JPH06101443B2 - Plasma equipment - Google Patents

Plasma equipment

Info

Publication number
JPH06101443B2
JPH06101443B2 JP62231343A JP23134387A JPH06101443B2 JP H06101443 B2 JPH06101443 B2 JP H06101443B2 JP 62231343 A JP62231343 A JP 62231343A JP 23134387 A JP23134387 A JP 23134387A JP H06101443 B2 JPH06101443 B2 JP H06101443B2
Authority
JP
Japan
Prior art keywords
plasma
sample
magnetic
permanent magnet
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62231343A
Other languages
Japanese (ja)
Other versions
JPS6473716A (en
Inventor
誠一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62231343A priority Critical patent/JPH06101443B2/en
Priority to EP87311451A priority patent/EP0273741B1/en
Priority to DE8787311451T priority patent/DE3774098D1/en
Priority to KR1019870015216A priority patent/KR920004912B1/en
Publication of JPS6473716A publication Critical patent/JPS6473716A/en
Priority to US07/364,585 priority patent/US5019117A/en
Priority to US07/414,511 priority patent/US5016564A/en
Publication of JPH06101443B2 publication Critical patent/JPH06101443B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はCVD(Chemical Vapor Deposition)装置、エッ
チング装置等として用いられるプラズマ装置に関するも
のである。
TECHNICAL FIELD The present invention relates to a plasma apparatus used as a CVD (Chemical Vapor Deposition) apparatus, an etching apparatus, or the like.

〔従来技術〕 電子サイクロトロン共鳴を利用したプラズマ装置は低ガ
ス圧で活性度の高いプラズマを生成出来、また大径のプ
ラズマ流を引き出せることから高集積半導体素子等にお
ける薄膜形成、エッチング等に適用し得るものとしてそ
の研究,開発が進められている。
(Prior Art) A plasma device using electron cyclotron resonance is applicable to thin film formation, etching, etc. in a highly integrated semiconductor device because it can generate highly active plasma at a low gas pressure and can draw a large-diameter plasma flow. Research and development are being promoted as an advantage.

第12図はCVD装置として構成した従来のプラズマ装置を
示す縦断面図であり、図中31はプラズマ生成室を示して
いる。プラズマ生成室31は上部壁中央に石英ガラス板31
bにて封止したマイクロ波導入口31cを、また下部壁中央
には前記マイクロ波導入口31cと対向する位置にプラズ
マ引出窓31dを夫々備えており、前記マイクロ波導入口3
1cには他端を図示しない高周波発振器に接続した導波管
32の一端が接続され、またプラズマ引出窓31dに臨ませ
て試料室33を配設し、更に周囲にはプラズマ生成室31及
びこれに接続した導波管32の一端部にわたってこれらを
囲繞する態様でこれらと同心状に励磁コイル34を配設し
てある。
FIG. 12 is a vertical cross-sectional view showing a conventional plasma device configured as a CVD device, and 31 in the drawing shows a plasma generation chamber. The plasma generation chamber 31 has a quartz glass plate 31 in the center of the upper wall.
A microwave inlet 31c sealed by b, and a plasma outlet window 31d at a position facing the microwave inlet 31c at the center of the lower wall are provided, and the microwave inlet 3c is provided.
1c is a waveguide with the other end connected to a high-frequency oscillator (not shown)
One end of 32 is connected, a sample chamber 33 is arranged so as to face the plasma extraction window 31d, and the plasma generation chamber 31 and one end of the waveguide 32 connected to the plasma chamber 31 are surrounded by the sample chamber 33. The exciting coil 34 is arranged concentrically with these.

試料室33内にはプラズマ引出窓31dと対向する位置に円
盤形の試料台35が配設され、その上には円板形をなすウ
ェーハ等の試料Sがそのまま、又は静電吸着等の手段に
て着脱可能に載置され、更に試料室33の下部壁には図示
しない排気装置に連なる排気口33aが開口されている。
なお31g,33gは原料ガス供給管、また31e,31fは冷却水の
給水系,排水系である。
In the sample chamber 33, a disk-shaped sample table 35 is arranged at a position facing the plasma extraction window 31d, and a disk-shaped sample S such as a wafer is provided as it is, or means such as electrostatic adsorption is provided. At the bottom of the sample chamber 33, an exhaust port 33a connected to an exhaust device (not shown) is opened.
In addition, 31g and 33g are raw material gas supply pipes, and 31e and 31f are cooling water supply system and drainage system.

