JPH06101340B2 - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH06101340B2
JPH06101340B2 JP60205280A JP20528085A JPH06101340B2 JP H06101340 B2 JPH06101340 B2 JP H06101340B2 JP 60205280 A JP60205280 A JP 60205280A JP 20528085 A JP20528085 A JP 20528085A JP H06101340 B2 JPH06101340 B2 JP H06101340B2
Authority
JP
Japan
Prior art keywords
fuel cell
electrolyte
fuel
cross
electrolyte layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60205280A
Other languages
Japanese (ja)
Other versions
JPS6266576A (en
Inventor
修蔵 岩浅
利男 清水
三郎 安川
勤 津久井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60205280A priority Critical patent/JPH06101340B2/en
Publication of JPS6266576A publication Critical patent/JPS6266576A/en
Publication of JPH06101340B2 publication Critical patent/JPH06101340B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は架橋剤で結合した高分子電解質を用いた燃料電
池に関する。
Description: FIELD OF THE INVENTION The present invention relates to a fuel cell using a polymer electrolyte bound with a crosslinking agent.

〔発明の背景〕[Background of the Invention]

一般に燃料電池は、第5図に示すように電極質層2と、
アノード3とカソード4の電極とから構成され、アノー
ド3に隣接して燃料7が供給され生成物8が排出される
燃料室5を形成し、またカソード4に隣接して酸素を含
むガス9を供給し生成物等10を排出する酸化剤室6を形
成している。
Generally, a fuel cell includes an electrode layer 2 as shown in FIG.
A fuel chamber 5 composed of an anode 3 and an electrode of a cathode 4 is formed adjacent to the anode 3 to supply a fuel 7 and discharge a product 8, and adjacent to the cathode 4 is a gas 9 containing oxygen. An oxidant chamber 6 is formed to supply and discharge products 10 and the like.

従来の燃料電池は、特開昭58−128668号公報に示すよう
に、第5図の電解質層2のイオン導電性を高めるためイ
オン交換膜21と電極3,4の間に酸性型あるいはアルカリ
型の液状電解液を結着剤と混練焼成した無機粉を用いた
ペースト状電解質23を介在させるなどが試みられてい
る。
In the conventional fuel cell, as shown in JP-A-58-128668, in order to enhance the ionic conductivity of the electrolyte layer 2 shown in FIG. 5, an acidic or alkaline type is used between the ion exchange membrane 21 and the electrodes 3 and 4. Attempts have been made to interpose a paste electrolyte 23 using an inorganic powder obtained by kneading and firing the liquid electrolyte of (1) with a binder.

また文献、第25回電池討論会(昭59)、2A11、第180頁
「イオン交換膜を電解質とするガス拡散電極の特性」で
は、同図のイオン交換膜21と電極との間に液状の電解質
やイオン交換樹脂粒を介在させている。このような方法
によつて電解質層2のイオン導電性を高める試みがなさ
れている。
In the reference, 25th Battery Symposium (59), 2A11, page 180, “Characteristics of Gas Diffusion Electrode Using Ion Exchange Membrane as Electrolyte”, liquid state between ion exchange membrane 21 and electrode in the same figure is shown. An electrolyte and ion exchange resin particles are interposed. Attempts have been made to increase the ionic conductivity of the electrolyte layer 2 by such a method.

しかしながら、いずれの方法も粒子状物質と電解液の組
合せであり、電解液が飛散しやすいことや、水と共に流
出し易いこと、あるいは燃料が液体である場合には燃料
系に溶出するなどが見られ電解質層2中の電解質が不足
してイオン導電性が低下する原因になつていた。
However, both methods are combinations of particulate matter and electrolytic solution, and it is observed that the electrolytic solution is likely to scatter, flow out easily with water, or elute into the fuel system when the fuel is liquid. As a result, the electrolyte in the electrolyte layer 2 becomes insufficient, which causes a decrease in ionic conductivity.

また特開昭59−23473号公報には、電解質として高分子
電解質を使用することが示されているが、安定して高い
イオン導電性を得ることについては考慮が払われていな
かつた。
Further, JP-A-59-23473 discloses the use of a polymer electrolyte as an electrolyte, but no consideration has been given to obtaining stable and high ionic conductivity.

〔発明の目的〕[Object of the Invention]

本発明の目的は、安定して高いイオン導電性を示す電解
質層を有する燃料電池を提供するにある。
An object of the present invention is to provide a fuel cell having an electrolyte layer that stably exhibits high ionic conductivity.

