JPH06103974A - Paste type positive electrode active material for alkali secondary battery and its manufacture - Google Patents

Paste type positive electrode active material for alkali secondary battery and its manufacture

Info

Publication number
JPH06103974A
JPH06103974A JP4283678A JP28367892A JPH06103974A JP H06103974 A JPH06103974 A JP H06103974A JP 4283678 A JP4283678 A JP 4283678A JP 28367892 A JP28367892 A JP 28367892A JP H06103974 A JPH06103974 A JP H06103974A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
nickel
electrode active
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4283678A
Other languages
Japanese (ja)
Inventor
Atsushi Furukawa
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP4283678A priority Critical patent/JPH06103974A/en
Publication of JPH06103974A publication Critical patent/JPH06103974A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To enhance the utilization factor of positive electrode active material, the discharge characteristics and the life of a battery by employing the aggregate of spherical particles mainly composed of nickel hydroxide including a specified %, Co by weight or one element out of specified element groups. CONSTITUTION:Paste type positive electrode active material is maily composed of nickel hydroxide, and of the aggregate of spherical particles containing 1 to 10% Co by weight, or mainly composed of nickel powder hydroxide, 1 to 10% Co by weight, and of the aggregate of spherical particles including 1 to 10% of at least one kind of A element by weight. In this case, the A element shall be at least one kind selected out of the groups of In, Bi, Te, Ge, Tl, Sn, Sb, and Ga. When the aforesaid active material is formed into a paste shape, and is filled in a foamed nickel substrate and the like, it is formed into closest packing, so that the utilization factor of the active material is thereby enhanced. Moreover, the containment of the A element restrains nickel peroxide which is formed at the time of overcharging, from being collapsed, so that the charge/discharge cyclic life of the battery is thereby enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルカリ蓄電池のペー
スト式正極用活物質並びにその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active material for a paste type positive electrode of an alkaline storage battery and a method for producing the same.

【0002】[0002]

【従来の技術】従来、アルカリ蓄電池のニッケル正極に
は、焼結式とペースト式の2種類あるが、特にペースト
式は、電池の高容量化が可能なため、注目されている。
このペースト式正極の活物質である水酸化ニッケルは、
次のように製造されている。即ち、硫酸又は硝酸の水溶
液にニッケルを添加、溶解し、これに苛性ソーダを加え
て混合、攪拌して水酸化ニッケルの沈澱物を生成せし
め、次でこれを濾過紙、乾燥し、その乾燥物を粉砕機で
強く粉砕してガラス破片状の粒子から成る水酸化ニッケ
ル粉末、即ち、正極用活物質粉末を得ていた。これを用
いてペースト式正極板を製造するには、一般に、これに
導電剤を混合し、これをCMCなどの増粘剤水溶液で混
練してペースト状とし、このペーストを、発泡ニッケル
基板やニッケル繊維フェルトなどの多孔基板に充填し、
乾燥圧延して製造する。かくして得られたこのペースト
式正極板は、これを水素吸蔵合金などの負極板とセパレ
ータを介して積層し、極板群を構成し、これを電池容器
に入れ、蓋を気密に施してニッケル−水素密閉形アルカ
リ蓄電池として用いられる。
2. Description of the Related Art Conventionally, there are two types of nickel positive electrodes for alkaline storage batteries, a sintering type and a pasting type. Particularly, the pasting type is attracting attention because it can increase the capacity of the battery.
Nickel hydroxide, which is the active material of this paste-type positive electrode,
It is manufactured as follows. That is, nickel is added and dissolved in an aqueous solution of sulfuric acid or nitric acid, caustic soda is added to this, and the mixture is stirred to form a precipitate of nickel hydroxide, which is then filtered and dried. It was strongly crushed with a crusher to obtain nickel hydroxide powder composed of glass shard-like particles, that is, a positive electrode active material powder. To manufacture a paste-type positive electrode plate using this, generally, a conductive agent is mixed with this, and this is kneaded with an aqueous thickener solution such as CMC to form a paste, and the paste is formed into a foamed nickel substrate or nickel. Fill a porous substrate such as fiber felt,
It is manufactured by dry rolling. The paste-type positive electrode plate thus obtained is laminated with a negative electrode plate such as a hydrogen storage alloy via a separator to form an electrode plate group, which is placed in a battery container, and the lid is hermetically sealed to form a nickel- Used as a hydrogen sealed alkaline storage battery.

【0003】[0003]

【発明が解決しようとする課題】しかし乍ら、上記従来
のペースト式正極は、焼結式に比し、活物質の利用率が
低く、また電池寿命も短い欠点を有している。従って、
その利用率、放電特性並びに寿命の向上したペースト式
正極活物質の製造が望まれる。
However, the above-mentioned conventional paste type positive electrode has drawbacks that the utilization rate of the active material is lower and the battery life is shorter than that of the sintering type positive electrode. Therefore,
It is desired to manufacture a paste-type positive electrode active material having improved utilization rate, discharge characteristics and life.

