corrosion resistance and heat resistance. -Co-B type sintered permanent magnet.

【0002】[0002]

【従来の技術】Nd−Fe−B型焼結磁石及びNd−F
e−Co−B型焼結磁石は、SmCo5型焼結磁石或い
はSm2Co17型焼結磁石と比較して高いエネルギー積
(BH)maxを有するので、種々の用途に使用される
ようになっている。しかしながら、Nd−Fe−B型焼
結磁石及びNd−Fe−Co−B型焼結磁石は、これら
Sm−Co型焼結磁石に比較して熱安定性に劣るので、
その熱安定性を増す為に種々の試みが提案されている。
特開昭64−7503号公報には、熱安定性の良好な永
久磁石として一般式: R(Fe1-x-y-zCoxyGazA (但し、Rは希土類元素から選ばれた少なくとも1種で
あり、0≦x≦0.7、0.02≦y≦0.3、0.0
01≦z≦0.15、4.0≦A≦7.5である。)、
及び、 R(Fe1-x-y-zCoxyGazuA (但し、Rは希土類元素から選ばれた少なくとも1種で
あり、MはNb,W,V,Ta及びMoから選ばれた1
種または2種以上の元素であり、0≦x≦0.7、0.
02≦y≦0.3、0.001≦z≦0.15、u≦
0.1、4.0≦A≦7.5である。)により表される
ものを開示している。
2. Description of the Related Art Nd-Fe-B type sintered magnet and Nd-F
The e-Co-B type sintered magnet has a high energy product (BH) max as compared with the SmCo 5 type sintered magnet or the Sm 2 Co 17 type sintered magnet, and therefore, it is used in various applications. Has become. However, since the Nd-Fe-B type sintered magnet and the Nd-Fe-Co-B type sintered magnet are inferior in thermal stability to these Sm-Co type sintered magnets,
Various attempts have been proposed to increase its thermal stability.
JP A 64-7503 discloses the general formula as a good permanent magnet thermal stability: R (Fe 1-xyz Co x B y Ga z) A ( provided that at least 1 R is selected from rare earth elements Seed, 0 ≦ x ≦ 0.7, 0.02 ≦ y ≦ 0.3, 0.0
01 ≦ z ≦ 0.15 and 4.0 ≦ A ≦ 7.5. ),
And, R (Fe 1-xyz Co x B y Ga z M u) A ( where, R is at least one selected from rare earth elements, M is selected Nb, W, V, Ta and Mo 1
Element or two or more elements, 0 ≦ x ≦ 0.7, 0.
02 ≦ y ≦ 0.3, 0.001 ≦ z ≦ 0.15, u ≦
0.1 and 4.0 ≦ A ≦ 7.5. ) Is disclosed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、高耐食
性、高耐熱特性を有し、かつ同時に高い水準の保磁力i
Hc、エネルギー積(BH)maxを兼ね備えたNd−
Fe−Co−B型異方性焼結磁石を安定的に生産しよう
とする場合には前記公知技術を超えて更に詳細な研究・
検討に基づいた成分組成範囲の限定、酸化物の限定等が
必要であることが分かった。本発明はこのような知見に
基づき、特に耐食性、耐熱性に優れたNd−Fe−Co
−B型焼結磁石を提供するものである。本発明は、C
o、Dy、Nbを有効に利用することによって耐食性を
著しく高め、Dy量、Ga量を特定範囲とすることによ
り高耐熱性を付与し、同時に希土類R量を低め、かつ、
酸素量を限定することにより保磁力iHcが大きく、か
つエネルギー積(BH)maxの大きいNd−Fe−C
o−B型焼結磁石を安定的に提供するものである。
However, it has high corrosion resistance and high heat resistance, and at the same time has a high level of coercive force i.
Nd- that has both Hc and energy product (BH) max
In order to stably produce an Fe—Co—B type anisotropic sintered magnet, a more detailed study beyond the above-mentioned known techniques
It has been found that it is necessary to limit the composition range of components and oxides based on the study. The present invention is based on such knowledge, and particularly Nd-Fe-Co excellent in corrosion resistance and heat resistance.
-A B-type sintered magnet is provided. The present invention is C
o, Dy and Nb are effectively used to remarkably enhance the corrosion resistance, and the Dy amount and the Ga amount are set within a specific range to impart high heat resistance, and at the same time, the rare earth R amount is lowered, and
Nd-Fe-C having a large coercive force iHc and a large energy product (BH) max by limiting the amount of oxygen
The present invention stably provides an o-B type sintered magnet.

【0004】[0004]

【課題を解決するための手段】本発明は、28〜32w
t%のR(但し、RはY及び希土類元素から選ばれた少
なくとも1種であり、Rの内、3.0〜8.0wt%が
Dy,残りは、Nd又はPrの1種又は2種であり、N
dをRの内に50at%以上を含む)、5.0wt%の
以下のCo(但し、Coは必ず含む)、0.1〜1.0
wt%のAl、0.5〜2.0wt%のB、0.1〜
2.0wt%のNb、0.05〜1.0wt%のGa、
1000ppm〜6000ppmの酸素、及び不可避的
不純物を含有し、残部が主としてFeからなり保磁力i
Hcが20kOe以上、最大磁気エネルギー積(BH)
maxが30MGOe以上である耐食性、耐熱性に優れ
たNd−Fe−Co−B型焼結磁石である。本発明の永
久磁石の組成の限定理由について、以下詳細に説明す
る。
The present invention provides 28-32w
t% of R (provided that R is at least one selected from Y and rare earth elements, 3.0 to 8.0 wt% of R is Dy, and the rest is one or two of Nd or Pr) And N
d includes 50 at% or more of R), 5.0 wt% or less of Co (however, Co is always included), and 0.1 to 1.0.
wt% Al, 0.5-2.0 wt% B, 0.1
2.0 wt% Nb, 0.05 to 1.0 wt% Ga,
It contains oxygen of 1000 ppm to 6000 ppm and unavoidable impurities, and the balance is mainly Fe and has a coercive force i.
Hc is 20 kOe or more, maximum magnetic energy product (BH)
It is a Nd-Fe-Co-B type sintered magnet having a max of 30 MGOe or more and excellent in corrosion resistance and heat resistance. The reasons for limiting the composition of the permanent magnet of the present invention will be described in detail below.

【0005】本発明においてRは28〜32wt%の範
囲で含有される。後述の実施例4に示されるようにR量
が32wt%以下と少ないほど(BH)max、および
耐食性の向上に有効である。しかし、28wt%未満で
はインゴット中にα−Feが発生し易くなり(BH)m
axの増大は期待しにくい。よってR量は28〜32w
t%とする。RはNdを主体とするために、R成分の
内、50at%以上のNdを含有するものとする。Rの
内には3.0〜8.0wt%のDyを含有するが、残部
はNd単独又はNdとPrとの混合である。Prは保磁
力iHcの向上に効果がある。
In the present invention, R is contained in the range of 28 to 32 wt%. As shown in Example 4 which will be described later, the smaller the R amount is 32 wt% or less, the more effective it is in improving (BH) max and corrosion resistance. However, if it is less than 28 wt%, α-Fe tends to be generated in the ingot (BH) m
It is difficult to expect an increase in ax. Therefore, the amount of R is 28-32w
t%. Since R is mainly composed of Nd, 50 at% or more of Nd is contained in the R component. Although 3.0 to 8.0 wt% of Dy is contained in R, the balance is Nd alone or a mixture of Nd and Pr. Pr is effective in improving the coercive force iHc.