〔発明の概要〕[Outline of Invention]

本発明者等の実験によれば、溶出や飛散のほとんど見ら
れない高分子電解質を用い、これをイオン交換膜の母材
によつて保持して電解質層とした場合、架橋剤を多くす
るとイオン交換膜と同じく水分を含んだ際の膨潤度は小
さくなるが、電極とのミクロな密着性が悪くイオン導電
度も高くならない。また架橋剤を少なくすると、水分を
含んで膨潤が大きくなりイオン交換基の密度が低くなつ
てイオン導電性が低くなることが分かつた。
According to the experiments conducted by the present inventors, when a polymer electrolyte with almost no elution or scattering is used and the electrolyte layer is held by the base material of the ion-exchange membrane to form an electrolyte layer, the amount of crosslinking agent increases Similar to the exchange membrane, the degree of swelling when it contains water is small, but the microscopic adhesion to the electrode is poor and the ionic conductivity does not increase. It was also found that when the amount of the cross-linking agent is reduced, the swelling increases due to the inclusion of water, the density of ion exchange groups decreases, and the ionic conductivity decreases.

そこで本発明は、架橋剤で結合した高分子電解質を用い
ると共に、架橋剤を4〜10重量%としたことを特徴とす
る。
Therefore, the present invention is characterized by using a polyelectrolyte bound with a cross-linking agent and using the cross-linking agent in an amount of 4 to 10% by weight.

〔発明の実施例〕Example of Invention

以下本発明の実施例を図面によつて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第3図はメタノールを燃料とする燃料電池を示し、酸性
電解質を使用した例である。
FIG. 3 shows a fuel cell using methanol as a fuel, which is an example using an acidic electrolyte.

電解質を保持する母材として陽イオン交換膜21を用い、
その少なくとも片側に高分子電解質22を形成して電解質
層2を得ている。具体的に電解質層2は、ジビニルベン
ゼン−スチレンスルホン酸系の陽イオン交換膜21の表面
を処理して高分子電解質が付き易くしてアクリル板で挾
み、スチレンスルホン酸ソーダのモノマーと架橋剤であ
るノナエチレングリコールジメタクリレート7重量%を
水分と共に混ぜたものに先のアクリル板を浸し、約60℃
のウオータバス中で2時間架橋させて構成されている。
この高分子電解質層2は片側約100μm程度の均一層で
あり、電極と組合せる前に酸型に置換した。電極と一体
にして組立てたユニツトセルは接着力も強く、その後、
電池への組立ても容易である。
Using the cation exchange membrane 21 as a base material to hold the electrolyte,
A polymer electrolyte 22 is formed on at least one side thereof to obtain an electrolyte layer 2. Specifically, the electrolyte layer 2 is prepared by treating the surface of the cation exchange membrane 21 of divinylbenzene-styrene sulfonic acid system to facilitate the attachment of the polymer electrolyte and sandwiching it with an acrylic plate, and the monomer of styrene sulfonic acid soda and the cross-linking agent. Soak the above acrylic plate in a mixture of 7% by weight of nonaethylene glycol dimethacrylate and water, and heat it to about 60 ° C.
It is made by cross-linking in a water bath of 2 hours.
This polymer electrolyte layer 2 is a uniform layer having a thickness of about 100 μm on each side, and was replaced with an acid type before being combined with an electrode. The unit cell assembled with the electrode has a strong adhesive force, and then
It is easy to assemble into a battery.

また架橋剤を4重量%、10重量%とした場合についても
実施したが、この場合にも電解質層の形状安定性が良く
なり、電極との組合せ作業が向上した。
Further, the case where the cross-linking agent was 4% by weight and 10% by weight was also carried out, but in this case also, the shape stability of the electrolyte layer was improved, and the work of combining with the electrode was improved.

ここで架橋剤の量について第1図および第2図で詳細に
説明する。
Here, the amount of the crosslinking agent will be described in detail with reference to FIGS. 1 and 2.