【0004】[0004]

【課題を解決するための手段】本発明は、上記従来の課
題を解決した上記の要望を満足したアルカリ蓄電池のペ
ースト式正極用活物質を提供するもので、水酸化ニッケ
ルを主体とし、これにCoを1〜10wt.%含有する球状の粒
子集団から成る。更に本発明は、更に上記の正極並びに
電池特性の向上をもたらすアルカリ蓄電池のペースト式
正極用活物質を提供するもので、水酸化ニッケル粉末を
主体とし、これにCoを1〜10wt.%と少なくとも1種のA
元素を1〜12wt.%とを含有する球状の粒子集団から成る
(但、A元素は、In、Bi、Te、Ge、Tl、Sn、Sb、Gaの群
から選んだ少なくとも1種)。更に本発明は、上記の本
発明のアルカリ蓄電池のペースト式正極用活物質の製造
法を提供するもので、硫酸又は硝酸の水溶液に、ニッケ
ルを主体とし、これに対し所定の割合のCo又は/及びA
元素を添加溶解し、この溶液にアルカリを添加して水酸
化ニッケルを主体とし、これにCo又は/及び少なくとも
1種のA元素を含有した沈降析出物を生成せしめ、次で
これを分離、乾燥して、その乾燥物を軽く粉砕してばら
の球状の粒子集団から成る粉体を得ることを特徴とす
る。更に本発明は、上記の本発明のアルカリ蓄電池のペ
ースト式正極活物質の更に他の製造法を提供するもの
で、硫酸又は硝酸の水溶液とニッケルとを反応させて得
た硫酸ニッケル又は硝酸ニッケルを主体とし、これに硫
酸又は硝酸の水溶液とコバルトとを未反応のコバルトが
残留するように反応させて得たコバルト含有硫酸コバル
ト又はコバルト含有硝酸コバルトを添加し、その混合液
にアルカリを添加して攪拌し中和させ、得られる析出物
を濾過、乾燥、粉砕して水酸化ニッケルを主体とし、こ
れにCoを含有する球状の粒子集団から成る粉体を得るこ
とを特徴とする。
The present invention provides an active material for a paste type positive electrode of an alkaline storage battery, which satisfies the above-mentioned demands and solves the above-mentioned conventional problems. It consists of a spherical particle population containing 1-10 wt.% Co. Further, the present invention further provides a paste type positive electrode active material for an alkaline storage battery, which brings about improvement in the above-mentioned positive electrode and battery characteristics, and is mainly composed of nickel hydroxide powder, in which Co is at least 1 to 10 wt.%. One A
It is composed of a spherical particle group containing 1 to 12 wt.% Of element (provided that the element A is at least one selected from the group of In, Bi, Te, Ge, Tl, Sn, Sb, and Ga). Further, the present invention provides a method for producing the paste-type positive electrode active material for an alkaline storage battery of the present invention, in which an aqueous solution of sulfuric acid or nitric acid is mainly composed of nickel, and a predetermined ratio of Co or / And A
Element is added and dissolved, and alkali is added to this solution to form nickel hydroxide as a main component, and a precipitation precipitate containing Co or / and at least one A element is formed on this solution, which is then separated and dried. Then, the dried product is lightly pulverized to obtain a powder consisting of a group of loose spherical particles. Furthermore, the present invention provides still another method for producing the above-mentioned paste type positive electrode active material for an alkaline storage battery of the present invention, wherein nickel sulfate or nickel nitrate obtained by reacting an aqueous solution of sulfuric acid or nitric acid with nickel is used. Mainly, adding cobalt-containing cobalt sulfate or cobalt-containing cobalt nitrate obtained by reacting an aqueous solution of sulfuric acid or nitric acid with cobalt so that unreacted cobalt remains, and adding alkali to the mixed solution. The mixture is stirred and neutralized, and the resulting precipitate is filtered, dried and pulverized to obtain a powder composed of a spherical particle group containing nickel hydroxide as a main component and containing Co.

【0005】[0005]

【作用】本発明の水酸化ニッケルを主体とし、これにCo
を1〜10wt.%含有し且つ球状の正極用活物質をペースト
状として、発泡ニッケル基板などに充填するときは、最
密充填をもたらすので、正極活物質の利用率が向上す
る。また、該活物質にA元素を1〜12wt.%含有する場合
は、電池過充電時に生ずる過酸化ニッケルの崩壊を抑制
するので、電池の充放電サイクル寿命が向上する。Coの
含有量を1〜10wt.%及びA元素の含有量を1〜12wt.%の
範囲とするときは、上記特性を維持し乍ら高容量の電池
が確保される。
[Function] The nickel hydroxide of the present invention is mainly used, and Co
When a foamed nickel substrate or the like is filled with a spherical active material for a positive electrode containing 1 to 10 wt.% Of the above in a paste form, close packing is brought about, so that the utilization factor of the positive electrode active material is improved. Further, when the active material contains 1 to 12 wt.% Of element A, the decomposition of nickel peroxide that occurs during battery overcharge is suppressed, so that the charge / discharge cycle life of the battery is improved. When the Co content is in the range of 1 to 10 wt.% And the A element content is in the range of 1 to 12 wt.%, A high capacity battery is ensured while maintaining the above characteristics.

【0006】[0006]

【実施例】次に本発明の実施例を詳述する。所望濃度の
硝酸水溶液を多数用意し、その夫々に例えば金属ニッケ
ルを主体とし、これに金属コバルトの添加量を種々変え
て添加溶解して一定濃度の硝酸ニッケルを主体とし、濃
度を異にする硝酸コバルトを含む種々の反応液を調製
し、その夫々に、アルカリ、例えば苛性ソーダを添加し
て混合し、中和反応を行わせ、球状の水酸化ニッケルの
沈降粒子を主体とし、これに水酸化コバルトの沈澱粒子
を含有量を異にして含有する沈降析出物を生成した夫々
の中和液を得た。次で、その夫々の中和液を濾過して、
夫々の析出物を分離取得し、次でその夫々の析出物を熱
風などにより乾燥して夫々の乾燥物を得る。次で、その
夫々の乾燥物について粉砕を行うが、その沈澱粒子を破
壊してガラス状の断片とならないように、もみほぐすよ
うに或いは粉砕機などの回転を遅くするなどにより、そ
の沈降粒子の集団塊を粉状化する。かくするときは、水
酸化ニッケルを主体とし、これにCoの含有量が夫々異な
る球状の粒子集団から成る正極用活物質が得られる。
EXAMPLES Next, examples of the present invention will be described in detail. A large number of nitric acid aqueous solutions with desired concentrations are prepared, and for example, metallic nickel is the main component, and the addition amount of metallic cobalt is variously added and dissolved to mainly add nickel nitrate of a constant concentration, and nitric acid with different concentrations is used. Various reaction liquids containing cobalt were prepared, and alkali, for example, caustic soda was added to and mixed with each of them to cause a neutralization reaction. Mainly spherical nickel hydroxide precipitated particles were added to cobalt hydroxide. The respective neutralized liquids which produced sedimentation precipitates containing different amounts of the precipitation particles of 1. Next, filter each of the neutralization solutions,
The respective precipitates are separated and obtained, and then the respective precipitates are dried by hot air or the like to obtain the respective dried products. Next, each dried product is pulverized, and the sedimented particles are crushed by slowing down the rotation of the crusher or the like so that the precipitated particles are not broken into glassy fragments. Pulverize the mass. In this case, a positive electrode active material is obtained which is mainly composed of nickel hydroxide and has a spherical particle population in which Co contents are different from each other.