【0006】DyをR成分として含有させることによっ
て、キュリー点Tcが上昇するとともに異方性磁場(H
A)が増大して保磁力iHcが向上し、耐熱性を著しく
向上させる。また、Dyは耐食性向上にも効果がある。
本発明において、Dyの含有量が3.0wt%より少な
いと、熱安定性、耐食性を向上させるという本発明の目
的は達成されない。しかし、8.0wt%よりも含有量
が多くなると、残留磁束密度Br及び最大エネルギー積
(BH)maxの低下による磁気特性の劣化が著しい。
したがって、Dyの含有量は3.0〜8.0wt%とす
る。Dyが5.0wt%よりも含有量が多いと、残留磁
束密度Br及び最大エネルギー積(BH)maxの低下
はあるものの、25kOe以上の保磁力iHcを得るこ
とができる。よってより高保磁力特性を得ようとする場
合にはDyの含有量を5.0〜8.0wt%とする。逆
に大きな残留磁束密度Br及び最大エネルギー積(B
H)maxを得ようとする場合にはDyの含有量を3.
0〜5.0wt%とすればよい。
By including Dy as the R component, the Curie point Tc rises and the anisotropic magnetic field (H
A ) is increased, the coercive force iHc is improved, and the heat resistance is remarkably improved. Dy is also effective in improving the corrosion resistance.
In the present invention, when the content of Dy is less than 3.0 wt%, the object of the present invention of improving thermal stability and corrosion resistance cannot be achieved. However, when the content is more than 8.0 wt%, the magnetic properties are significantly deteriorated due to the reduction of the residual magnetic flux density Br and the maximum energy product (BH) max.
Therefore, the content of Dy is set to 3.0 to 8.0 wt%. When the content of Dy is more than 5.0 wt%, the coercive force iHc of 25 kOe or more can be obtained although the residual magnetic flux density Br and the maximum energy product (BH) max are reduced. Therefore, in order to obtain higher coercive force characteristics, the Dy content is set to 5.0 to 8.0 wt%. On the contrary, the large residual magnetic flux density Br and the maximum energy product (B
H) max is set to 3.
It may be 0 to 5.0 wt%.

【0007】本発明においてCoは、残留磁束密度Br
を殆ど低下させることなく磁石合金自身の耐食性を改善
するとともに耐食コーティングであるNiメッキの密着
性を向上することにより耐食性を向上させる効果があ
る。また、主相(Nd2Fe14B)中のFe がCoに置
換されることによりキューリー点Tcを上昇させる効果
もある。しかしながらCoの置換量を多くすると、焼結
時の異常粒成長を原因とする粗大結晶粒が発生し、保磁
力iHc及びヒステリシスカーブの角型性が低下する。
したがってCo含有量は5.0wt%以下とする。
In the present invention, Co is the residual magnetic flux density Br.
The corrosion resistance of the magnet alloy itself is improved with almost no deterioration, and the corrosion resistance is improved by improving the adhesion of the Ni plating which is the corrosion resistant coating. Further, Fe in the main phase (Nd2Fe14B) is replaced with Co, which also has the effect of raising the Curie point Tc. However, when the substitution amount of Co is increased, coarse crystal grains are generated due to abnormal grain growth during sintering, and the coercive force iHc and the squareness of the hysteresis curve are deteriorated.
Therefore, the Co content is 5.0 wt% or less.

【0008】本発明においてAlは、Co添加材の熱処
理時の温度条件を緩和する効果がある。すなわち、Co
を含有すると材料は熱処理温度の変動に対して磁気特性
や熱安定性の変動が大きい。そこに適量のAlを添加す
ると、熱処理条件が多少変動しても磁気特性や熱安定性
が変動しなくなる。これにより、永久磁石の生産管理が
容易となり、品質の安定した永久磁石を効率よく生産で
きるようになる。Alの含有量が0.1wt%未満では
上記の効果は不十分である。一方、1.0wt%を超え
ると、残留磁束密度Brの低下が顕著になる。従ってA
lの含有量は0.1〜1.0wt%とする。Bは、0.
5wt%未満の場合には高保磁力が得られず、一方、
2.0wt%を越えると、Bに富む非磁性相が増加し、
残留磁束密度Brが低下する。そのため、0.5〜2.
0wt%とする。好ましいBの含有量は0.8〜1.2
wt%である。
In the present invention, Al has the effect of relaxing the temperature conditions during the heat treatment of the Co additive. That is, Co
When it contains, the material has large fluctuations in magnetic properties and thermal stability with respect to fluctuations in heat treatment temperature. If an appropriate amount of Al is added thereto, the magnetic characteristics and thermal stability will not change even if the heat treatment conditions change to some extent. As a result, the production management of the permanent magnets becomes easy, and the permanent magnets with stable quality can be efficiently produced. If the Al content is less than 0.1 wt%, the above effect is insufficient. On the other hand, when it exceeds 1.0 wt%, the decrease in the residual magnetic flux density Br becomes remarkable. Therefore A
The content of 1 is 0.1 to 1.0 wt%. B is 0.
If it is less than 5 wt%, a high coercive force cannot be obtained, while
If it exceeds 2.0 wt%, the B-rich non-magnetic phase increases,
The residual magnetic flux density Br decreases. Therefore, 0.5-2.
It is set to 0 wt%. The preferable B content is 0.8 to 1.2.
wt%.

【0009】Gaは、残留磁束密度Brを殆ど低下させ
ず、保磁力iHcを向上する効果がある。Ga含有量が
0.05wt%未満の場合は保磁力iHcを向上する効
果が十分でない。Ga含有量が1.0wt%を超える
と、残留磁束密度Brが低下し、所望の高エネルギー積
が得られない。よって、Ga含有量は0.05〜1.0
wt%とする。Ga含有量が多いと磁石のヒステリシス
カーブの角形性が悪くなるので、高い角形性を付与する
ためにも好ましいGaの含有量は0.05〜0.8wt
%である。より好ましいGaの含有量は0.1〜0.6
wt%である。更に好ましくは0.1〜0.4wt%で
ある。
Ga has the effect of improving the coercive force iHc without substantially reducing the residual magnetic flux density Br. If the Ga content is less than 0.05 wt%, the effect of improving the coercive force iHc is not sufficient. If the Ga content exceeds 1.0 wt%, the residual magnetic flux density Br decreases and the desired high energy product cannot be obtained. Therefore, the Ga content is 0.05 to 1.0.
wt%. If the Ga content is high, the squareness of the hysteresis curve of the magnet is deteriorated. Therefore, the preferable Ga content for imparting high squareness is 0.05 to 0.8 wt.
%. The more preferable Ga content is 0.1 to 0.6.
wt%. More preferably, it is 0.1 to 0.4 wt%.

【0010】本発明の永久磁石は、上記成分の他に0.
1〜2.0wt%のNbを含有する。Nbは焼結時に結
晶粒が粗大化することを抑制する効果がある。この効果
により、保磁力iHcが向上し、ヒステリシスカーブの
角型性が良好になる。また、焼結体の結晶粒が微細にな
ることは磁石の良好な着磁性に大きく寄与し、さらに着
磁性の良好なNd−Fe−Co−B型焼結磁石は優れた
耐熱性を有する。よって、耐熱性を有する磁石にNbは
有効な添加物である。Nbの含有量が0.1wt%未満
の場合、粗大粒を抑制する効果が不十分である。一方、
Nbの含有量が2.0wt%を超える場合には、Nbも
しくはNb−Feの非磁性ホウ化物が多く発生し、残留
磁束密度Br及びキュリー点Tcが著しく低下し好まし
くない。よって、Nbの含有量は0.1〜2.0wt%
とする。好ましくは、0.1〜1.0wt%である。
The permanent magnet of the present invention has a composition of 0.
It contains 1 to 2.0 wt% Nb. Nb has an effect of suppressing coarsening of crystal grains during sintering. This effect improves the coercive force iHc and improves the squareness of the hysteresis curve. Further, the fine crystal grains of the sintered body greatly contribute to good magnetizability of the magnet, and the Nd-Fe-Co-B type sintered magnet having good magnetizability has excellent heat resistance. Therefore, Nb is an effective additive for heat-resistant magnets. If the Nb content is less than 0.1 wt%, the effect of suppressing coarse particles is insufficient. on the other hand,
When the content of Nb exceeds 2.0 wt%, a large amount of nonmagnetic boride of Nb or Nb—Fe is generated, and the residual magnetic flux density Br and the Curie point Tc are remarkably lowered, which is not preferable. Therefore, the content of Nb is 0.1 to 2.0 wt%
And Preferably, it is 0.1 to 1.0 wt%.