而してこのようなCVD装置にあっては所要の真空度に設
定したプラズマ生成室31,試料室33内に原料ガスを供給
し、励磁コイル34にて磁界を形成しつつプラズマ生成室
31内にマイクロ波による高周波電界を印加してプラズマ
を生成させ、生成させたプラズマを励磁コイル34にて形
成される発散磁界によってプラズマ生成室31からプラズ
マ引出窓31dを経て試料室33内における試料台35の試料
S周辺に導出し、試料S表面でプラズマ流中のイオン,
ラジカル粒子による表面反応を生起させ、試料S表面に
成膜を施すようになっている。
Thus, in such a CVD apparatus, the source gas is supplied into the plasma generation chamber 31 and the sample chamber 33 which are set to the required degree of vacuum, and the magnetic field is formed by the exciting coil 34 while the plasma generation chamber is being formed.
A sample is stored in the sample chamber 33 from the plasma generation chamber 31 via the plasma extraction window 31d by the divergent magnetic field formed by the exciting coil 34 to generate plasma by applying a high frequency electric field by microwaves to the inside of the sample chamber 33. Ions are drawn around the sample S on the table 35, and ions in the plasma flow on the surface of the sample S,
A surface reaction is caused by the radical particles to form a film on the surface of the sample S.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

然るにかかる従来のプラズマ装置にあってはプラズマ生
成室31で発生せしめられたプラズマは励磁コイル34によ
って形成される発散磁界の磁力線に沿ってプラズマ引出
窓31dを経て試料室33内の試料S側に引き出されるが、
プラズマ生成室31内で発生するプラズマは一様ではな
く、プラズマ生成室31内の中心部での密度が周縁でのそ
れよりも高くなるため、ここから発散磁界により引出さ
れるプラズマ流にも同様の密度分布が生じ、この分布む
らがそのまま試料Sに向かって拡大投影されることとな
り,試料Sを試料台35上にプラズマ引出窓31dと同心状
に配設した場合、試料Sの中央部と周縁部とでは堆積速
度に差が生じ、試料S表面に施される膜厚が不均一にな
るという問題があった。そしてかかる問題はCVD装置の
みならずエッチング装置においても同様にエッチング速
度の不均一となって現れる。
Therefore, in the conventional plasma device, the plasma generated in the plasma generation chamber 31 is directed to the sample S side in the sample chamber 33 through the plasma extraction window 31d along the magnetic field lines of the divergent magnetic field formed by the exciting coil 34. Is pulled out,
Since the plasma generated in the plasma generation chamber 31 is not uniform and the density in the center of the plasma generation chamber 31 is higher than that at the peripheral edge, the same applies to the plasma flow extracted from here by the divergent magnetic field. Density distribution is generated, and this uneven distribution of distribution is magnified and projected toward the sample S as it is. When the sample S is arranged concentrically with the plasma extraction window 31d on the sample table 35, There is a problem that a difference in deposition rate occurs between the peripheral portion and the film thickness applied to the surface of the sample S becomes non-uniform. And such a problem appears not only in the CVD apparatus but also in the etching apparatus as a nonuniform etching rate.

本発明はかかる事情に鑑みてなされたものであり、試料
表面でのプラズマ密度を均一にし、均一な厚さの成膜、
或いは均一なエッチング処理を行い得るようにしたプラ
ズマ装置を提供することを目的とする。
The present invention has been made in view of such circumstances, and makes the plasma density on the sample surface uniform, and forms a film having a uniform thickness,
Alternatively, it is another object of the present invention to provide a plasma device capable of performing uniform etching treatment.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係るプラズマ装置は、電子サイクロトロン共鳴
励起によりプラズマを発生させ、これを磁界を利用して
プラズマ引出窓から試料台を備えた試料室に導出するよ
うにしたプラズマ装置において、前記試料室に導出され
るプラズマ分布を制御すべく前記試料台の試料に対しプ
ラズマ引出窓と反対側に、試料の周縁部の磁束密度が中
央部の磁束密度よりも高くなるよう永久磁石と常磁性体
とを組み合わせた磁気生成器を配設したことを特徴とす
る。
The plasma device according to the present invention is a plasma device in which plasma is generated by electron cyclotron resonance excitation, and this is led out to a sample chamber equipped with a sample stage from a plasma extraction window by using a magnetic field. In order to control the derived plasma distribution, a permanent magnet and a paramagnetic material are provided on the side of the sample on the side opposite to the plasma extraction window with respect to the sample so that the magnetic flux density at the peripheral portion of the sample is higher than the magnetic flux density at the central portion. It is characterized in that a combined magnetic generator is provided.