第1図において横軸は架橋剤量M(重量%)、また縦軸
はイオン導電率K(s/cm)と体積増加率ρを示してい
る。架橋剤量Mは、実用上0.5(s/cm)以上のイオン導
電率が得られる4〜10重量%を選定し、また体積増加率
ρについては2〜4程度が望しく、これを満足する架橋
剤量Mは4〜10重量%を含有して僅かに大きな値となつ
ている。従つて、イオン導電率Kと体積増加率ρの共通
範囲から、架橋剤量Mは4〜10重量%とした。
In FIG. 1, the horizontal axis represents the amount of crosslinking agent M (% by weight), and the vertical axis represents the ionic conductivity K (s / cm) and the volume increase rate ρ. The cross-linking agent amount M is selected to be 4 to 10% by weight that can obtain an ionic conductivity of 0.5 (s / cm) or more for practical use, and the volume increase rate ρ is desired to be about 2 to 4 and this is satisfied. The amount M of the cross-linking agent is 4 to 10% by weight, which is a slightly large value. Therefore, from the common range of the ionic conductivity K and the volume increase rate ρ, the amount M of the crosslinking agent is set to 4 to 10% by weight.

このようにして架橋剤量Mを選定することによつて、適
度の膨潤度があつて電極と組合せた際の密着性も良く、
はみ出しは見られなくなり、また移動度とイオン交換基
の量が確保され良好なイオン導電率が得られた。
By selecting the amount M of the cross-linking agent in this way, an appropriate degree of swelling is obtained, and the adhesiveness when combined with the electrode is also good,
No protrusion was observed, and the mobility and the amount of ion-exchange groups were secured, and good ionic conductivity was obtained.

第2図は酸性電解質型メタノール燃料電池(I=60mA/c
m2)の例で、横軸に時間t(h)をとり、縦軸に電極間
電圧E(V)をとつて示しており、本実施例によるもの
は一点鎖線Bのように安定して高性能を示している。一
方、従来のものは実線Aで示すように初期性能は良くて
も性能低下が早かつた。
Figure 2 shows an acidic electrolyte type methanol fuel cell (I = 60mA / c
In the example of m 2 ), the horizontal axis represents time t (h) and the vertical axis represents inter-electrode voltage E (V). It shows high performance. On the other hand, as shown by the solid line A, the conventional one had good initial performance, but the performance deteriorated quickly.

第3図に示した燃料電池のイオン交換膜21としては、フ
ツ素系,ポリエチレン系,ポリスチレン系、ポリスチレ
ンブタジエン系をベースにし、スルホン酸基を付加した
ものを使用することができる。また高分子電解質22とし
てポリエチレンスルホン酸や、フツ素系の樹脂にスルホ
ン酸基あるいはカルボン酸基を付加したものも使用でき
る。また高分子電解質22として、アルカリ性電解質型で
は第4類アミンをもつ材料を用いることができる。更に
燃料としては、メタノール,ヒドラジン,水素,アンモ
ニア等を用いることができ、酸化剤としては空気,酸
素,酸素を含むガス等を用いることができる。
As the ion exchange membrane 21 of the fuel cell shown in FIG. 3, a fluorine-based, polyethylene-based, polystyrene-based, or polystyrene-butadiene-based base having a sulfonic acid group added thereto can be used. Further, as the polymer electrolyte 22, polyethylene sulfonic acid or a fluorine-based resin to which a sulfonic acid group or a carboxylic acid group is added can be used. Further, as the polymer electrolyte 22, in the alkaline electrolyte type, a material having a class 4 amine can be used. Further, methanol, hydrazine, hydrogen, ammonia or the like can be used as the fuel, and air, oxygen, a gas containing oxygen or the like can be used as the oxidant.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、架橋剤で結合した高分子
電解質をイオン交換膜の母材によつて保持して電解質層
を形成し、このときの架橋剤を4〜10重量%としたた
め、電解液の飛散や溶出を防止すると共に高いイオン導
電性をもつた性能の安定した燃料電池が得られる。
As described above, the present invention holds the polymer electrolyte bound with the cross-linking agent by the base material of the ion exchange membrane to form the electrolyte layer, and the cross-linking agent at this time is 4 to 10 wt%, It is possible to obtain a fuel cell that prevents scattering and elution of the electrolytic solution and has high ionic conductivity and stable performance.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例による燃料電池の架橋剤量と
諸特性の関係を示す特性図、第2図は本発明と従来例の
性能持続特性図、第3図は本発明の一実施例による燃料
電池の原理構成図、第4図は従来の燃料電池の原理構成
図である。 2……電解質層、3……アノード、4……カソード、5
……燃料室、6……酸化剤室、21……陽イオン交換膜、
22……高分子電解質、M……架橋剤量、K……イオン導
電率。
FIG. 1 is a characteristic diagram showing the relationship between the amount of cross-linking agent and various characteristics of a fuel cell according to one embodiment of the present invention, FIG. 2 is a performance sustaining characteristic diagram of the present invention and a conventional example, and FIG. 3 is one of the present invention. FIG. 4 is a principle configuration diagram of a fuel cell according to an embodiment, and FIG. 4 is a principle configuration diagram of a conventional fuel cell. 2 ... Electrolyte layer, 3 ... Anode, 4 ... Cathode, 5
...... Fuel chamber, 6 ... Oxidizer chamber, 21 ... Cation exchange membrane,
22 ... Polyelectrolyte, M ... Amount of cross-linking agent, K ... Ionic conductivity.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 津久井 勤 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (56)参考文献 特開 昭59−23473(JP,A) 特開 昭50−3088(JP,A) 特開 昭53−37789(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Tsutomu Tsukui 4026 Kuji Town, Hitachi City, Ibaraki Prefecture, Hitachi Research Laboratory, Hitachi, Ltd. (56) References JP 59-23473 (JP, A) JP 50 -3088 (JP, A) JP-A-53-37789 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】架橋剤で結合した高分子電解質をイオン交
換膜の母材で保持して電解質層を形成し、この電解質層
の両側に電極を設け、これら電極の側部にそれぞれ燃料
を供給する燃料室と少なくとも酸素を供給する酸化剤室
を有する燃料電池において、上記架橋剤の量を、4〜10
重量%としたことを特徴とする燃料電池。
1. A polymer electrolyte bound by a cross-linking agent is held by a base material of an ion exchange membrane to form an electrolyte layer, electrodes are provided on both sides of this electrolyte layer, and fuel is supplied to the side portions of these electrodes. In a fuel cell having a fuel chamber for supplying oxygen and an oxidant chamber for supplying at least oxygen,
A fuel cell characterized by being set to weight%.
JP60205280A 1985-09-19 1985-09-19 Fuel cell Expired - Lifetime JPH06101340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60205280A JPH06101340B2 (en) 1985-09-19 1985-09-19 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60205280A JPH06101340B2 (en) 1985-09-19 1985-09-19 Fuel cell

Publications (2)

Publication Number Publication Date
JPS6266576A JPS6266576A (en) 1987-03-26
JPH06101340B2 true JPH06101340B2 (en) 1994-12-12

Family

ID=16504360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60205280A Expired - Lifetime JPH06101340B2 (en) 1985-09-19 1985-09-19 Fuel cell

Country Status (1)

Country Link
JP (1) JPH06101340B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS503088A (en) * 1973-05-16 1975-01-13
JPS5337789A (en) * 1976-09-20 1978-04-07 Japan Atom Energy Res Inst Novel copolymer and cation exchange membrane composed of the same
JPS5923473A (en) * 1982-07-30 1984-02-06 Hitachi Ltd Fuel cell, electrolyte structure for fuel cell and electrolyte composite for fuel cell

Also Published As

Publication number Publication date
JPS6266576A (en) 1987-03-26

Similar Documents

Publication Publication Date Title
EP0100530B1 (en) Fuel cell using organic high-molecular electrolyte
US3573105A (en) Rechargeable non-aqueous alkalimetal-halogen electrochemical cells
CA2240019A1 (en) Direct methanol feed fuel cell and system
US7846604B2 (en) Membrane electrode assembly with controlled water management/ion flow
TWI239114B (en) Fuel cell and manufacturing method thereof
CN108461693A (en) A kind of preparation method improving lithium ion battery thermal shock and short-circuit diaphragm
US4447505A (en) Fuel cell electrode
JPH06101340B2 (en) Fuel cell
CN106207105A (en) A kind of high-performance zinc-silver oxide cell
JPH07176310A (en) Electrode and junction body between electrode and ion exchange membrane
JPS62226580A (en) Redox flow battery
JPS60202666A (en) Paste type cadmium anode plate for alkaline storage battery
JPH08148153A (en) Solid polymeric fuel cell electrode and manufacture thereof
JPS6128856A (en) Moisture sensor
JPS648430B2 (en)
JPS61259460A (en) Matrix for phosphoric-acid fuel cell
JPS59112580A (en) Electrolyte matrix for fuel cell
JPS58165267A (en) Fuel cell
JPS60246559A (en) Flat organic electrolyte cell
JPH0467570A (en) Phosphoric acid fuel cell
JPS60177561A (en) Fuel cell
JPS6196661A (en) Thin battery
JPS60115163A (en) Manufacture of anode for fused salt fuel cell
JPS62226581A (en) Redox flow battery
Arrance et al. Improved inorganic ion exchange membranes