【0011】酸素含有量は、1000ppm〜6000
ppmとする。酸素が1000ppmより少ない場合に
は磁石粉、及びその圧密体が発火しやすく工業生産上危
険がある。一方、6000ppmより多い場合には酸素
が希土類R成分と反応して希土類酸化物を形成し、高保
磁力及び高エネルギー積の磁石を得るのが困難になる。
The oxygen content is 1000 ppm to 6000.
ppm. If the oxygen content is less than 1000 ppm, the magnet powder and its compacted body are likely to ignite, which is dangerous in industrial production. On the other hand, when the amount is more than 6000 ppm, oxygen reacts with the rare earth R component to form a rare earth oxide, and it becomes difficult to obtain a magnet with high coercive force and high energy product.

【0012】本発明の焼結磁石は、次のようにして製造
することができる。即ち、一定の成分組成を有するイン
ゴットを真空溶解で製作し、次にこのインゴットを粗粉
砕することにより粒径500μm程度の粗粉を得る。こ
の粗粉をジェットミルを用い、不活性ガス雰囲気で微粉
砕し平均粒径3.0〜6.0μm(F.S.S.S.)
の微粉を得る。次にこの微粉を配向磁場15kOe、成
形圧力1.5ton/cm2の条件下で磁場中プレス成
形後、1000〜1150℃の温度範囲で焼結す る。
焼結後の熱処理は、次のように行なうことができる。成
形体を焼結して得た焼結体をいったん室温まで冷却す
る。焼結後の冷却速度は最終製品の保磁力iHcに殆ど
影響を与えない。次いで、800〜1000℃の温度に
加熱し、0.2〜5時間保持する。これを第1次熱処理
とする。加熱温度が800℃未満または1000℃を超
える場合、充分な高保磁力が得られない。加熱保持の後
で0.3〜50℃/分の冷却速度で室温ないし600℃
の温度まで冷却する。冷却速度が50℃/分を超える場
合は、時効のために必要な平衡相が得られず、充分な高
保磁力が得られない。また、0.3℃/分未満の冷却速
度は熱処理に時間を要し、工業生産上経済的でない。好
ましくは、0.6〜2.0℃/分の冷却速度が選ばれ
る。冷却終了温度は室温が望ましいが、多少保磁力iH
cを犠牲にすれば600℃までとし、その温度以下は急
冷してもよい。好ましくは、常温〜400℃の温度まで
冷却する。熱処理は更に500〜650℃の温度で0.
2〜3時間行う。これを第2次熱処理とする。組成によ
って異なるが、好ましくは540〜640℃での熱処理
が有効である。熱処理温度が500℃未満の場合及び6
50℃より高い場合は、高保磁力が得られても不可逆減
磁率の低下がおきる。熱処理後は第1次熱処理と同様、
0.3〜400℃/分の冷却速度で冷却する。冷却は水
中、シリコンオイル中、アルゴン気流中等で行うことが
できる。冷却速度が400℃/分を越える場合、急冷に
より試料に亀裂が入り、工業的に価値のある永久磁石材
料が得られない。また、0.3℃/分未満の場合、冷却
過程で保磁力iHcに好ましくない相が出現する。
The sintered magnet of the present invention can be manufactured as follows. That is, an ingot having a constant composition is manufactured by vacuum melting, and then the ingot is roughly crushed to obtain a coarse powder having a particle size of about 500 μm. This coarse powder was finely pulverized in an inert gas atmosphere using a jet mill, and the average particle size was 3.0 to 6.0 μm (FSSS).
To get a fine powder of. Next, this fine powder is press-molded in a magnetic field under the conditions of an orientation magnetic field of 15 kOe and a molding pressure of 1.5 ton / cm 2 , and then sintered in a temperature range of 1000 to 1150 ° C.
The heat treatment after sintering can be performed as follows. The sintered body obtained by sintering the compact is once cooled to room temperature. The cooling rate after sintering has almost no effect on the coercive force iHc of the final product. Then, it is heated to a temperature of 800 to 1000 ° C. and held for 0.2 to 5 hours. This is the first heat treatment. If the heating temperature is lower than 800 ° C or higher than 1000 ° C, a sufficiently high coercive force cannot be obtained. Room temperature to 600 ° C at a cooling rate of 0.3 to 50 ° C / min after heating and holding
Cool to the temperature of. If the cooling rate exceeds 50 ° C./minute, the equilibrium phase required for aging cannot be obtained, and a sufficiently high coercive force cannot be obtained. Further, a cooling rate of less than 0.3 ° C./minute requires a long time for heat treatment, which is not economical in industrial production. Preferably, a cooling rate of 0.6 to 2.0 ° C./min is selected. Room temperature is desirable as the cooling end temperature, but some coercive force iH
If c is sacrificed, the temperature may be up to 600 ° C., and the temperature below that may be rapidly cooled. Preferably, the temperature is cooled to room temperature to 400 ° C. The heat treatment is further performed at a temperature of 500 to 650 ° C.
Do 2-3 hours. This is the secondary heat treatment. Although it depends on the composition, heat treatment at 540 to 640 ° C. is effective. When the heat treatment temperature is less than 500 ° C and 6
If the temperature is higher than 50 ° C., the irreversible demagnetization rate will decrease even if a high coercive force is obtained. After the heat treatment, like the first heat treatment,
Cool at a cooling rate of 0.3 to 400 ° C./min. Cooling can be performed in water, in silicone oil, in an argon stream, or the like. If the cooling rate exceeds 400 ° C./minute, the sample is cracked by the rapid cooling and an industrially valuable permanent magnet material cannot be obtained. Further, if it is less than 0.3 ° C./min, an unfavorable phase appears in the coercive force iHc during the cooling process.

【0013】[0013]

【実施例】以下、実施例により本発明を更に詳細に説明
する。 (実施例1)金属Nd、金属Dy、Fe、Co、fer
ro−B、ferro−Nb、金属Gaを所定の重量秤
量し、これを真空溶解して重量10kgのインゴットを
作製した。このインゴットの成分分析を行なうと重量比
で以下のような組成であった。 Nd27.5−Dy3.
6−B1.03−Nb0.58−Ga0.18−Co2.02−Al0.35
−Febal. (wt%) このインゴットをハンマーで解砕した後、さらに粗粉砕
機を用い不活性ガス雰囲気中での粗粉砕を行い500μ
m以下の粒度の粗粉を得た。この粗粉を同じくジェット
ミルを用い不活性ガス雰囲気中で微粉砕をして微粉を得
た。この微粉は平均粒径4.0μm(F.S.S.
S.)であり、含有酸素量が5500ppmであった。
次に、この微粉を配向磁場強度15kOe、成形圧力
1.5ton/cm2の条件下で磁場中プレス成形し、
30×20×15の成形体を作製した。この成形体は実
質的に真空の条件で1080℃×3hrの焼結を行い、
得られた焼結体に900℃×2hrの第1次熱処理、次
いで530℃×2hrの第2次熱処理を施した。得られ
た焼結体の密度は7.55g/cc、また含有酸素量は
4800ppmであった。この試料の常温磁気特性を測
定したところ以下の様な値を得た。 Br=12.6kG bHc=11.6kOe iHc=21.8kOe (BH)max=35.6MGOe 更にキュリー点Tcとして340℃、23℃から120
℃のBrとiHcの温度係数α、βとして各々−0.1
0、−0.52%/℃の値を得た。またパーミアンス係
数Pc=1.0,2.0形状をした試料の100℃での
不可逆減磁率は各々2.1,1.1%であり優れた耐熱
性を有している。
EXAMPLES The present invention will be described in more detail below with reference to examples. (Example 1) Metal Nd, metal Dy, Fe, Co, fer
A predetermined weight of ro-B, ferro-Nb, and metallic Ga was weighed and melted in vacuum to prepare an ingot having a weight of 10 kg. When the composition of this ingot was analyzed, it had the following composition by weight ratio. Nd27.5-Dy3.
6-B1.03-Nb0.58-Ga0.18-Co2.02-Al0.35
-Febal. (Wt%) After crushing this ingot with a hammer, further coarse crushing was performed in an inert gas atmosphere using a coarse crusher to obtain 500μ.
A coarse powder having a particle size of m or less was obtained. This coarse powder was finely pulverized in the same inert gas atmosphere using a jet mill to obtain fine powder. This fine powder has an average particle size of 4.0 μm (FSS.
S. ), And the oxygen content was 5500 ppm.
Next, this fine powder is press-molded in a magnetic field under the conditions of an orientation magnetic field strength of 15 kOe and a molding pressure of 1.5 ton / cm 2 ,
A 30 × 20 × 15 molded body was produced. This compact was sintered at 1080 ° C. for 3 hours under substantially vacuum conditions,
The obtained sintered body was subjected to a first heat treatment at 900 ° C. × 2 hr and then a second heat treatment at 530 ° C. × 2 hr. The density of the obtained sintered body was 7.55 g / cc, and the oxygen content was 4800 ppm. When the room temperature magnetic characteristics of this sample were measured, the following values were obtained. Br = 12.6 kG bHc = 11.6 kOe iHc = 21.8 kOe (BH) max = 35.6 MGOe Further, the Curie point Tc is 340 ° C., 23 ° C. to 120.
-0.1 for Br and iHc temperature coefficients α and β
A value of 0, -0.52% / ° C was obtained. Further, the irreversible demagnetization factors at 100 ° C. of the samples having the permeance coefficient Pc = 1.0 and 2.0 are 2.1 and 1.1%, respectively, and have excellent heat resistance.

【0014】(実施例2)実験条件を変えて、実施例1
と同様にして次の実験結果を得た。 組成 : Nd25.5−Dy6.4−B1.04−Nb0.55−G
a0.22−Co2.00−Al0.36−Febal.(wt%) 焼結 : 1100℃×2hr 第1次熱処理 : 900℃×2hr 第2次熱処理 : 530℃×2hr 常温磁気特性 : Br = 11.4kG bHc = 11.0kOe iHc = 27.8kOe (BH)max = 31.3MGOe キュリー点 : Tc = 340℃ 不可逆減磁率 [at 100℃] : Pc =
1.0 → 1.8% Pc = 2.0 → 0.8% Br温度係数(α),iHc温度係数(β) [23℃
〜120℃]: α= −0.09%/℃ β= −0.51%/℃ 焼結体含有酸素量 : 5800ppm 実施例1同様、常温磁気特性と共に高温特性に優れてお
り、耐熱性に優れた磁石を得ることができる。
(Embodiment 2) Embodiment 1 is changed by changing the experimental conditions.
The following experimental results were obtained in the same manner as. Composition: Nd25.5-Dy6.4-B1.04-Nb0.55-G
a0.22-Co2.00-Al0.36-Febal. (wt%) Sintering: 1100 ° C. × 2 hr Primary heat treatment: 900 ° C. × 2 hr Secondary heat treatment: 530 ° C. × 2 hr Room temperature magnetic properties: Br = 11 .4 kG bHc = 11.0 kOe iHc = 27.8 kOe (BH) max = 31.3 MGOe Curie point: Tc = 340 ° C Irreversible demagnetization rate [at 100 ° C]: Pc =
1.0 → 1.8% Pc = 2.0 → 0.8% Br temperature coefficient (α), iHc temperature coefficient (β) [23 ° C.
~ 120 ° C.]: α = −0.09% / ° C. β = −0.51% / ° C. Oxygen content in sintered body: 5800 ppm As in Example 1, excellent magnetic properties at room temperature as well as high temperature properties are excellent and heat resistance is high. An excellent magnet can be obtained.

【0015】(実施例3)ジジムメタル(Nd70wt
%−Pr30wt%)を使用し、実施例1、2と同様に
して次の実験結果を得た。 組成 : Nd18.9−Pr5.1−Dy7.3−B1.10−Nb
0.71−Ga0.37−Co4.72−Al0.33−Febal.(wt
%) 焼結 : 1080℃×2hr 第1次熱処理 : 900℃×2hr 第2次熱処理 : 520℃×2hr 常温磁気特性 : Br = 11.5kG bHc = 10.9kOe iHc = 30.0kOe (BH)max = 31.2MGOe キュリー点 : Tc = 375℃ 不可逆減磁率 [at 100℃] : Pc =
1.0 → 1.4% Pc = 2.0 → 0.5% Br温度係数(α),iHc温度係数(β) [23℃
〜120℃]: α= −0.09%/℃ β= −0.48%/℃ 焼結体含有酸素量 : 5400ppm ジジムメタルを用いた場合でも、実施例1、2と同様常
温磁気特性、高温特性、耐熱性に優れた磁石を得ること
ができる。
Example 3 Didymium metal (Nd 70 wt)
% -Pr 30 wt%) was used and the following experimental results were obtained in the same manner as in Examples 1 and 2. Composition: Nd18.9-Pr5.1-Dy7.3-B1.10-Nb
0.71-Ga0.37-Co4.72-Al0.33-Febal. (Wt
%) Sintering: 1080 ° C. × 2 hr Primary heat treatment: 900 ° C. × 2 hr Secondary heat treatment: 520 ° C. × 2 hr Normal temperature magnetic property: Br = 11.5 kG bHc = 10.9 kOe iHc = 30.0 kOe (BH) max = 31.2 MGOe Curie point: Tc = 375 ° C Irreversible demagnetization rate [at 100 ° C]: Pc =
1.0 → 1.4% Pc = 2.0 → 0.5% Br temperature coefficient (α), iHc temperature coefficient (β) [23 ° C.
~ 120 ° C]: α = -0.09% / ° C β = -0.48% / ° C Sintered body oxygen content: 5400 ppm Even when didymium metal is used, the magnetic properties at room temperature and high temperature are the same as in Examples 1 and 2. It is possible to obtain a magnet having excellent characteristics and heat resistance.

【0016】(実施例4)金属Nd、金属Dy、Fe、
Co、ferro−B、ferro−Nb、金属Gaを
所定の重量秤量し、これを真空溶解して重量各10kg
のインゴットを作製した。このインゴットの成分分析を
行なうと重量比で以下のような組成であった。 Nda−Dyb−B1.05−Nb0.58−Ga0.20 −Co0.20−Al0.33−Febal. (a+b=TRE,b=3.7) (wt%) 各々のインゴットをハンマーで解砕した後、さらに粗粉
砕機を用い不活性ガス雰囲気中での粗粉砕を行い500
μm以下の粒度の粗粉を得た。この粗粉を同じくジェッ
トミルを用い不活性ガス雰囲気中で微粉砕をして微粉を
得た。この微粉は平均粒径3.7μm(F.S.S.
S.)であり、含有酸素量は1500〜5000ppm
であった。次に、この微粉を配向磁場強度15kOe、
成形圧力1.5ton/cm2の条件下で磁場中プレス
成形し、30×20×15の成形体を 作製した。この
成形体は実質的に真空の条件で1070℃×2hrの焼
結を行い、得られた焼結体に900℃×2hrの第1次
熱処理、次いで540℃×2hrの第2次熱処理を施し
た。得られた焼結体の密度は7.55〜7.58g/c
c、また含有酸素量は1000〜4000ppmであっ
た。この試料について、TRE含有量に対して最大エネ
ルギー積(BH)max及び腐食減量がどのように変化
するかを測定し、図1に示すような結果を得た。腐食減
量は磁石を温度120℃,湿度90%,気圧1.0at
mの環境中に100時間暴露したときに得られたもので
ある。図1に示されるようにTRE量を少なくすること
によって(BH)maxを向上することができるが、2
8wt%未満とするとインゴット中にα−Feが発生し
易くなり(BH)maxの増大は期待しにくい。腐食減
量もやはりTRE量を少なくすることによって減少させ
ることができる。これは、TREを少なくすることによ
って腐食しやすいNd−rich相が減少する為であ
る。しかしながら、TRE量を28〜32wt%という
低い値としても含有酸素量が6000ppmを超えてし
まうと保磁力iHcの減少が著しくなるため、酸素量は
1000〜6000ppmとする。図2に焼結磁石中の
酸素含有量と磁気特性の関係を示す。
(Example 4) Metal Nd, metal Dy, Fe,
Co, ferro-B, ferro-Nb, and metallic Ga are weighed to a predetermined weight, and these are vacuum melted to weigh 10 kg each.
The ingot of was produced. When the composition of this ingot was analyzed, it had the following composition by weight ratio. Nda-Dyb-B1.05-Nb0.58-Ga0.20-Co0.20-Al0.33-Febal. (A + b = TRE, b = 3.7) (wt%) Each ingot was crushed with a hammer. After that, coarse pulverization is further performed in an inert gas atmosphere by using a coarse pulverizer to 500
A coarse powder with a particle size of less than μm was obtained. This coarse powder was finely pulverized in the same inert gas atmosphere using a jet mill to obtain fine powder. This fine powder has an average particle size of 3.7 μm (FSS.
S. ), And the oxygen content is 1500 to 5000 ppm
Met. Next, this fine powder is applied with an orientation magnetic field strength of 15 kOe,
Press molding was performed in a magnetic field under a molding pressure of 1.5 ton / cm 2 to prepare a 30 × 20 × 15 compact. This compact was sintered at 1070 ° C. × 2 hr under a substantially vacuum condition, and the obtained sintered compact was subjected to a first heat treatment at 900 ° C. × 2 hr and then a second heat treatment at 540 ° C. × 2 hr. did. The density of the obtained sintered body was 7.55 to 7.58 g / c.
c, and the oxygen content was 1000 to 4000 ppm. With respect to this sample, how the maximum energy product (BH) max and the corrosion weight loss change with respect to the TRE content was measured, and the results shown in FIG. 1 were obtained. The weight loss of the magnet is 120 ℃, the humidity is 90%, and the atmospheric pressure is 1.0at.
It was obtained when exposed to the environment of m for 100 hours. As shown in FIG. 1, (BH) max can be improved by reducing the TRE amount.
If it is less than 8 wt%, α-Fe is likely to be generated in the ingot, and it is difficult to expect an increase in (BH) max. Corrosion weight loss can also be reduced by reducing the amount of TRE. This is because the Nd-rich phase, which is easily corroded, is reduced by reducing the TRE. However, even if the TRE amount is set to a low value of 28 to 32 wt%, if the oxygen content exceeds 6000 ppm, the coercive force iHc decreases remarkably, so the oxygen amount is set to 1000 to 6000 ppm. FIG. 2 shows the relationship between the oxygen content in the sintered magnet and the magnetic characteristics.

【0017】(実施例5)金属Nd、金属Dy、Fe、
Co、ferro−B、ferro−Nb、金属Gaを
所定の重量秤量し、これを真空溶解して重量各10kg
のインゴットを作製した。このインゴットの成分分析を
行なうと重量比で以下のような組成であった。 Nd30.5-a−Dya−B1.03−Nb0.59−Gab −Co2.10−Al0.34−Febal. (2.8≦a≦8.5,0≦b≦1.2) (wt%) 各々のインゴットをハンマーで解砕した後、さらに粗粉
砕機を用い不活性ガス雰囲気中での粗粉砕を行い500
μm以下の粒度の粗粉を得た。この粗粉を同じくジェッ
トミルを用い不活性ガス雰囲気中で微粉砕をして微粉を
得た。この微粉は平均粒径3.8μm(F.S.S.
S.)であり、含有酸素量は5500〜6400ppm
であった。次に、この微粉を配向磁場強度15kOe、
成形圧力1.5ton/cm2の条件下で磁場中プレス
成形し、30×20×15の成形体を 作製した。この
成形体は実質的に真空の条件で1100℃×2hrの焼
結を行い、得られた焼結体に900℃×2hrの第1次
熱処理、次いで580℃×2hrの第2次熱処理を施し
た。得られた焼結体の密度は7.55〜7.59g/c
c、また含有酸素量は5000〜5900ppmであっ
た。これら試料について、常温磁気特性を測定し、図
3、図4及び図5に示すような結果を得た。図3はDy
=5.0wt%として測定した結果であるがGa含有量
が0.05wt%未満では効果を発揮しにくいが、一
方、1.0wt%以上にしても最大エネルギー積(B
H)maxの減少が著しくなるだけで保磁力iHcの向
上はさほど期待できないので0.05〜1.0wt%が
適量である。GaはDyに比較して(BH)maxを著
しく低下することなく保磁力iHcを向上させる効果が
大きいので0.01〜1.0wt%の含有は本発明にお
いて必須となる。図4にはGa含有量を0.20wt%
としてDy含有量を変化させた結果を示す。Dy含有は
iHcの向上に大きく貢献するが一方で(BH)max
を著しく低下させるので含有量は3.6〜8.0wt%
が適量である。図5にはDy含有量をパラメータとして
Ga含有量を0〜0.6wt%まで変化させた場合の結
果を示すが、Dy含有量が8.0wt%を超えると(B
H)maxが著しく低下する。また、Dy含有量が3.
0wt%未満であると、20kOeを越える高保磁力が
得にくい。
(Example 5) Metal Nd, metal Dy, Fe,
Co, ferro-B, ferro-Nb, and metallic Ga are weighed to a predetermined weight, and these are vacuum melted to weigh 10 kg each.
The ingot of was produced. When the composition of this ingot was analyzed, it had the following composition by weight ratio. Nd30.5-a-Dya-B1.03-Nb0.59-Gab-Co2.10-Al0.34-Febal. (2.8≤a≤8.5, 0≤b≤1.2) (wt%) Hammer each ingot After crushing with, coarse crushing is further performed in an inert gas atmosphere using a coarse crusher and 500
A coarse powder with a particle size of less than μm was obtained. This coarse powder was finely pulverized in the same inert gas atmosphere using a jet mill to obtain fine powder. This fine powder has an average particle size of 3.8 μm (FSS.
S. ), And the oxygen content is 5500 to 6400 ppm
Met. Next, this fine powder is applied with an orientation magnetic field strength of 15 kOe,
Press molding was performed in a magnetic field under a molding pressure of 1.5 ton / cm 2 to prepare a 30 × 20 × 15 compact. This compact was sintered at 1100 ° C. × 2 hr under a substantially vacuum condition, and the resulting sintered compact was subjected to a first heat treatment at 900 ° C. × 2 hr and then a second heat treatment at 580 ° C. × 2 hr. did. The density of the obtained sintered body is 7.55 to 7.59 g / c.
c, and the oxygen content was 5000 to 5900 ppm. The ambient temperature magnetic characteristics of these samples were measured, and the results shown in FIGS. 3, 4 and 5 were obtained. Figure 3 is Dy
= 5.0 wt%, the Ga content is less than 0.05 wt%, but it is difficult to exert the effect. On the other hand, even if the Ga content is 1.0 wt% or more, the maximum energy product (B
Since the decrease of (H) max becomes remarkable and the improvement of coercive force iHc cannot be expected so much, 0.05 to 1.0 wt% is an appropriate amount. Ga has a large effect of improving the coercive force iHc without significantly lowering (BH) max as compared with Dy, so that the content of 0.01 to 1.0 wt% is essential in the present invention. In FIG. 4, the Ga content is 0.20 wt%
Shows the result of changing the Dy content. Dy content greatly contributes to the improvement of iHc, while (BH) max
Content is 3.6 to 8.0 wt%
Is an appropriate amount. FIG. 5 shows the results when the Ga content was changed from 0 to 0.6 wt% using the Dy content as a parameter, but when the Dy content exceeds 8.0 wt% (B
H) max is significantly reduced. Further, the Dy content is 3.
If it is less than 0 wt%, it is difficult to obtain a high coercive force exceeding 20 kOe.

【0018】(実施例6)ジジムメタル(Nd70wt
%−Pr30wt%)、金属Dy、Fe、Co、fer
ro−B、ferro−Nb、金属Gaを所定の重量秤
量し、これを真空溶解して重量各10kgのインゴット
を作製した。このインゴットの成分分析を行なうと重量
比で以下のような組成であった。 (Nd+Pr)28.1−Dy3.6−B1.03−Nb0.58−Gab −Co2.05−Al0.35−Febal. (0≦b≦0.6)(wt%) 各々のインゴットをハンマーで解砕した後、さらに粗粉
砕機を用い不活性ガス雰囲気中での粗粉砕を行い500
μm以下の粒度の粗粉を得た。この粗粉を同じくジェッ
トミルを用い不活性ガス雰囲気中で微粉砕をして微粉を
得た。この微粉は平均粒径3.7μm(F.S.S.
S.)であり、含有酸素量は5600ppmであった。
次に、この微粉を配向磁場強度15kOe、成形圧力
1.5ton/cm2の条件下で磁場中プレス成形し、
30×20×15の成形体を作製した。 この成形体は
実質的に真空の条件で1080℃×2.5hrの焼結を
行い、得られた焼結体に890℃×2hrの第1次熱処
理、次いで530℃×2hrの第2次熱処理を施した。
得られた焼結体の密度は7.55〜7.58g/cc、
また含有酸素量は2800ppmであった。これら試料
について、常温磁気特性を測定し、図6に示すような結
果を得た。図6に示されるようにGaを含有させること
によって保磁力iHc及びHkの向上が認められるので
0.05wt%以上の含有が必須となる。しかしなが
ら、Gaが0.4wt%を超えるとHkが低下しヒステ
リシスループの角形性が低下するので上限は1.0wt
%ではあるが、好ましくは0.8wt%、より好ましく
は0.6wt%、更に好ましくは0.4wt%である。
Example 6 Didymium metal (Nd 70 wt)
% -Pr30wt%), metal Dy, Fe, Co, fer
A predetermined weight of ro-B, ferro-Nb, and metallic Ga was weighed, and this was vacuum-melted to produce ingots each weighing 10 kg. When the composition of this ingot was analyzed, it had the following composition by weight ratio. (Nd + Pr) 28.1-Dy3.6-B1.03-Nb0.58-Gab-Co2.05-Al0.35-Febal. (0≤b≤0.6) (wt%) After crushing each ingot with a hammer Further, coarse pulverization is performed in an inert gas atmosphere using a coarse pulverizer and 500
A coarse powder with a particle size of less than μm was obtained. This coarse powder was finely pulverized in the same inert gas atmosphere using a jet mill to obtain fine powder. This fine powder has an average particle size of 3.7 μm (FSS.
S. ), And the oxygen content was 5600 ppm.
Next, this fine powder is press-molded in a magnetic field under the conditions of an orientation magnetic field strength of 15 kOe and a molding pressure of 1.5 ton / cm 2 ,
A 30 × 20 × 15 molded body was produced. This compact was sintered at 1080 ° C. × 2.5 hr under a substantially vacuum condition, and the resulting sintered compact was subjected to a primary heat treatment at 890 ° C. × 2 hr and then a secondary heat treatment at 530 ° C. × 2 hr. Was applied.
The density of the obtained sintered body was 7.55 to 7.58 g / cc,
The oxygen content was 2800 ppm. The ambient temperature magnetic characteristics of these samples were measured, and the results shown in FIG. 6 were obtained. As shown in FIG. 6, since the coercive force iHc and Hk are improved by adding Ga, the content of 0.05 wt% or more is essential. However, when Ga exceeds 0.4 wt%, Hk decreases and the squareness of the hysteresis loop decreases, so the upper limit is 1.0 wt.
%, But is preferably 0.8 wt%, more preferably 0.6 wt%, and further preferably 0.4 wt%.

【0019】(実施例7)ジジムメタル(Nd70wt
%−Pr30wt%)、金属Dy、Fe、Co、fer
ro−B、ferro−Nb、金属Gaを所定の重量秤
量し、これを真空溶解して重量各10kgのインゴット
を作製した。このインゴットの成分分析を行なうと重量
比で以下のような組成であった。 (Nd+Pr)28.0−Dy4.0−B1.03−Nbx−Ga0.15 −Co2.04−Al0.35−Febal. (0≦x≦1.0)(wt%) 各々のインゴットをハンマーで解砕した後、さらに粗粉
砕機を用い不活性ガス雰囲気中での粗粉砕を行い500
μm以下の粒度の粗粉を得た。この粗粉を同じくジェッ
トミルを用い不活性ガス雰囲気中で微粉砕をして微粉を
得た。この微粉は平均粒径3.8μm(F.S.S.
S.)であり、含有酸素量は4900ppmであった。
次に、この微粉を配向磁場強度15kOe、成形圧力
1.5ton/cm2の条件下で磁場中プレス成形し、
30×20×15の成形体を作製した。 この成形体は
実質的に真空の条件で1080℃×3hrの焼結を行
い、得られた焼結体に900℃×2hrの第1次熱処
理、次いで530℃×2hrの第2次熱処理を施した。
得られた焼結体の密度は7.55〜7.58g/cc、
また含有酸素量は4400ppmであった。これら試料
について、常温磁気特性、および平均粒径を測定し、図
7に示すような結果を得た。図7に示されるようにNb
を含有させることにより焼結時の結晶粒成長を抑制で
き、その結果焼結体平均粒径を小さくできる。また、こ
の効果により保磁力iHcの向上を期待できる。2.0
wt%以上の含有によっても平均粒径の減少をさほど期
待出来ず、また最大エネルギ−積(BH)maxの低下
も大きくなるので0.4〜2.0wt%の添加が適量で
ある。
Example 7 Didymium metal (Nd 70 wt)
% -Pr30wt%), metal Dy, Fe, Co, fer
A predetermined weight of ro-B, ferro-Nb, and metallic Ga was weighed, and this was vacuum-melted to produce ingots each weighing 10 kg. When the composition of this ingot was analyzed, it had the following composition by weight ratio. (Nd + Pr) 28.0-Dy4.0-B1.03-Nbx-Ga0.15-Co2.04-Al0.35-Febal. (0≤x≤1.0) (wt%) After crushing each ingot with a hammer Further, coarse pulverization is performed in an inert gas atmosphere using a coarse pulverizer and 500
A coarse powder with a particle size of less than μm was obtained. This coarse powder was finely pulverized in the same inert gas atmosphere using a jet mill to obtain fine powder. This fine powder has an average particle size of 3.8 μm (FSS.
S. ), And the oxygen content was 4900 ppm.
Next, this fine powder is press-molded in a magnetic field under the conditions of an orientation magnetic field strength of 15 kOe and a molding pressure of 1.5 ton / cm 2 ,
A 30 × 20 × 15 molded body was produced. This molded body was sintered at 1080 ° C. for 3 hours under substantially vacuum conditions, and the obtained sintered body was subjected to a first heat treatment at 900 ° C. for 2 hours and then a second heat treatment at 530 ° C. for 2 hours. did.
The density of the obtained sintered body was 7.55 to 7.58 g / cc,
The oxygen content was 4400 ppm. The magnetic properties at room temperature and the average particle size of these samples were measured, and the results shown in FIG. 7 were obtained. Nb as shown in FIG.
By including the above, crystal grain growth during sintering can be suppressed, and as a result, the average grain size of the sintered body can be reduced. Further, this effect can be expected to improve the coercive force iHc. 2.0
Even if the content is more than wt%, the average particle size cannot be expected to be reduced so much, and the maximum energy product (BH) max is also greatly reduced, so 0.4 to 2.0 wt% is an appropriate amount.

【0020】(実施例8)金属Nd、金属Dy、Fe、
Co、ferro−B、ferro−Nb、金属Gaを
所定の重量秤量し、これを真空溶解して重量10kgの
インゴットを作製した。このインゴットの成分分析を行
なうと重量比で以下のような組成であった。 Nd
27.5−Dy4.0−B1.04−Nb0.59−Ga0.19−Coa−
Alb−Febal. a=0 b=0 a=2.02 b=0 a=2.10 b=0.34 (wt%) 各々のインゴットをハンマーで解砕した後、さらに粗粉
砕機を用い不活性ガス雰囲気中での粗粉砕を行い500
μm以下の粒度の粗粉を得た。この粗粉を同じくジェッ
トミルを用い不活性ガス雰囲気中で微粉砕をして微粉を
得た。この微粉は平均粒径3.8μm(F.S.S.
S.)であり、含有酸素量は6000〜6400ppm
であった。次に、この微粉を配向磁場強度15kOe、
成形圧力1.5ton/cm2の条件下で磁場中プレス
成形し、30×20×15の成形体を 作製した。この
成形体は実質的に真空の条件で1100℃×2hrの焼
結を行い、得られた焼結体に900℃×2hrの第1次
熱処理、次いで500〜600℃×2hrの第2次熱処
理を施した。得られた焼結体の密度は7.56〜7.5
9g/cc、また含有酸素量は5400〜5900pp
mであった。これら試料について常温磁気特性を測定
し、図8に示されるような結果を得た。図8に示される
ように、Coを単独で添加したものはCo及びAl無添
加のものと比較して第2次熱処理温度依存性が大きくな
る。これでは、工業生産上安定した特性の製品をつくる
ことが困難である。そこで、Co及びAlを複合添加す
ると図のように第2次熱処理温度依存性を小さくするこ
とができ、この問題を回避することができる。次に前記
(Co無添加)、(Co添加)、(Co,Al添
加)の組成を有する磁石にNiメッキを施して、その密
着性を評価した。Niメッキは、ワット浴による電解メ
ッキで膜厚10μmとした。メッキ処理後水洗いして1
00℃で5分間乾燥後メッキ密着性試験を行った。結果
は下記の通りであり、Co添加材が優れたメッキ密着性
を有する。 材 質 密着強度(Kgf/cm2) (Co無添加) 180 (Co添加) 680 (Co,Al添加) 700
Example 8 Metal Nd, metals Dy, Fe,
A predetermined weight of Co, ferro-B, ferro-Nb, and metallic Ga was weighed, and this was melted in vacuum to produce an ingot having a weight of 10 kg. When the composition of this ingot was analyzed, it had the following composition by weight ratio. Nd
27.5-Dy4.0-B1.04-Nb0.59-Ga0.19-Coa-
Alb-Febal. A = 0 b = 0 a = 2.02 b = 0 a = 2.10 b = 0.34 (wt%) After crushing each ingot with a hammer, further using a coarse crusher in an inert gas atmosphere Coarse crushing 500
A coarse powder with a particle size of less than μm was obtained. This coarse powder was finely pulverized in the same inert gas atmosphere using a jet mill to obtain fine powder. This fine powder has an average particle size of 3.8 μm (FSS.
S. ), And the oxygen content is 6000 to 6400 ppm
Met. Next, this fine powder is applied with an orientation magnetic field strength of 15 kOe,
Press molding was performed in a magnetic field under a molding pressure of 1.5 ton / cm 2 to prepare a 30 × 20 × 15 compact. This compact was sintered at 1100 ° C. × 2 hr under a substantially vacuum condition, and the obtained sintered compact was subjected to a first heat treatment at 900 ° C. × 2 hr and then a second heat treatment at 500 to 600 ° C. × 2 hr. Was applied. The density of the obtained sintered body is 7.56 to 7.5.
9g / cc, and oxygen content is 5400-5900pp
It was m. The ambient temperature magnetic characteristics of these samples were measured, and the results shown in FIG. 8 were obtained. As shown in FIG. 8, when Co is added alone, the temperature dependence of the secondary heat treatment becomes larger than when Co and Al are not added. In this case, it is difficult to produce a product having stable characteristics in industrial production. Therefore, when Co and Al are added together, the temperature dependence of the secondary heat treatment can be reduced as shown in the figure, and this problem can be avoided. Next, the magnets having the above-mentioned (Co-free), (Co-added), and (Co, Al-added) compositions were plated with Ni, and their adhesion was evaluated. The Ni plating was electrolytically plated with a watt bath to a film thickness of 10 μm. After plating, wash with water 1
After drying at 00 ° C for 5 minutes, a plating adhesion test was conducted. The results are as follows, and the Co additive has excellent plating adhesion. Material Adhesion strength (Kgf / cm 2 ) (Co not added) 180 (Co added) 680 (Co, Al added) 700

【0021】[0021]

【発明の効果】以上、実施例に示したようにNd−Fe
−Co−B型焼結磁石にGa、Al、Nbを複合添加
し、Dy量を適正範囲で添加することにより、高保磁力
かつ高エネルギ−積を有し、高耐熱性、高耐食性を有す
る磁石を安定的に得ることができる。
INDUSTRIAL APPLICABILITY As described in the above examples, Nd-Fe
A magnet having high coercive force, high energy product, high heat resistance, and high corrosion resistance by adding Ga, Al, and Nb in combination to a Co-B type sintered magnet and adding Dy in an appropriate range. Can be stably obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】Nd−Fe−Co−B型焼結磁石の全希土類量
に対する最大エネルギ−積(BH)max、腐食減量の
変化を示したグラフ。
FIG. 1 is a graph showing changes in maximum energy product (BH) max and corrosion weight loss with respect to the total amount of rare earth in a Nd-Fe-Co-B type sintered magnet.

【図2】Nd−Fe−Co−B型焼結磁石の含有酸素量
に対する最大エネルギ−積(BH)max、保磁力iH
cの変化を示したグラフ。
FIG. 2 shows the maximum energy product (BH) max and the coercive force iH with respect to the oxygen content of a Nd-Fe-Co-B type sintered magnet.
The graph which showed the change of c.

【図3】Nd−Fe−Co−B型焼結磁石のGa含有量
(0〜1.2wt%)に対する最大エネルギ−積(B
H)max、保磁力iHcの変化を示したグラフ。
FIG. 3 shows the maximum energy product (B) with respect to the Ga content (0 to 1.2 wt%) of the Nd-Fe-Co-B type sintered magnet.
H) max, a graph showing changes in coercive force iHc.

【図4】Nd−Fe−Co−B型焼結磁石のGa含有量
に対する最大エネルギ−積(BH)max、保磁力iH
c、腐食減量の変化を示したグラフ。
FIG. 4 shows the maximum energy product (BH) max and the coercive force iH with respect to the Ga content of the Nd-Fe-Co-B type sintered magnet.
c, a graph showing changes in corrosion weight loss.

【図5】Nd−Fe−Co−B型焼結磁石のGa含有量
(0〜0.6wt%)及びDy含有量に対するする最大
エネルギ−積(BH)max、保磁力iHcの変化を示
したグラフ。
FIG. 5 shows changes in maximum energy product (BH) max and coercive force iHc with respect to Ga content (0 to 0.6 wt%) and Dy content of an Nd-Fe-Co-B type sintered magnet. Graph.

【図6】Nd−Fe−Co−B型焼結磁石のGa含有量
(0〜0.6wt%)に対する最大エネルギ−積(B
H)max、保磁力iHc、角型性の変化を示したグラ
フ。
FIG. 6 shows the maximum energy product (B) with respect to the Ga content (0 to 0.6 wt%) of the Nd-Fe-Co-B type sintered magnet.
H) max, coercive force iHc, and a graph showing changes in squareness.

【図7】Nd−Fe−Co−B型焼結磁石のNb含有量
に対する焼結体平均結晶粒径、最大エネルギ−積(B
H)maxの変化を示したグラフ。
FIG. 7 is an average crystal grain size of the sintered body, a maximum energy product (B) with respect to the Nb content of the Nd-Fe-Co-B type sintered magnet.
H) A graph showing changes in max.

【図8】Nd−Fe−Co−B型焼結磁石のCo、Al
添加による第2次熱処理温度依存性の変化を示したグラ
フ。
FIG. 8 Co and Al of Nd-Fe-Co-B type sintered magnet
The graph which showed the change of the secondary heat treatment temperature dependence by addition.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 28〜32wt%のR(但し、RはY及
び希土類元素から選ばれた少なくとも1種であり、Rの
内、3.0〜8.0wt%がDy,残りは、Nd又はP
rの1種又は2種であり、NdをRの内に50at%以
上を含む)、5.0wt%以下のCo(但し、Coは必
ず含む)、0.1〜1.0wt%のAl、0.5〜2.
0wt%のB、0.1〜2.0wt%のNb、0.05
〜1.0wt%のGa、1000ppm〜6000pp
mの酸素、及び不可避的不純物を含有し、残部が主とし
てFeからなり保磁力iHcが20kOe以上、最大磁
気エネルギー積(BH)maxが30MGOe以上であ
る耐食性、耐熱性に優れたNd−Fe−Co−B型焼結
磁石。
1. 28 to 32 wt% of R (provided that R is at least one selected from Y and rare earth elements, 3.0 to 8.0 wt% of R is Dy, and the rest is Nd or P
1 or 2 of r, and Nd contains 50 at% or more of R in R), 5.0 wt% or less of Co (however, Co is always included), 0.1 to 1.0 wt% of Al, 0.5-2.
0 wt% B, 0.1-2.0 wt% Nb, 0.05
~ 1.0wt% Ga, 1000ppm ~ 6000pp
Nd-Fe-Co excellent in corrosion resistance and heat resistance containing m of oxygen and unavoidable impurities, the balance mainly consisting of Fe, coercive force iHc of 20 kOe or more, and maximum magnetic energy product (BH) max of 30 MGOe or more. -B type sintered magnet.
【請求項2】 Ga含有量が0.05〜0.8wt%で
ある請求項1記載のNd−Fe−Co−B型焼結磁石。
2. The Nd—Fe—Co—B type sintered magnet according to claim 1, wherein the Ga content is 0.05 to 0.8 wt%.
【請求項3】 Ga含有量が0.1〜0.6wt%であ
る請求項1記載のNd−Fe−Co−B型焼結磁石。
3. The Nd—Fe—Co—B type sintered magnet according to claim 1, which has a Ga content of 0.1 to 0.6 wt%.
【請求項4】 Ga含有量が0.1〜0.4wt%であ
る請求項1記載のNd−Fe−Co−B型焼結磁石。
4. The Nd—Fe—Co—B type sintered magnet according to claim 1, which has a Ga content of 0.1 to 0.4 wt%.
【請求項5】 Rのうち3.0〜5.0wt%がDyで
あり、最大磁気エネルギー積(BH)maxが35MG
Oe以上である請求項1〜請求項4のいずれかに記載の
Nd−Fe−Co−B型焼結磁石。
5. 3.0 to 5.0 wt% of R is Dy, and the maximum magnetic energy product (BH) max is 35 MG.
It is Oe or more, The Nd-Fe-Co-B type | mold sintered magnet in any one of Claims 1-4.
【請求項6】 Rのうち5.0〜8.0wt%がDyで
あり、保磁力iHcが25kOe以上である請求項1〜
請求項4のいずれかに記載のNd−Fe−Co−B型焼
結磁石。
6. R to 5.0-8.0 wt% is Dy, and coercive force iHc is 25 kOe or more.
The Nd-Fe-Co-B type sintered magnet according to claim 4.
【請求項7】 常温磁気特性として iHc≧20kOe,(BH)max≧30MGOe であり、23℃から120℃の残留磁束密度Br,保磁
力iHc各々の温度係数α,βが −0.12≦α≦−0.08%/℃ −0.65≦β≦−0.40%/℃ である請求項1記載のNd−Fe−Co−B型焼結磁
石。
7. The room temperature magnetic characteristics are iHc ≧ 20 kOe, (BH) max ≧ 30 MGOe, and the temperature coefficient α, β of each of the residual magnetic flux density Br and the coercive force iHc from 23 ° C. to 120 ° C. is −0.12 ≦ α. The Nd-Fe-Co-B type sintered magnet according to claim 1, wherein ≤ -0.08% / ° C -0.65 ≤ β ≤ -0.40% / ° C.
【請求項8】 表面にNiメッキを施した請求項1〜請
求項7のいずれかに記載のNd−Fe−Co−B型焼結
磁石。
8. The Nd—Fe—Co—B type sintered magnet according to claim 1, wherein the surface is plated with Ni.
JP04249113A 1992-09-18 1992-09-18 R-Fe-Co-Al-Nb-Ga-B sintered magnet excellent in corrosion resistance and heat resistance and method for producing the same Expired - Lifetime JP3080275B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP04249113A JP3080275B2 (en) 1992-09-18 1992-09-18 R-Fe-Co-Al-Nb-Ga-B sintered magnet excellent in corrosion resistance and heat resistance and method for producing the same
DE4331563A DE4331563A1 (en) 1992-09-18 1993-09-16 Sintered permanent magnet with good thermal stability - containing defined percentages by weight of specified elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04249113A JP3080275B2 (en) 1992-09-18 1992-09-18 R-Fe-Co-Al-Nb-Ga-B sintered magnet excellent in corrosion resistance and heat resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06104108A true JPH06104108A (en) 1994-04-15
JP3080275B2 JP3080275B2 (en) 2000-08-21

Family

ID=17188151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04249113A Expired - Lifetime JP3080275B2 (en) 1992-09-18 1992-09-18 R-Fe-Co-Al-Nb-Ga-B sintered magnet excellent in corrosion resistance and heat resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP3080275B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06231921A (en) * 1993-01-29 1994-08-19 Hitachi Metals Ltd Nd-fe-b type permanent magnet
US7534311B2 (en) 2003-08-12 2009-05-19 Hitachi Metals, Ltd. R-t-b sintered magnet and rare earth alloy
CN102592775A (en) * 2011-01-17 2012-07-18 三环瓦克华(北京)磁性器件有限公司 High-performance neodymium iron boron sintered magnet and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019102707A (en) 2017-12-05 2019-06-24 Tdk株式会社 R-t-b based permanent magnet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399502A (en) * 1986-06-12 1988-04-30 Toshiba Corp Permanent magnet and manufacture thereof
JPH04184901A (en) * 1990-11-20 1992-07-01 Shin Etsu Chem Co Ltd Rare earth iron based permanent magnet and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399502A (en) * 1986-06-12 1988-04-30 Toshiba Corp Permanent magnet and manufacture thereof
JPH04184901A (en) * 1990-11-20 1992-07-01 Shin Etsu Chem Co Ltd Rare earth iron based permanent magnet and its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06231921A (en) * 1993-01-29 1994-08-19 Hitachi Metals Ltd Nd-fe-b type permanent magnet
US7534311B2 (en) 2003-08-12 2009-05-19 Hitachi Metals, Ltd. R-t-b sintered magnet and rare earth alloy
CN102592775A (en) * 2011-01-17 2012-07-18 三环瓦克华(北京)磁性器件有限公司 High-performance neodymium iron boron sintered magnet and manufacturing method thereof

Also Published As

Publication number Publication date
JP3080275B2 (en) 2000-08-21

Similar Documents

Publication Publication Date Title
EP0134304B1 (en) Permanent magnets
US7090730B2 (en) R-Fe-B sintered magnet
EP0175214B2 (en) Permanent magnetic alloy and method of manufacturing the same
US4284440A (en) Rare earth metal-cobalt permanent magnet alloy
EP0177371B1 (en) Process for manufacturing a permanent magnet
US20100040501A1 (en) R-T-B Based Rare Earth Permanent Magnet and Method for Production Thereof
JP2751109B2 (en) Sintered permanent magnet with good thermal stability
US5472525A (en) Nd-Fe-B system permanent magnet
EP0153744A2 (en) Process for producing permanent magnets
JP3298219B2 (en) Rare earth-Fe-Co-Al-V-Ga-B based sintered magnet
US4859254A (en) Permanent magnet
JP2741508B2 (en) Magnetic anisotropic sintered magnet and method of manufacturing the same
EP0362805B1 (en) Permanent magnet and method for producing the same
JP2794496B2 (en) R-Fe-Co-BC permanent magnet alloy with small irreversible demagnetization and excellent thermal stability
EP0386286B1 (en) Rare earth iron-based permanent magnet
JP3296507B2 (en) Rare earth permanent magnet
JP2739525B2 (en) R-Fe-BC permanent magnet alloy with low irreversible demagnetization and excellent thermal stability
JPH06104108A (en) Nd-fe-co-b type sintered magnet
JP3151265B2 (en) Manufacturing method of rare earth permanent magnet
JP2006093501A (en) Rare earth sintered magnet and manufacturing method thereof
JP3298220B2 (en) Rare earth-Fe-Nb-Ga-Al-B sintered magnet
JPH045739B2 (en)
JP3171415B2 (en) Rare earth-Fe-Co-Al-Nb-Ga-B based sintered magnet
JP3126199B2 (en) Manufacturing method of rare earth permanent magnet
JPH0794311A (en) Nd-fe-co-b type sintered magnet

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 13