〔作用〕 本発明にあっては試料に対しプラズマ引出窓と反対側に
試料の周縁部の磁束密度が中央部の磁束密度よりも高く
なるよう永久磁石と常磁性体とを組み合わせた磁気生成
器を配設したから、発生したプラズマ密度がプラズマ引
出窓の中央部で高く、周縁部で低い場合も、試料表面に
おいて均一化することが可能となる。
[Operation] In the present invention, a magnetic generator in which a permanent magnet and a paramagnetic material are combined so that the magnetic flux density at the peripheral portion of the sample is higher than the magnetic flux density at the central portion on the side opposite to the plasma extraction window with respect to the sample. Since the plasma density is provided, even if the generated plasma density is high in the central part of the plasma extraction window and low in the peripheral part, it is possible to make it uniform on the sample surface.

〔実施例〕〔Example〕

以下本発明をCVD装置として構成した実施例につき図面
に基づき具体的に説明する。
An embodiment in which the present invention is configured as a CVD apparatus will be specifically described below with reference to the drawings.

第1図は本発明に係るプラズマ装置(以下本発明装置と
いう)の模式的縦断面図であり、図中1はプラズマ生成
室、2は導波管、3は試料室、4は励磁コイルを示して
いる。
FIG. 1 is a schematic vertical sectional view of a plasma device according to the present invention (hereinafter referred to as the device of the present invention), in which 1 is a plasma generation chamber, 2 is a waveguide, 3 is a sample chamber, 4 is an exciting coil. Shows.

プラズマ生成室1は上部壁中央には石英ガラス板1bで閉
鎖されたマイクロ波導入口1cを備え、また下部壁中央に
は前記マイクロ波導入口1cと対向する位置に円形のプラ
ズマ引出窓1dを備えており、前記マイクロ波導入口1cに
は導波管2の一端部が接続され、またプラズマ引出窓1d
にはこれに臨ませて試料室3が配設され、更に周囲には
プラズマ生成室1及びこれに連結された導波管2の一端
部にわたって励磁コイル4が周設せしめられている。
The plasma generation chamber 1 has a microwave introduction port 1c closed by a quartz glass plate 1b at the center of the upper wall, and a circular plasma extraction window 1d at a position facing the microwave introduction port 1c at the center of the lower wall. One end of the waveguide 2 is connected to the microwave introduction port 1c, and the plasma extraction window 1d
A sample chamber 3 is disposed so as to face this, and an exciting coil 4 is provided around the plasma generating chamber 1 and one end of a waveguide 2 connected thereto.

導波管2の他端部は図示しない高周波発振器に接続され
ており、発せられたマイクロ波はマイクロ波導入口1cか
らプラズマ生成室1内に導入されるようにしてある。励
磁コイル4は図示しない直流電源に接続されており、直
流電流の通流によって、プラズマ生成室1内にマイクロ
波の導入によりプラズマを生成し得るよう磁界を形成す
る。この磁界は試料室3側に向けて磁束密度が低くなる
発散磁界となっており、プラズマ生成室1内に生成され
たプラズマを試料室3内に導出せしめるようになってい
る。
The other end of the waveguide 2 is connected to a high-frequency oscillator (not shown), and the emitted microwave is introduced into the plasma generation chamber 1 through the microwave introduction port 1c. The exciting coil 4 is connected to a DC power source (not shown), and forms a magnetic field so that plasma can be generated by introducing a microwave into the plasma generation chamber 1 by flowing a DC current. This magnetic field is a divergent magnetic field in which the magnetic flux density decreases toward the sample chamber 3 side, and the plasma generated in the plasma generating chamber 1 can be led out into the sample chamber 3.

試料室3内にはその下部中央であって、プラズマ引出窓
1dと対向する位置に試料台5が配設され、その上にはウ
ェーハ等の試料Sがそのまま、又は静電吸着等の手段に
て着脱可能に載置されるようにしてあり、また底壁には
図示しない排気装置に連なる排気口3aを開口してある。
In the center of the lower part of the sample chamber 3, there is a plasma extraction window.
A sample table 5 is arranged at a position facing 1d, and a sample S such as a wafer is placed on the sample table 5 as it is or detachably by means such as electrostatic adsorption. An exhaust port 3a is connected to an exhaust device (not shown).

1g,3gは原料ガス供給管、また1e,1fは冷却水の給水系,
排水系である。
1g and 3g are source gas supply pipes, 1e and 1f are cooling water supply systems,
It is a drainage system.