【0007】このようにして得た水酸化ニッケル粒子を
主体とし、これに水酸化コバルトの状態でCoの含有量が
0〜15wt.%の範囲で含有する各種の球状の正極用活物質
の夫々に、導電剤としてコバルトパウダー5wt.%及びニ
ッケルパウダー10wt.%を添加、混合し、更にこれに増粘
剤として1wt.%のカルボキシメチルセルロースの水溶液
を添加して混練してペースト状とし、このペーストを、
発泡ニッケル基板に塗布、含浸(充填)せしめ、次で乾
燥し、次で所定の厚さに圧延して夫々のペースト式正極
板を製造した。
Each of various spherical positive electrode active materials mainly composed of the nickel hydroxide particles thus obtained and containing Co in the state of cobalt hydroxide in the range of 0 to 15 wt. Cobalt powder 5 wt.% And nickel powder 10 wt.% As conductive agents were added to and mixed with them, and 1 wt.% Carboxymethyl cellulose aqueous solution as a thickener was further added and kneaded to form a paste. To
Each paste type positive electrode plate was manufactured by coating and impregnating (filling) the foamed nickel substrate, then drying and rolling to a predetermined thickness.

【0008】次で、その夫々のペースト式正極板を下記
のように製造した水素吸蔵合金電極板を負極とセパレー
タを介して積層、捲回し、捲回極板群とし、常法に従
い、これを円筒状金属容器に挿入し、電解液として苛性
カリ水溶液の一定量を注入し、施蓋封口して正極の理論
容量が 1180mAhで正極規制の単3サイズニッケル−水素
蓄電池を夫々作製した。
Next, each of the paste type positive electrode plates was laminated and wound with a hydrogen storage alloy electrode plate manufactured as follows via a negative electrode and a separator to form a wound electrode plate group. It was inserted into a cylindrical metal container, a fixed amount of a caustic potash solution was injected as an electrolytic solution, the lid was sealed, and a positive electrode-regulated AA size nickel-hydrogen storage battery with a theoretical positive electrode capacity of 1180 mAh was produced.

【0009】前記の水素吸蔵合金電極は、次のように製
造したものである。市販のMm(ミッシュメタル)、Ni、
Co、Alを一定の組成比になるように、茲では合金組成が
MmNi3.55Co1.0 Al0.45になるように秤量して混合し、高
周波溶解法により加熱溶解させ、前記組成の水素吸蔵合
金とした。この合金を 150メッシュ以下の粉末とし、こ
の粉末 100重量部に対して導電剤としてカーボニルニッ
ケルパウダー15重量部、結着剤としてポリフッ化ビニリ
デン粉末3重量部を加えて混合し、更にこれに1%のカ
ルボキシメチルセルロース水溶液を加えてスラリー状と
し、これをニッケルメッキを施した鉄製多孔板に塗布、
充填、乾燥し、次で圧延し、更にこれに200℃で2時間
焼成を行って上記の水素吸蔵合金極板を製造した。
The above-mentioned hydrogen storage alloy electrode is manufactured as follows. Commercially available Mm (Misch metal), Ni,
In order to keep Co and Al in a certain composition ratio,
MmNi 3.55 Co 1.0 Al 0.45 was weighed and mixed, and heated and melted by a high frequency melting method to obtain a hydrogen storage alloy having the above composition. This alloy was made into a powder of 150 mesh or less, and to 100 parts by weight of this powder, 15 parts by weight of carbonyl nickel powder as a conductive agent and 3 parts by weight of polyvinylidene fluoride powder as a binder were added and mixed, and further 1% was added. Of carboxymethyl cellulose aqueous solution is added to form a slurry, which is applied to a nickel-plated iron porous plate,
The hydrogen storage alloy electrode plate was manufactured by filling, drying, rolling, and calcining at 200 ° C. for 2 hours.

【0010】上記の夫々の電池について、次のように試
験を行い、その正極の利用率を求めた。即ち、試験は、
200mAhの電流で 7.5時間充電した後、同じ電流で電池電
圧が1.0Vになるまで放電した容量を測定し、これを正
極の理論容量で除して正極の利用率とした。その結果を
図1に示す。図1から明らかなように、正極活物質の利
用率が少なくとも85%以上あることが望ましい見地よ
り、Co含有量は、1wt.%以上であれば、その要望を満た
すことができる。Co含有量が3wt.%前後が最大の利用率
を示し、10wt.%以上でも利用率は85%以上を確保できる
が、水酸化ニッケル自体の容量を考慮するとき、10wt.%
を大きく越えると、正極の容量が著しく減少する。従っ
て、水酸化ニッケルに対するCoの含有量は、1〜10wt.%
の範囲が適当である。
Each of the above batteries was tested as follows, and the utilization factor of the positive electrode was determined. That is, the test is
After charging for 7.5 hours at a current of 200 mAh, the capacity discharged at the same current until the battery voltage became 1.0 V was measured, and this was divided by the theoretical capacity of the positive electrode to obtain the utilization rate of the positive electrode. The result is shown in FIG. As is clear from FIG. 1, from the viewpoint that the utilization rate of the positive electrode active material is preferably at least 85% or more, the demand can be satisfied if the Co content is 1 wt.% Or more. When the Co content is around 3 wt.%, The maximum utilization is shown, and even if it is 10 wt.% Or more, the utilization can be secured 85% or more. However, when considering the capacity of nickel hydroxide itself, it is 10 wt.%.
When the value exceeds a large value, the capacity of the positive electrode is significantly reduced. Therefore, the content of Co with respect to nickel hydroxide is 1 to 10 wt.%.
The range is appropriate.