そして本発明装置にあっては前記試料室3内であって試
料台5上に載置される試料Sに対しプラズマ引出窓1dと
反対側、即ち試料S用の試料台5下に磁気生成器6を配
設してある。
In the apparatus of the present invention, a magnetic generator is provided in the sample chamber 3 on the side opposite to the plasma extraction window 1d with respect to the sample S placed on the sample table 5, that is, below the sample table 5 for the sample S. 6 are provided.

磁気生成器6は中心に常磁性体製の棒状ヨーク6aを、ま
たこれと同心状にその外周に円筒形をなす常磁性体製の
環状ヨーク6bを配置し、これら棒状ヨーク6aと環状ヨー
ク6bとの間の環状空間内であって、この空間底部を埋め
る態様で複数の永久磁石6cを配設してある。
The magnetic generator 6 includes a rod-shaped yoke 6a made of paramagnetic material at the center and a circular annular yoke 6b made of paramagnetic material concentrically with the paramagnetic material. The rod-shaped yoke 6a and the annular yoke 6b are arranged in the center. In the annular space between and, a plurality of permanent magnets 6c are arranged so as to fill the bottom of this space.

第2図は磁気生成器6の平面図、第3図は同じく縦断面
図である。各永久磁石6cはいずれも扇形であって、その
中心側がN極、周縁部側がS極としてあり、中心部側、
即ち棒状ヨーク6a側にN極を、また周縁部側、即ち環状
ヨーク側にS極を位置させた状態で密に嵌合配設せしめ
てある。
FIG. 2 is a plan view of the magnetic generator 6, and FIG. 3 is a longitudinal sectional view of the same. Each of the permanent magnets 6c has a sector shape, the center side of which is an N pole and the peripheral edge side of which is an S pole.
That is, the N pole is closely fitted to the rod-shaped yoke 6a and the S pole is tightly positioned on the peripheral edge side, that is, the annular yoke side.

棒状ヨーク6a,環状ヨーク6b,永久磁石6cの各材質につて
いは特に限定するものではなく従来知られているものを
適宜採択すればよい。
The materials of the rod-shaped yoke 6a, the annular yoke 6b, and the permanent magnet 6c are not particularly limited, and conventionally known materials may be appropriately selected.

而してこのような本発明装置にあってはその磁力線の分
布及び磁力(Gauss)分布は第4,5図に示す如くになる。
Thus, in such a device of the present invention, the distribution of magnetic force lines and the magnetic force (Gauss) distribution are as shown in FIGS.

第4図は励磁コイル4及び磁気生成器6による磁力線の
分布図であり、励磁コイル4にて形成される試料室3側
に向かう発散磁界を形成する磁力線M1は試料台5の周縁
部寄りを通るように、また磁気生成器6の永久磁石6cに
て形成される磁界の磁力線M2の殆どは中心部側のN極か
ら棒状ヨーク6aを経て試料台5の中心部からその周縁部
側に向かい、周縁部から環状ヨーク6bを経て周縁部側の
S極に至るように形成され、永久磁石6cのN極からヨー
ク6a,6bを経ることなく直接S極に至る磁力線は極めて
少なくなっている。
FIG. 4 is a distribution diagram of magnetic force lines by the exciting coil 4 and the magnetic generator 6, and the magnetic force lines M 1 forming a divergent magnetic field formed by the exciting coil 4 toward the sample chamber 3 side are near the peripheral portion of the sample table 5. Most of the magnetic field lines M 2 of the magnetic field formed by the permanent magnet 6c of the magnetic generator 6 pass from the N pole on the central side to the rod-shaped yoke 6a, and from the central portion of the sample stage 5 to the peripheral edge side thereof. Toward the south pole of the permanent magnet 6c without passing through the yokes 6a and 6b, the magnetic field lines from the north edge of the permanent magnet 6c to the south pole are extremely reduced. There is.

従って前記磁気生成器6の存在によって試料Sの周縁部
における磁束密度が相対的に高くなる一方、試料Sの中
心部における磁束密度が相対的に低くなることとなる。
これは第5図からも明らかである。
Therefore, due to the presence of the magnetic generator 6, the magnetic flux density at the peripheral portion of the sample S becomes relatively high, while the magnetic flux density at the central portion of the sample S becomes relatively low.
This is also clear from FIG.

第5図は上述のプラズマ装置によって得られる鉛直方向
磁束密度Bz(Gauss)の試料台5の半径方向(x方向)
における分布図であり、実線は試料台5の表面における
分布を、また破線は試料台5の表面上1cmにおける分布
を示している。
FIG. 5 shows the radial direction (x direction) of the sample table 5 having the vertical magnetic flux density Bz (Gauss) obtained by the above plasma device.
2 is a distribution chart in FIG. 3, the solid line shows the distribution on the surface of the sample table 5, and the broken line shows the distribution at 1 cm on the surface of the sample table 5.

この分布図から明らかなような磁気生成器6を配置しな
い状態、即ち励磁コイル4による発散磁界による磁束密
度分布パターンと、上記した磁気生成器6による磁束密
度分布との組合わせにより、試料S周縁部の磁束密度を
試料S中央部のそれよりも十分に高くした磁界を得るこ
とができることが分かる。そして磁界を上述の如くなす
ことによって試料S表面のプラズマ密度を均一化するこ
とが可能となる。第6図(a)は本発明において用いる
磁気生成器による、また第6図(b)は一般出的な永久
磁石による磁力線を示す説明図である。両者を対比すれ
ば明らかなように、第6図(b)に示す如く永久磁石単
独の場合、永久磁石表面近傍では磁力線本数は多く、磁
束密度が高いが、表面から離れるに従って急激に磁束密
度が減衰するのに対し、第6図(a)に示す如く棒状ヨ
ーク6a,環状ヨーク6bを同心状であって、且つこれを永
久磁石6cよりも上方に高く突き出して位置するよう組み
合わせることで、表面近傍での磁束密度は大きくないも
のの表面から離れてゆく場合の磁束密度の減衰の割合が
小さく遠方まで磁力線が伸びていることが解る。このこ
とは第5図に示す試料台5の上方をも含めて試料の周縁
部に高磁束密度領域を形成する上で極めて効果的な構成
と言うことが出来る。
The state in which the magnetic generator 6 is not arranged, which is apparent from this distribution diagram, that is, the combination of the magnetic flux density distribution pattern due to the divergent magnetic field by the exciting coil 4 and the magnetic flux density distribution by the magnetic generator 6 is combined with the periphery of the sample S. It can be seen that it is possible to obtain a magnetic field in which the magnetic flux density of the portion is sufficiently higher than that of the central portion of the sample S. The plasma density on the surface of the sample S can be made uniform by forming the magnetic field as described above. FIG. 6 (a) is an explanatory diagram showing lines of magnetic force by a magnetic generator used in the present invention, and FIG. 6 (b) is an explanatory diagram showing lines of magnetic force by a general permanent magnet. As is clear from a comparison between the two, in the case of the permanent magnet alone, as shown in FIG. 6 (b), the number of lines of magnetic force is large near the surface of the permanent magnet and the magnetic flux density is high, but the magnetic flux density rapidly increases with distance from the surface. In contrast to the damping, as shown in FIG. 6 (a), the rod-shaped yoke 6a and the annular yoke 6b are concentric with each other and are combined so that they are positioned so as to project higher than the permanent magnets 6c. It can be seen that although the magnetic flux density in the vicinity is not large, the rate of attenuation of the magnetic flux density when moving away from the surface is small and the magnetic force lines extend to a distant place. This can be said to be an extremely effective configuration for forming a high magnetic flux density region in the peripheral portion of the sample including the upper part of the sample table 5 shown in FIG.

第7図は本発明装置に用いる磁気生成器の他の例を示す
縦断面図であり、第2,3図に示す磁気生成器の外周にそ
の環状ヨーク6bと同心状に同じく常磁性体製の第2の環
状ヨーク6dを配設し、この第2の環状ヨーク6dをその軸
心線方向、換言すれば試料台5に対して遠近する向きに
移動可能に構成してある。
FIG. 7 is a vertical cross-sectional view showing another example of the magnetic generator used in the device of the present invention. The magnetic generator shown in FIGS. 2 and 3 is made of a paramagnetic material concentrically with the annular yoke 6b. The second annular yoke 6d is provided, and the second annular yoke 6d is configured to be movable in the axial direction thereof, in other words, in the direction toward and away from the sample table 5.

なお、第2の環状ヨーク6dを移動する代わりに棒状ヨー
ク6a、環状ヨーク6b、、永久磁石6cの結合体を一体的に
昇降移動させてもよい。
Note that instead of moving the second annular yoke 6d, the combined body of the rod-shaped yoke 6a, the annular yoke 6b, and the permanent magnet 6c may be integrally moved up and down.