【0011】尚、上記の高い利用率が得られる1つの要
因は、特に本発明の正極活物質は、球状の粒子集団であ
るので、特にこれをペースト状として発泡ニッケル基板
に充填するときは、充填効率が極めて良く、また最密充
填が得られるため、更にはその球状粒子間に導電剤粒子
が滑り込み、均一な充填が得られるためと思われる。比
較のため、上記の沈澱析出物の乾燥物を、従来の粉砕法
により、激しく粉砕し、球状の水酸化ニッケル粒子をガ
ラス片のようにして得られたCo含有量の異なる水酸化ニ
ッケル粉体を作製し、これを夫々用いて、前記と同様に
ペースト状正極板を作製し、次でこれを夫々用いて前記
と同様にニッケル−水素電池を作製し、その活物質の利
用率を求めたが、図1に示す利用率に比し著しく低い結
果が得られた。
One factor for obtaining the above-mentioned high utilization rate is that the positive electrode active material of the present invention is a group of spherical particles. Therefore, when it is filled in a foamed nickel substrate as a paste, It is considered that the packing efficiency is extremely good, the closest packing is obtained, and further the conductive agent particles slide between the spherical particles to obtain a uniform packing. For comparison, the dried product of the above-mentioned precipitated precipitate was vigorously crushed by a conventional crushing method to obtain spherical nickel hydroxide particles like glass pieces, and nickel hydroxide powders having different Co contents were obtained. Was prepared, and each of them was used to prepare a paste-like positive electrode plate in the same manner as described above.Next, each of them was used to prepare a nickel-hydrogen battery in the same manner as described above, and the utilization rate of the active material was determined. However, the result was remarkably lower than the utilization rate shown in FIG.

【0012】尚、Coの含有は、水酸化物の他、酸化物、
或いは金属の状態のいずれの状態でも同様の効果があ
る。Coを金属の状態で含有せしめるには、例えば予め硝
酸と反応する以上の過剰量を添加することによって達成
することができる。
[0012] Co is contained in addition to hydroxides, oxides,
Alternatively, the same effect can be obtained in any state of metal. The inclusion of Co in the metal state can be achieved by adding an excess amount which is more than that which reacts with nitric acid in advance.

【0013】また、追加の発明によれば、球状の水酸化
ニッケル活物質に、Coを1〜10wt.%の含有に加え、A元
素を1〜12wt.%含有せしめた球状の粒子集団から成る正
極用活物質を用いてペースト式正極を用いれば、上記の
ように利用率の向上が得られるばかりでなく、アルカリ
蓄電池の充放電サイクル寿命を向上せしめることができ
る。茲で、A元素は、In、Bi、Te、Ge、Tl、Sn、Sb、Ga
の群から選ばれた少なくとも1種である。
According to an additional invention, the spherical nickel hydroxide active material comprises a spherical particle group in which Co is contained in an amount of 1 to 10 wt.% And an A element is contained in an amount of 1 to 12 wt.%. When the paste type positive electrode is used by using the positive electrode active material, not only the improvement of the utilization rate can be obtained as described above but also the charge / discharge cycle life of the alkaline storage battery can be improved. The element A is In, Bi, Te, Ge, Tl, Sn, Sb, Ga.
It is at least 1 sort (s) selected from the group of.

【0014】次に、その実施例を示す。即ち、上記と同
様の製造法により水酸化ニッケルを主体とし、これにCo
含有量を3wt.%の一定量を含有せしめ、更にA元素とし
てIn、Bi、Te、Geの4種類の夫々について、0〜15wt.%
の範囲でその含有量を変えて含有する本発明の正極活物
質を調製し、その夫々を用いて上記の実施例と同様にペ
ースト式正極板を作製し、これを用いて上記と同様に夫
々の単3サイズニッケル−水素電池を作製し、その夫々
についてサイクル寿命試験を行った。試験は、1Aの電
流で 1.2時間充電した後、同じ電流で電池電圧が 1.0V
になるまで放電することを繰り返し、容量が600mAhにな
った時点で寿命とした。その結果を図2に示す。
The embodiment will be described below. That is, nickel hydroxide is mainly used in the same manufacturing method as described above, and Co
A certain amount of 3 wt.% Was added, and 0 to 15 wt.% Was added for each of the four elements A, In, Bi, Te, and Ge.
To prepare a positive electrode active material of the present invention containing different contents thereof, using each of them to prepare a paste type positive electrode plate in the same manner as in the above-mentioned examples, and using each of them, respectively, in the same manner as described above. AA size nickel-hydrogen battery of No. 3 was produced, and a cycle life test was conducted for each of them. The test shows that the battery voltage is 1.0V with the same current after charging for 1.2 hours with the current of 1A.
Discharging was repeated until the capacity reached 600 mAh, and the life was reached when the capacity reached 600 mAh. The result is shown in FIG.

【0015】図2に明らかなように、CoもA元素も含ま
ない場合は、実用上の必要な 500サイクルより著しく低
いが、3wt.%の一定量のCoを含有するものに、A元素を
1wt.%以上含有する場合は、 500サイクル以上となり実
用に適し、A元素3〜5wt.%でサイクル寿命は長とな
り、12wt.%を越えても 500サイクル以上を維持すること
が確認された。しかし乍ら、A元素を13wt.%以上とする
と、ニッケル水酸化物量が少なくなり過ぎ、電池容量が
不足するので、最大12wt.%にとゞめることが好ましい。
As is clear from FIG. 2, when neither Co nor A element is contained, the element A is added to the one containing 3 wt. It has been confirmed that when it is contained in an amount of 1 wt.% Or more, it is 500 cycles or more and is suitable for practical use. When the element A is 3 to 5 wt.%, The cycle life becomes long, and even if it exceeds 12 wt.%, It is confirmed to maintain 500 cycles or more. However, if the content of element A is 13 wt.% Or more, the amount of nickel hydroxide becomes too small and the battery capacity becomes insufficient, so it is preferable to set the maximum to 12 wt.%.

【0016】図2に示さなかったが、A元素としてTi、
Sn、Sb、Gaを水酸化ニッケルに対し同様に1wt.%〜12w
t.%含有せしめた球状の粒子集団から成る正極活物粉体
についても、図2と同様の寿命サイクルの向上が認めら
れた。
Although not shown in FIG. 2, Ti as the A element,
Sn, Sb, Ga is 1wt.% To 12w for nickel hydroxide as well.
With respect to the positive electrode active material powder composed of a spherical particle group containing t.%, the same improvement in life cycle as that shown in FIG. 2 was recognized.

【0017】A元素の含有手段は、先のCoの含有手段と
同様に、硝酸水溶液にその所定量添加溶解し、次でアル
カリを添加することにより主体である球状の水酸化ニッ
ケルの沈澱と共にA元素の水酸化物の沈澱せしめるとき
は、球状の水酸化ニッケル粒子の析出物中に均一に共存
した微細な粒子から成る析出物を得ることができる。ま
た、A元素は、水酸化物の他に、その乾燥過程で生成す
る酸化物となっても効果を損なうことはない。また、金
属の状態で含有せしめておくことも同様の効果を有し、
そのためには、A元素を、例えば硝酸水溶液に予め過剰
に添加しておくことにより達成される。上記の実施例の
製造法では、硝酸水溶液を出発原料として使用したが、
硫酸水溶液でも同様に本発明の水酸化ニッケルを主体と
し、これにCo又は/及びA元素を含有する析出物を得る
ことができることは言うまでもない。
The element A is contained in the same manner as the above-mentioned Co by adding a predetermined amount of the element to an aqueous solution of nitric acid and dissolving it, and then adding an alkali to precipitate the spherical nickel hydroxide, which is the main component. When the elemental hydroxide is precipitated, it is possible to obtain a precipitate consisting of fine particles that are uniformly present in the precipitate of spherical nickel hydroxide particles. Further, the element A does not impair the effect even if it becomes an oxide formed in the drying process in addition to the hydroxide. Also, having the same effect as containing metal,
This can be achieved by adding the element A in advance to, for example, an aqueous nitric acid solution in excess. In the manufacturing method of the above example, the nitric acid aqueous solution was used as a starting material,
Needless to say, a precipitate containing nickel hydroxide of the present invention as a main component and containing Co and / or A element can be similarly obtained with an aqueous sulfuric acid solution.

【0018】次に、本発明のアルカリ蓄電池のペースト
式正極用活物質とその製造法の他の実施例について、Co
を含有しない場合の比較例と共に詳述する。正極活物質
の出発原料としてカーボニルニッケル粉末を用い、これ
を硝酸水溶液と反応させて硝酸ニッケルを調製した。一
方、金属コバルト粉末と硝酸水溶液とを反応させて硝酸
コバルトと金属コバルト粉末と硝酸水溶液とを未反応の
コバルトが残るように反応させて金属コバルト含有硝酸
コバルトとを夫々調製した。未反応のコバルトが残留す
るように金属コバルト粉末と硝酸水溶液とを反応させる
には、反応時間又は/及び反応温度を調節し、或いは金
属コバルトが硝酸コバルトに転化する量よりも過剰の金
属コバルト粉末を反応させる。次に、このように調製し
た硝酸コバルト溶液と金属コバルトを含有する硝酸コバ
ルト溶液とを、硝酸ニッケル溶液に夫々添加した後、更
にアルカリ、例えば苛性ソーダを夫々添加し攪拌して中
和反応を行い、水酸化ニッケルのみから成る沈澱析出物
と、コバルト、水酸化コバルトを少量含有する水酸化ニ
ッケルから成る沈澱析出物を夫々生じさせ、次でその夫
々の析出物を濾過し、加熱乾燥し、粉砕して球状の粒子
から成る水酸化ニッケルのみから成る正極活物質(以下
これを比較用正極活物質と称する)とコバルトを含有す
る水酸化ニッケルを主体とし、これに少量の金属コバル
ト及び水酸化コバルトを含有する本発明の正極活物質を
得た。尚、本発明の正極活物質中に含有せしめるコバル
ト量は、1〜10wt.%の範囲であるが、その含有量は、前
記の硝酸ニッケル溶液に硝酸コバルト溶液を添加し中和
反応を行う際に、金属分としてのコバルトが1〜10wt.%
残留するようにその添加量を調節すれば良い。上記の実
施例においては、例えば、コバルトを金属分として5w
t.%含有する水酸化ニッケルから成る本発明の正極活物
質を製造した。このようにして得られた比較用正極活物
質粉末と本発明の正極活物質粉末について、X線回折を
行った所、比較用正極活物質では、水酸化ニッケルの回
折線しか認められなかったに対し、本発明の正極活物質
では、図3に示すように、水酸化ニッケルの回折線の他
に、金属コバルトの回折線も認められた。
Next, with respect to another embodiment of the paste-type positive electrode active material for an alkaline storage battery of the present invention and its manufacturing method, Co
It will be described in detail together with a comparative example in the case of not containing. Carbonyl nickel powder was used as a starting material for the positive electrode active material, and this was reacted with an aqueous nitric acid solution to prepare nickel nitrate. On the other hand, metallic cobalt powder was reacted with an aqueous nitric acid solution to react cobalt nitrate, metallic cobalt powder and an aqueous nitric acid solution so that unreacted cobalt remained to prepare metallic cobalt-containing cobalt nitrate. In order to react the metal cobalt powder with the nitric acid aqueous solution so that unreacted cobalt remains, the reaction time and / or the reaction temperature is adjusted, or the metal cobalt powder is in excess of the amount in which the metal cobalt is converted into cobalt nitrate. React. Next, the cobalt nitrate solution and the cobalt nitrate solution containing metallic cobalt thus prepared were added to the nickel nitrate solution, respectively, and then alkali, for example, caustic soda was added to each of them to carry out a neutralization reaction by stirring, Precipitated precipitates consisting only of nickel hydroxide and precipitated precipitates consisting of nickel hydroxide containing a small amount of cobalt and cobalt hydroxide are produced respectively, and then the respective precipitates are filtered, dried by heating and pulverized. Positive electrode active material consisting only of nickel hydroxide composed of spherical particles (hereinafter referred to as a positive electrode active material for comparison) and nickel hydroxide containing cobalt as a main component, and a small amount of metallic cobalt and cobalt hydroxide. A positive electrode active material of the present invention containing was obtained. Incidentally, the amount of cobalt to be contained in the positive electrode active material of the present invention is in the range of 1 to 10 wt.%, But the content is when the cobalt nitrate solution is added to the nickel nitrate solution to carry out the neutralization reaction. In addition, 1 to 10 wt.% Cobalt as a metal component
The amount added may be adjusted so that it remains. In the above embodiment, for example, cobalt is used as a metal component and is 5 w.
A positive electrode active material of the present invention consisting of nickel hydroxide containing t.% was produced. When X-ray diffraction was performed on the thus obtained comparative positive electrode active material powder and the positive electrode active material powder of the present invention, only the diffraction line of nickel hydroxide was observed in the comparative positive electrode active material. On the other hand, in the positive electrode active material of the present invention, as shown in FIG. 3, in addition to the diffraction lines of nickel hydroxide, diffraction lines of metallic cobalt were also recognized.

【0019】上記の本発明の活物質粉末と比較用正極活
物質粉末とを夫々同量を用いて下記の製造法により夫々
のペースト式正極板を製造した。即ち、前記の各正極活
物質について、これに導電剤としてコバルトパウダー5
wt.%及びニッケルパウダー10wt.%を添加、混合し、これ
に増粘剤として1wt.%のカルボキシメチルセルロース水
溶液を加えて攪拌し、ペースト状とし、このペースト
を、発泡ニッケル基板に塗布、充填せしめ、次で乾燥
し、次で所定の厚さに圧延してペースト式正極板を製造
した。
Using the same amounts of the active material powder of the present invention and the positive electrode active material powder for comparison, the respective paste type positive electrode plates were manufactured by the following manufacturing method. That is, for each of the above positive electrode active materials, cobalt powder 5 was added as a conductive agent.
wt.% and nickel powder 10 wt.% are added and mixed, and 1 wt.% carboxymethylcellulose aqueous solution as a thickener is added and stirred to form a paste, and this paste is applied and filled on a nickel foam substrate. Then, it was dried and then rolled to a predetermined thickness to manufacture a paste type positive electrode plate.

【0020】上記の2種類のペースト式正極板の夫々
を、前記と同じ水素吸蔵合金電極を負極と組み合わせ、
セパレータを介して前記と同じ方法により、正極の理論
容量が1120mAhで正極規制の夫々の単3サイズニッケル
−水素電池を製造した。こゝで、前記の本発明の正極活
物質を用いて製造した正極を組み込んだ電池を電池Aと
し、前記の比較用正極活物質を用いて製造した正極を組
み込んだ電池を電池Bとした。
Each of the above-mentioned two types of paste type positive electrode plates is combined with the same hydrogen storage alloy electrode as the above and a negative electrode,
Each AA size nickel-hydrogen battery with a positive electrode theoretical capacity of 1120 mAh and a positive electrode regulation was manufactured by the same method as described above through a separator. Here, a battery in which a positive electrode manufactured by using the positive electrode active material of the present invention is incorporated is referred to as a battery A, and a battery in which a positive electrode manufactured by using the positive electrode active material for comparison is incorporated is referred to as a battery B.

【0021】これら電池A、Bについて、次のように、
正極の活物質利用率、急放電容量及びサイクル寿命を求
めた。即ち、正極の活物質利用率は、200mAhの電流で
7.5時間充電した後、同じ電流で電池電圧が 1.0Vにな
るまで放電して容量をすることによりこれを正極の理論
容量で除して正極の利用率とした。電池の急放電容量
は、200mAhの電流で 7.5時間充電した後、3Aの電流で
電池電圧が 1.0Vになるまで放電し測定することにより
求めた。電池のサイクル寿命は、1Aの電流で 1.2時間
充電した後、同じ電流で電池電圧が 1.0Vになるまで放
電することを繰り返し、容量が600mAhになった時点で寿
命とした。以上の試験結果を下記表1に示す。
For these batteries A and B,
The active material utilization rate of the positive electrode, the rapid discharge capacity and the cycle life were determined. That is, the positive electrode active material utilization rate is 200 mAh
After charging for 7.5 hours, the same current was discharged until the battery voltage became 1.0 V to obtain a capacity, which was divided by the theoretical capacity of the positive electrode to obtain the utilization rate of the positive electrode. The rapid discharge capacity of the battery was obtained by charging the battery at a current of 200 mAh for 7.5 hours and then discharging the battery at a current of 3 A until the battery voltage became 1.0 V, and then measuring the discharge capacity. The cycle life of the battery was defined as the life when the capacity reached 600 mAh by repeatedly charging the battery at a current of 1 A for 1.2 hours and then discharging the battery at the same current until the battery voltage became 1.0 V. The above test results are shown in Table 1 below.

【0021】[0021]

【表1】[Table 1]

【0022】上記表1から明らかなように、コバルトを
含有せしめた本発明の正極活物質から成る正極を用いた
場合は、コバルトを含まない従来の比較用正極活物質か
ら成る正極を用いた場合に比し、該活物質利用率、電池
の急放電容量及びサイクル寿命を夫々著しく向上せしめ
ることができる。
As is clear from Table 1, when the positive electrode made of the positive electrode active material of the present invention containing cobalt was used, the positive electrode made of the conventional positive electrode active material for comparison containing no cobalt was used. In comparison, the active material utilization rate, the rapid discharge capacity of the battery and the cycle life can be significantly improved.

【0023】上記の夫々の実施例の製造法では、硝酸水
溶液を出発原料として使用したが、硫酸水溶液を使用し
ても同様に本発明の水酸化ニッケルを主体とし、これに
Co又は/及びA元素を含有する析出物を得ることができ
ることは言うまでもない。
In the production method of each of the above-mentioned examples, the nitric acid aqueous solution was used as a starting material, but the sulfuric acid aqueous solution was also used, but mainly the nickel hydroxide of the present invention was used as the starting material.
It goes without saying that a precipitate containing Co and / or A element can be obtained.

【0024】[0024]

【発明の効果】このように本発明によるときは、水酸化
ニッケルを主体とし、これに1〜10wt.%のCoを含有する
球状の粒子集団から成るペースト式正極用活物質とした
ので、これを用いてペースト式正極を作製してアルカリ
蓄電池に組み込むときは、その利用率、電池の放電特性
並びに充放電サイクル寿命を向上せしめることができ
る。また更に、上記のCoの含有に加え、1〜12wt.%のA
元素を含有せしめた球状の粒子集団から成るペースト式
正極活物質としたので、これを用いて同様に、アルカリ
蓄電池のペースト式正極として組み込むときは、上記の
利用率の向上に加え、電池の放電特性並びに充放電サイ
クル寿命を向上し得る。更に、本発明によるときは、請
求項3及び4に係る製造法で製造することにより、上記
の夫々の特性を有する本発明の上記ペースト式正極活物
質を製造することができる。
As described above, according to the present invention, the paste-type positive electrode active material is mainly composed of nickel hydroxide, and is composed of a spherical particle group containing 1 to 10 wt.% Co. When a paste-type positive electrode is prepared using and is incorporated into an alkaline storage battery, the utilization rate, the discharge characteristics of the battery and the charge / discharge cycle life can be improved. Furthermore, in addition to the above Co content, 1-12 wt.% A
Since it was a paste type positive electrode active material composed of a group of spherical particles containing an element, when it is used as a paste type positive electrode of an alkaline storage battery in the same manner, in addition to the above-mentioned utilization improvement, battery discharge The characteristics and charge / discharge cycle life can be improved. Further, according to the present invention, the paste type positive electrode active material of the present invention having the above-mentioned respective characteristics can be produced by the production method according to claims 3 and 4.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例のペースト式正極用活物質に含
有するCo含有量とその活物質利用率との関係を示すグラ
フである。
FIG. 1 is a graph showing the relationship between the content of Co contained in the paste-type positive electrode active material of the example of the present invention and the active material utilization rate thereof.

【図2】本発明の実施例のペースト式正極用活物質に含
有するA元素含有量と電池の充放電サイクル数との関係
を示すグラフである。
FIG. 2 is a graph showing the relationship between the content of element A contained in the paste-type positive electrode active material of the example of the present invention and the number of charge / discharge cycles of the battery.

【図3】本発明のペースト式正極用活物質のX線回折図
である。
FIG. 3 is an X-ray diffraction diagram of the paste-type positive electrode active material of the present invention.

【表1】 [Table 1]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ニッケルを主体とし、これにCoを
1〜10wt.%含有する球状の粒子集団から成るアルカリ蓄
電池のペースト式正極用活物質。
1. A paste-type positive electrode active material for an alkaline storage battery, which comprises nickel hydroxide as a main component and a spherical particle population containing 1 to 10 wt.% Of Co.
【請求項2】 水酸化ニッケル粉末を主体とし、これに
Coを1〜10wt.%と少なくとも1種のA元素を1〜12wt.%
とを含有する球状の粒子集団から成る(但、A元素は、
In、Bi、Te、Ge、Tl、Sn、Sb、Gaの群から選んだ少なく
とも1種)アルカリ蓄電池のペース式正極用活物質。
2. A nickel hydroxide powder as a main component,
Co of 1 to 10 wt.% And at least one A element of 1 to 12 wt.%
And a spherical particle population containing (where A is
At least one selected from the group consisting of In, Bi, Te, Ge, Tl, Sn, Sb, and Ga) Pace-type positive electrode active material for alkaline storage battery.
【請求項3】 硫酸又は硝酸の水溶液に、ニッケルを主
体とし、これに対し所定の割合のCo又は/及びA元素を
添加溶解し、この溶液にアルカリを添加して水酸化ニッ
ケルを主体とし、これにCo又は/及び少なくとも1種の
A元素を含有した沈降析出物を生成せしめ、次でこれを
分離、乾燥して、その乾燥物を軽く粉砕してばらの球状
の粒子集団から成る粉体を得ることを特徴とするアルカ
リ蓄電池のペースト式正極用活物質の製造法。
3. Nickel is mainly contained in an aqueous solution of sulfuric acid or nitric acid, and a predetermined proportion of Co and / or A element is added and dissolved therein, and alkali is added to this solution to mainly contain nickel hydroxide, A powder comprising a settled precipitate containing Co or / and at least one A element, which is then separated and dried, and the dried product is lightly crushed to form a group of loose spherical particles. A method for producing a paste-type positive electrode active material for an alkaline storage battery, which comprises:
【請求項4】 硫酸又は硝酸の水溶液とニッケルとを反
応させて得た硫酸ニッケル又は硝酸ニッケルを主体と
し、これに硫酸又は硝酸の水溶液とコバルトとを未反応
のコバルトが残留するように反応させて得たコバルト含
有硫酸コバルト又はコバルト含有硝酸コバルトを添加
し、その混合液にアルカリを添加して攪拌し中和させ、
得られる析出物を濾過、乾燥、粉砕して水酸化ニッケル
を主体とし、これにCoを含有する球状の粒子集団から成
る粉体を得ることを特徴とするアルカリ蓄電池のペース
ト式正極用活物質の製造法。
4. A nickel sulfate or nickel nitrate obtained by reacting an aqueous solution of sulfuric acid or nitric acid with nickel is mainly used, and an aqueous solution of sulfuric acid or nitric acid is reacted with cobalt so that unreacted cobalt remains. Cobalt-containing cobalt sulfate or cobalt-containing cobalt nitrate obtained as described above is added, and alkali is added to the mixed solution to stir to neutralize,
The obtained precipitate is filtered, dried, and pulverized to mainly contain nickel hydroxide, and to obtain a powder composed of a spherical particle group containing Co, a paste type positive electrode active material for an alkaline storage battery characterized by the above-mentioned. Manufacturing method.
JP4283678A 1992-08-07 1992-09-29 Paste type positive electrode active material for alkali secondary battery and its manufacture Pending JPH06103974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4283678A JPH06103974A (en) 1992-08-07 1992-09-29 Paste type positive electrode active material for alkali secondary battery and its manufacture

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23274692 1992-08-07
JP4-232746 1992-08-07
JP4283678A JPH06103974A (en) 1992-08-07 1992-09-29 Paste type positive electrode active material for alkali secondary battery and its manufacture

Publications (1)

Publication Number Publication Date
JPH06103974A true JPH06103974A (en) 1994-04-15

Family

ID=26530640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4283678A Pending JPH06103974A (en) 1992-08-07 1992-09-29 Paste type positive electrode active material for alkali secondary battery and its manufacture

Country Status (1)

Country Link
JP (1) JPH06103974A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0682377A1 (en) * 1994-05-10 1995-11-15 Sumitomo Chemical Company, Limited Lithium secondary battery
EP0723305A1 (en) * 1992-09-18 1996-07-24 Matsushita Electric Industrial Co., Ltd. Nickel positive electrode for use in alkaline storage battery and nickel-hydrogen storage battery using the same
US6060195A (en) * 1997-09-24 2000-05-09 Sanyo Electric Co., Ltd. Non-sintered nickel electrode for alkaline storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0723305A1 (en) * 1992-09-18 1996-07-24 Matsushita Electric Industrial Co., Ltd. Nickel positive electrode for use in alkaline storage battery and nickel-hydrogen storage battery using the same
EP0682377A1 (en) * 1994-05-10 1995-11-15 Sumitomo Chemical Company, Limited Lithium secondary battery
CN1076884C (en) * 1994-05-10 2001-12-26 住友化学工业株式会社 Lithium secondary battery
US6060195A (en) * 1997-09-24 2000-05-09 Sanyo Electric Co., Ltd. Non-sintered nickel electrode for alkaline storage battery

Similar Documents

Publication Publication Date Title
JP5228292B2 (en) A method for producing a lithium-nickel-manganese-cobalt composite oxide.
US5556719A (en) Method for making high capacity hydrogen storage electrode and hydride batteries using same
JPH11292547A (en) Lithium cobaltate, its production and lithium cell using that
US5885544A (en) Lithium cobaltate based positive electrode-active material for lithium secondary cell and method of manufacturing same
JP4374930B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2019216069A (en) Cathode active material for nonaqueous electrolyte secondary battery and manufacturing method of the same
EP0413029B1 (en) Method of producing hydrogen-occlusion alloy and electrode using the alloy
JPS61104565A (en) Preparation of powdered active material for nickel positive electrode of cell
JPH06103974A (en) Paste type positive electrode active material for alkali secondary battery and its manufacture
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same
JP2517176B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JPH01197964A (en) Secondary battery
JP2835282B2 (en) Nickel hydroxide for nickel electrode, method for producing the same, nickel electrode, and alkaline secondary battery incorporating the same
JPH10326616A (en) Alkaline storage battery
JP3744642B2 (en) Nickel-metal hydride storage battery and method for manufacturing the same
US5876874A (en) Nickel electrode for secondary battery
JPH07130365A (en) Alkaline storage battery
JP3229801B2 (en) Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the same
JP5626245B2 (en) Lithium-nickel-manganese-cobalt composite oxide, method for producing the same, and use thereof
JPH10228906A (en) Nickel compound for lithium secondary battery
JPH0652856A (en) Positive electrode active material for alkaline storage battery and manufacture thereof
JPH0576745B2 (en)
JP2000040505A (en) Positive electrode body for lithium secondary battery
JPH10334911A (en) Alkaline storage battery and its manufacture
JP3490800B2 (en) Hydrogen storage alloy electrode, method for producing the same, and metal hydride storage battery