このような実施例にあっては試料台5の表面直上又はそ
れよりも上方における磁束密度分布を調節し得ることと
なり、試料S面付近のプラズマ分布の一層の均一化が図
れることとなる。
In such an embodiment, the magnetic flux density distribution immediately above the surface of the sample table 5 or above it can be adjusted, and the plasma distribution near the sample S surface can be made more uniform.

他の構成,作用は前記第2,3図に示したものと実質的に
同じであり、対応する部分に同じ番号を付して説明を省
略する。
Other configurations and operations are substantially the same as those shown in FIGS. 2 and 3, and corresponding parts are designated by the same reference numerals and description thereof is omitted.

第8,9図及び第10,11図は夫々本発明装置に用いる磁気生
成器の更に他の例を示しており、第8,10図は各磁気生成
器の平面図、第9,11図は同じく夫々の縦断面図である。
8 and 9 and 10 and 11 show still another example of the magnetic generator used in the device of the present invention, and FIGS. 8 and 10 are plan views of the magnetic generators, and FIGS. Is also a vertical sectional view of each.

第8,9図に示す磁気生成器16は永久磁石16cを棒状に構成
し、そのN極を中心側に、またS極を周縁部側に位置さ
せて常磁性体製の棒状ヨーク16aと環状ヨーク16bとの間
に周方向に略等角度で放射状に配設してある。
The magnetic generator 16 shown in FIGS. 8 and 9 comprises a permanent magnet 16c in the shape of a rod, with its N pole located on the center side and its S pole located on the peripheral edge side, and a rod-shaped yoke 16a made of paramagnetic material and an annular shape. It is radially arranged at a substantially equal angle in the circumferential direction between the yoke 16b and the yoke 16b.

このような例にあっては永久磁石16c自体の構成が簡略
化される利点がある。
In such an example, there is an advantage that the structure of the permanent magnet 16c itself is simplified.

他の構成及び作用効果は前記第2,3図に示した例と実質
的に同じであり、説明を省略する。
Other configurations, functions and effects are substantially the same as those of the example shown in FIGS. 2 and 3, and the description thereof will be omitted.

第10,11図に示す磁気生成器26にあっては中心部に棒状
永久磁石26aを試料台側をN極にして、またその周囲に
これと同心状に環状永久磁石26bを試料台側をS極にし
て夫々常磁性体製の円盤状ヨーク26c上に同心状に配設
して構成してある。
In the magnetic generator 26 shown in FIGS. 10 and 11, a rod-shaped permanent magnet 26a is formed in the center of the sample table side as an N pole, and an annular permanent magnet 26b is concentrically arranged around the sample table side. The S poles are arranged concentrically on a paramagnetic disk-like yoke 26c.

このような例にあっては、磁力線が中心に位置する棒状
永久磁石26aのN極である上端から環状永久磁石26bのS
極である上端に向けて形成され、磁力線の向きに沿うよ
う移動せしめられるプラズマは棒状永久磁石26a側から
環状永久磁石26b側へ、換言すれば試料台5の中心部側
から周縁部側に分散せしめられることとなり、プラズマ
分布の均一化が図れることとなる。しかも環状永久磁石
26bのN極から棒状永久磁石26aに至る磁力線の殆どは円
盤状ヨーク26c内を経ることとなってより効果的に磁束
密度分布を改善することができる。
In such an example, from the upper end, which is the N pole of the rod-shaped permanent magnet 26a whose magnetic field lines are located at the center, to the S of the annular permanent magnet 26b.
The plasma, which is formed toward the upper end which is a pole and is moved along the direction of the magnetic force lines, is dispersed from the rod-shaped permanent magnet 26a side to the annular permanent magnet 26b side, in other words, from the center side to the peripheral side of the sample table 5. As a result, the plasma distribution can be made uniform. Moreover, annular permanent magnet
Most of the magnetic lines of force from the N pole of 26b to the rod-shaped permanent magnet 26a pass through the inside of the disk-shaped yoke 26c, so that the magnetic flux density distribution can be improved more effectively.

他の構成及び作用は前記第2,3図に示すものと実質的に
同じである。
The other structure and operation are substantially the same as those shown in FIGS.

〔数値例〕(Numerical example)

次に上記第1〜3図に示した実施例について具体的数値
を掲げて説明する。試料台5上にこれと中心を一致させ
て直径6″のシリコンウエーハを載置し、マイクロ波パ
ワーを600Wとし、試料室3内にSiH4ガスを28sccm、N2
スを35sccmの流量で導入し、シリコンウエーハ上にシリ
コン酸化膜を形成した。この結果、膜の堆積速度は2100
Å/分、また膜厚分布は±3.5%であった。
Next, the embodiments shown in FIGS. 1 to 3 will be described with specific numerical values. A silicon wafer having a diameter of 6 "is placed on the sample table 5 with its center aligned with the microwave power of 600 W and SiH 4 gas of 28 sccm and N 2 gas of 35 sccm are introduced into the sample chamber 3. Then, a silicon oxide film was formed on the silicon wafer, resulting in a film deposition rate of 2100.
Å / min, and the film thickness distribution was ± 3.5%.

なお第12図に示す従来装置では同条件のもとで堆積速度
は2100Å/分、膜厚分布は±20%であった。
In the conventional device shown in FIG. 12, the deposition rate was 2100Å / min and the film thickness distribution was ± 20% under the same conditions.

なおここに膜厚分布は下式によって求めた。Here, the film thickness distribution was obtained by the following formula.

{±(最大膜厚−最小膜厚)/(最大膜厚+最小膜厚)
×100%} なお上述の各実施例は本発明をいずれもCVD装置として
構成した場合につき説明したが何らこれに限るものでは
なく、例えばエッチング装置等として構成し得ることは
勿論である。
{± (maximum film thickness-minimum film thickness) / (maximum film thickness + minimum film thickness)
× 100%} Each of the above embodiments has been described with respect to the case where the present invention is configured as a CVD apparatus, but the present invention is not limited to this, and it goes without saying that it can be configured as an etching apparatus or the like.

〔効果〕〔effect〕

以上の如く本発明装置にあっては、試料に対しプラズマ
引出窓と反対側に試料の周縁部の磁束密度が中央部の磁
束密度より高くなるよう永久磁石と常磁性体とを組み合
わせた磁気生成器を配設したから、プラズマ引出窓にお
いて中央部でプラズマ密度が高く、周縁部に向かうに従
ってプラズマ密度が低くなる場合においても試料表面で
はプラズマ密度分布を均一化することが出来て、処理速
度が均一となる優れた効果を奏する。
As described above, in the device of the present invention, magnetic generation is performed by combining the permanent magnet and the paramagnetic material so that the magnetic flux density at the peripheral portion of the sample is higher than the magnetic flux density at the central portion on the side opposite to the plasma extraction window with respect to the sample. Since the reactor is provided, the plasma density distribution can be made uniform on the sample surface even when the plasma density is high in the central part of the plasma extraction window and becomes lower toward the peripheral part, and the processing speed is improved. Has an excellent effect of being uniform.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明装置の縦断面図、第2図は本発明装置に
用いた磁気生成器の平面図、第3図は同じく磁気生成器
の縦断面図、第4図は本発明装置における磁力線分布
図、第5図は同じく磁束密度分布図、第6図は本発明装
置における如く磁気生成器を永久磁石と常磁性体とを組
み合わせた構成とした場合と、永久磁石単独の場合との
磁力線分布を対比して示す説明図、第7図は本発明装置
に用いる磁気生成器の他の例を示す縦断面図、第8,9は
本発明装置に用いる磁気生成器の更に他の例を示す平面
図,縦断面図、第10,11図は本発明装置に用いる磁気生
成器の更に他の例を示す平面図,縦断面図、第12図は従
来装置の縦断面図である。 1……プラズマ生成室、3……試料室、4……励磁コイ
ル、5……試料台、6……磁気生成器、6a……棒状ヨー
ク、6b……環状ヨーク、6c……永久磁石、6d……第2環
状ヨーク、16……磁気生成器、16c……棒状永久磁石、2
6……磁気生成器、26a……棒状永久磁石、26b……環状
永久磁石、26……円盤状ヨーク、S……試料
FIG. 1 is a vertical sectional view of the device of the present invention, FIG. 2 is a plan view of a magnetic generator used in the device of the present invention, FIG. 3 is a vertical sectional view of the same magnetic generator, and FIG. FIG. 5 is a distribution diagram of magnetic force lines, FIG. 5 is a distribution diagram of magnetic flux density and FIG. Explanatory drawing showing the distribution of magnetic force lines in comparison, FIG. 7 is a longitudinal sectional view showing another example of the magnetic generator used in the device of the present invention, and 8 and 9 are further examples of the magnetic generator used in the device of the present invention. FIG. 10 is a plan view, a vertical cross-sectional view, FIG. 10 and FIG. 11 are plan views, a vertical cross-sectional view and still another example of the magnetic generator used in the device of the present invention. 1 ... Plasma generation chamber, 3 ... Sample chamber, 4 ... Excitation coil, 5 ... Sample stage, 6 ... Magnetic generator, 6a ... Rod yoke, 6b ... Annular yoke, 6c ... Permanent magnet, 6d: second annular yoke, 16: magnetic generator, 16c: rod-shaped permanent magnet, 2
6 ... Magnetic generator, 26a ... Rod-shaped permanent magnet, 26b ... Annular permanent magnet, 26 ... Disk-shaped yoke, S ... Sample

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電子サイクロトロン共鳴励起によりプラズ
マを発生させ、これを磁界を利用してプラズマ引出窓か
ら試料台を備えた試料室に導出するようにしたプラズマ
装置において、前記試料室に導出されるプラズマ分布を
制御すべく前記試料台の試料に対しプラズマ引出窓と反
対側に、試料の周縁部の磁束密度が中央部の磁束密度よ
りも高くなるよう永久磁石と常磁性体とを組み合わせた
磁気生成器を配設したことを特徴とするプラズマ装置。
1. A plasma apparatus in which plasma is generated by electron cyclotron resonance excitation, and this is led out to a sample chamber equipped with a sample stage from a plasma drawing window by utilizing a magnetic field. A magnet combining a permanent magnet and a paramagnetic material so that the magnetic flux density at the peripheral portion of the sample is higher than the magnetic flux density at the central portion on the side of the sample on the opposite side of the plasma extraction window to control the plasma distribution. A plasma device comprising a generator.
JP62231343A 1986-12-29 1987-09-16 Plasma equipment Expired - Fee Related JPH06101443B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP62231343A JPH06101443B2 (en) 1987-09-16 1987-09-16 Plasma equipment
EP87311451A EP0273741B1 (en) 1986-12-29 1987-12-24 Plasma apparatus
DE8787311451T DE3774098D1 (en) 1986-12-29 1987-12-24 PLASMA UNIT.
KR1019870015216A KR920004912B1 (en) 1986-12-29 1987-12-29 Plasma apparatus
US07/364,585 US5019117A (en) 1986-12-29 1989-06-12 Plasma apparatus
US07/414,511 US5016564A (en) 1986-12-29 1989-09-29 Plasma apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62231343A JPH06101443B2 (en) 1987-09-16 1987-09-16 Plasma equipment

Publications (2)

Publication Number Publication Date
JPS6473716A JPS6473716A (en) 1989-03-20
JPH06101443B2 true JPH06101443B2 (en) 1994-12-12

Family

ID=16922145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62231343A Expired - Fee Related JPH06101443B2 (en) 1986-12-29 1987-09-16 Plasma equipment

Country Status (1)

Country Link
JP (1) JPH06101443B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201016917D0 (en) * 2010-10-07 2010-11-24 Stfc Science & Technology Improved multipole magnet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947733A (en) * 1982-09-13 1984-03-17 Hitachi Ltd Plasma processing apparatus
JPS61267324A (en) * 1985-05-21 1986-11-26 Fuji Electric Co Ltd Dry thin film processing device

Also Published As

Publication number Publication date
JPS6473716A (en) 1989-03-20

Similar Documents

Publication Publication Date Title
US5019117A (en) Plasma apparatus
JP2670623B2 (en) Microwave plasma processing equipment
US7059268B2 (en) Method, apparatus and magnet assembly for enhancing and localizing a capacitively coupled plasma
JP4896164B2 (en) Plasma processing equipment
JP2000269196A (en) Method and apparatus for plasma treatment
KR20040028985A (en) Plasma reactor coil magnet system
JPH06267903A (en) Plasma device
KR100455350B1 (en) Device for prducing inductively coupled plasma and method
JPS61213377A (en) Method and apparatus for plasma deposition
JP4283360B2 (en) Plasma processing equipment
JPH06101443B2 (en) Plasma equipment
JP2003274633A (en) Linear induction plasma pump for treating reaction furnace
JPH0346172B2 (en)
JPH0680640B2 (en) Plasma equipment
JPH10284298A (en) Plasma processing method and device
JPH0722195A (en) High density plasma treating device
JPH0415921A (en) Method and apparatus for activating plasma
JP2576139B2 (en) Plasma equipment
JPH01187824A (en) Plasma processor
JP4223143B2 (en) Plasma processing equipment
JPH025413A (en) Plasma processor
JPS6380523A (en) Microwave plasma treatment apparatus
JPH0222486A (en) Microwave plasma treating equipment
JPH0745959Y2 (en) Microwave plasma processing equipment
JP3455616B2 (en) Etching equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees