JPH06101328B2 - Sealed alkaline storage battery - Google Patents

Sealed alkaline storage battery

Info

Publication number
JPH06101328B2
JPH06101328B2 JP61293943A JP29394386A JPH06101328B2 JP H06101328 B2 JPH06101328 B2 JP H06101328B2 JP 61293943 A JP61293943 A JP 61293943A JP 29394386 A JP29394386 A JP 29394386A JP H06101328 B2 JPH06101328 B2 JP H06101328B2
Authority
JP
Japan
Prior art keywords
negative electrode
cadmium
storage battery
alkaline storage
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61293943A
Other languages
Japanese (ja)
Other versions
JPS63148547A (en
Inventor
功 松本
博志 川野
正一 池山
和隆 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61293943A priority Critical patent/JPH06101328B2/en
Publication of JPS63148547A publication Critical patent/JPS63148547A/en
Publication of JPH06101328B2 publication Critical patent/JPH06101328B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/246Cadmium electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • H01M10/526Removing gases inside the secondary cell, e.g. by absorption by gas recombination on the electrode surface or by structuring the electrode surface to improve gas recombination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、密閉形アルカリ蓄電池、とにその負極の改良
に関するものである。
Description: TECHNICAL FIELD The present invention relates to a sealed alkaline storage battery and an improvement in the negative electrode thereof.

従来の技術 現在工業的には、アルカリ蓄電池を代表する電池系はニ
ッケル正極とカドミウム負極で構成されるニッケル・カ
ドミウム蓄電池である。この電池の中で大半を占め、ポ
ータブル機器用電源等に広く使用され始めた円筒密閉形
ニッケル・カドミウム蓄電池には、最近、前記の用途面
からさらに高容量,短時間充電(急速充電)が切望され
ている。前者の要望に対しては電極の非焼結化などで対
応し、後者の要望に対しては過充電時に正極から発生す
る酸素ガスの吸収性能を改善した負極で対応してきた。
2. Description of the Related Art Currently, industrially, a battery system that represents an alkaline storage battery is a nickel-cadmium storage battery including a nickel positive electrode and a cadmium negative electrode. Cylindrical sealed nickel-cadmium storage batteries, which account for the majority of these batteries and have begun to be widely used as power sources for portable devices, have recently longed for higher capacity and short-time charging (quick charging) from the above-mentioned applications. Has been done. The former requirement has been met by making the electrode non-sintered, and the latter requirement has been met by a negative electrode with improved absorption of oxygen gas generated from the positive electrode during overcharge.

一般的なペースト式カドミウム負極における酸素ガス吸
収性能は、これを適用した密閉電池で充電電流約1/3cmA
以下、つまり完全充電には3.3時間以上を要すといわれ
ている。この特性改善のための技術上の重要点は、正極
から移動する酸素ガスと金属カドミウムの接触を助ける
構成方法およびその反応速度の向上である。このため以
下の手段が提案されたきた。
Oxygen gas absorption performance of a general paste type cadmium negative electrode is about 1/3 cmA charging current in a sealed battery to which this is applied.
It is said that it takes less than 3.3 hours to fully charge the battery. An important technical point for improving this property is a method of constructing a method for assisting the contact between the oxygen gas moving from the positive electrode and the metal cadmium, and an improvement in the reaction rate thereof. Therefore, the following means have been proposed.

(1)負極の多孔度を高めて、酸素ガスとカドミウムの
接触する有効面積を増加させる。
(1) The porosity of the negative electrode is increased to increase the effective area of contact between oxygen gas and cadmium.

(2)負極全体にフッ素樹脂で撥水性をもたせ、酸素ガ
ス,カドミウムおよび電解液とで形成される三相界面を
適切な状態にし、反応有効部を増大させる。
(2) The entire negative electrode is made water-repellent with a fluororesin, and the three-phase interface formed with oxygen gas, cadmium and the electrolytic solution is brought into an appropriate state, and the reaction effective area is increased.

(3)カーボン等の導電剤を負極の表面もしくは内部に
配し、電極全体の電気抵抗を低下させて、酸素ガスに接
触しやすい負極表面付近に金属のカドミウムが形成され
やすくなる。
(3) A conductive agent such as carbon is placed on the surface or inside of the negative electrode to reduce the electric resistance of the entire electrode, and metal cadmium is likely to be formed near the surface of the negative electrode which is likely to come into contact with oxygen gas.

(4)負極に酸素還元接触をメッキして付着させ酸素ガ
スのイオン化を促進させる。
(4) Oxygen reduction contact is plated and attached to the negative electrode to promote ionization of oxygen gas.

発明が解決しようとする問題点 上記(1)の方法では酸素ガス吸収能は向上するが、多
孔度の増加は高容量密度化に不利である。(2),
(3),(4)の方法もそれぞれ役割りは異なるが、酸
素ガス吸収能の向上には有効な手段である。しかし、
(2),(3)においては負極表面を比較的多量の物質
で被覆するため、とくに高率での放電特性を低下させる
危険性を有している。これに対して(4)の方法は、少
量で有効なのでこのような危険性は少ないが、一般に有
効な還元触媒である白金族金属は極めて高価であるう
え、メッキ法のようにこの金属をそのまま負極と接触さ
せて用いたのでは、負極の水素発生過電圧が低下して充
電効率を減少させることが懸念される。
Problems to be Solved by the Invention In the method (1) described above, the oxygen gas absorption capacity is improved, but the increase in porosity is disadvantageous for increasing the capacity density. (2),
Although the methods (3) and (4) have different roles, they are effective means for improving the oxygen gas absorption capacity. But,
In (2) and (3), since the surface of the negative electrode is coated with a relatively large amount of substance, there is a risk of lowering the discharge characteristics at a particularly high rate. On the other hand, the method of (4) is effective in a small amount, so such a risk is small, but in general, a platinum group metal, which is an effective reduction catalyst, is extremely expensive, and this metal is used as it is as in the plating method. If it is used in contact with the negative electrode, there is a concern that the hydrogen generation overvoltage of the negative electrode may decrease and the charging efficiency may decrease.

本発明は、これら4方法のうち最も酸素ガス吸収性能に
有効な(4)の方法に着目し、微量の白金族金属を用い
て、酸素ガス吸収能に優れ、充電効率および放電率に支
障のない負極を提供することを目的とする。
The present invention focuses on the method (4), which is most effective in oxygen gas absorption performance among these four methods, and uses a small amount of platinum group metal to excel in oxygen gas absorption capacity, which may interfere with charging efficiency and discharge rate. The purpose is to provide a negative electrode.

問題点を解決するための手段 この問題点を解決するため本発明は、高価な白金族金属
を極めて微量担持させたアルミナ粉末の優れた酸素イオ
ン化性能に着目し、少量の結着剤とともに負極の表面に
配したものである。
Means for Solving the Problems In order to solve this problem, the present invention focuses on the excellent oxygen ionization performance of an alumina powder carrying an extremely small amount of an expensive platinum group metal, and a small amount of a binder with a negative electrode. It is arranged on the surface.

作用 この構成により、(1)のような高容量密度の低下をき
たすことなく、また材料の使用料が少ないため(2),
(3)の方法で懸念される高率放電特性を低下させるこ
とのない酸素ガス吸収性能の優れた負極が得られる。さ
らに(4)の特徴である優れた酸素ガス吸収性能を維持
したまま、高価な白金族金属の使用量が低減でき、結着
剤と練合して電極に塗着するため、触媒とくに白金等と
カドミウムが直接接触することが少なく、水素発生過電
圧の低下を招くことがない。
Action With this configuration, the high capacity density does not decrease as in (1), and the material usage fee is low (2),
With the method (3), it is possible to obtain a negative electrode having an excellent oxygen gas absorption performance without deteriorating the high rate discharge characteristic which is a concern. Furthermore, the amount of expensive platinum group metal used can be reduced while maintaining the excellent oxygen gas absorption performance, which is the feature of (4), and the catalyst, especially platinum, etc., can be kneaded with the binder and applied to the electrode. And cadmium rarely come into direct contact with each other, and the hydrogen generation overvoltage is not lowered.

実施例 塩酸酸性水溶液1に塩化白金酸1.5gを溶解した溶液中
に約500gのアルミナ粉末を入れて60℃で加熱,攪拌後、
アルミナを主とする粉末を取り出して100℃で乾燥し
た。つぎにこの粉末50gとポリビニルアルコールの3wt%
水溶液1とを混合攪拌し、ペースト状の練合物を得
た。この練合物を、公知の、厚さ約0.55mm,平均多孔度3
3%のペースト式カドミウム負極表面に、乾燥後の重量
で約2mg/cm2塗着し、乾燥して、微量の触媒を表面に配
したペースト式カドミウム負極を得た。この際、乾燥後
に軽く表面を加圧ローラー間を通して加圧してもよい。
白金を担持させたアルミナ粉末の断面図を第3図に示
す。2はアルミナ粉末を示し、1はアルミナ粉末表面に
部分的に担持された、主に白金で構成される触媒を示
す。また第1図にはこの実施例を示したカドミウム負極
の断面概略図を示し、公知の,芯金5を中央に配し両側
に酸化カドミウムを主とする活物質層4を配して構成さ
れる負極に、3で示す触媒と結着剤よりなる層が塗着一
体化されている。この層3の部分を第2図に拡大して示
した。酸化カドミウム7の右方すなわち電極表面に、白
金を担持したアルミナ粉末2とポリビニルアルコール6
の混合物が塗着されている。アルミナ粉末は直接酸化カ
ドミウムと接触する機会は極めて少ない。
Example About 500 g of alumina powder was added to a solution prepared by dissolving 1.5 g of chloroplatinic acid in hydrochloric acid acidic aqueous solution 1, heated at 60 ° C. and stirred,
The powder mainly containing alumina was taken out and dried at 100 ° C. Next, 50g of this powder and 3wt% of polyvinyl alcohol
Aqueous solution 1 was mixed and stirred to obtain a paste-like kneaded product. This kneaded material is known to have a thickness of about 0.55 mm and an average porosity of 3
A paste-type cadmium negative electrode having a dry weight of about 2 mg / cm 2 was applied to the surface of the paste-type cadmium negative electrode and dried to obtain a paste-type cadmium negative electrode having a small amount of catalyst on the surface. At this time, the surface may be lightly pressed through a pressure roller after drying.
A cross-sectional view of the alumina powder supporting platinum is shown in FIG. 2 indicates an alumina powder, and 1 indicates a catalyst which is partially supported on the surface of the alumina powder and is mainly composed of platinum. Further, FIG. 1 shows a schematic cross-sectional view of the cadmium negative electrode showing this embodiment, which is constituted by arranging a known core metal 5 in the center and active material layers 4 mainly containing cadmium oxide on both sides. A layer composed of a catalyst and a binder shown by 3 is coated and integrated on the negative electrode. The portion of this layer 3 is shown enlarged in FIG. On the right side of cadmium oxide 7, that is, on the surface of the electrode, platinum-supported alumina powder 2 and polyvinyl alcohol 6
Mixture is applied. Alumina powder has very few opportunities for direct contact with cadmium oxide.

本実施例に記載した方法で得られた、厚さ約0.55mmのペ
ースト式カドミウム負極を、巾39mm、長さ80mmに切断
し、一般に使用されている厚さ7mm、幅39mm、長さ60mm
の焼結式ニッケル正極と組み合せ、他の構成も一般にニ
カド電池と同様にして、KR−AAサイズの円筒密閉形ニッ
ケル・カドミウム蓄電池を10セル試作した。これらの電
池を、通常の使用条件で最も過酷な0℃において、種々
の充電率で充電を公称容量(500mAhとする)の150%行
ない、それぞれの充電率における電池内圧の最大値を測
定した。各電池の平均値を第4図Aに示す。同図には、
本発明のような触媒を使用しない一般のカドミウム負極
を用いた電池10セルの平均電池内圧を比較例としてBに
示す。この結果、安全弁が作動する圧力(約10Kg/cm2
以下となるには、従来の電池では充電率は0.3〜0,4cmA
が限界であったが、本発明の負極を用いた電池では2cmA
近くまで高めることができ、短時間充電に極めて良い効
果を示した。
Obtained by the method described in this example, a paste type cadmium negative electrode having a thickness of about 0.55 mm, cut into a width 39 mm, a length 80 mm, commonly used thickness 7 mm, width 39 mm, length 60 mm.
In combination with Sintered Nickel Positive Electrode of, other configurations were generally the same as Nicad batteries, and 10 cells of KR-AA sized cylindrical sealed nickel-cadmium storage batteries were prototyped. Under the most severe conditions of normal use, these batteries were charged at 150% of their nominal capacities (500 mAh) at various charging rates, and the maximum value of the battery internal pressure at each charging rate was measured. The average value of each battery is shown in FIG. 4A. In the figure,
The average battery internal pressure of 10 cells of a battery using a general cadmium negative electrode that does not use a catalyst as in the present invention is shown in B as a comparative example. As a result, the pressure at which the safety valve operates (about 10 kg / cm 2 )
To be less than, the charging rate of the conventional battery is 0.3 to 0.4 cmA
Was the limit, but it was 2 cmA for the battery using the negative electrode of the present invention.
It was possible to raise it to near, and it showed a very good effect for short-time charging.

また本実施例のカドミウム負極に塗着する,白金を担持
したアルミナ粉末の量を変えた場合のKR−AAサイズ電池
における電池内圧の変化を第5図Aに示す。横軸は,白
金使用量で示した。充電率は1cmA,充電深度は150%,0℃
の条件で測定し、各点は電池2個の平均値で示した。比
較として、通常の無電解メッキ方法を用いた白金触媒担
持のカドミウム負極を用いた場合の同様な測定値をCで
示した。この結果、本発明の負極の場合は、単位負極面
積当りの白金使用料0.05mg/cm2でも電池内圧5.5Kg/cm2
であったが、負極に直接白金をメッキしたCの場合は、
0.5mg/cm2で10Kg/cm2の内圧を示した。従って本発明の
場合は、高価格の白金使用量が著しく低減できることが
明らかである。この理由は、単にカドミウム負極に白金
をメッキした場合、実際の酸素ガス吸収に有効な負極表
面付近だけでなく負極の深部にも多くの白金がメッキさ
れることによると考えられる。
FIG. 5A shows changes in the battery internal pressure in the KR-AA size battery when the amount of platinum-supported alumina powder applied to the cadmium negative electrode of this example was changed. The horizontal axis shows the amount of platinum used. Charging rate is 1cmA, charging depth is 150%, 0 ℃
Was measured under the conditions described above, and each point is represented by the average value of two batteries. For comparison, C shows the same measured value when a platinum catalyst-supported cadmium negative electrode using a normal electroless plating method was used. As a result, in the case of the negative electrode of the present invention, even if the platinum usage amount per unit negative electrode area is 0.05 mg / cm 2 , the battery internal pressure is 5.5 Kg / cm 2.
However, in the case of C in which the negative electrode was directly plated with platinum,
An internal pressure of 10 kg / cm 2 was shown at 0.5 mg / cm 2 . Therefore, in the case of the present invention, it is clear that the amount of expensive platinum used can be significantly reduced. The reason for this is considered to be that, when platinum is simply plated on the cadmium negative electrode, a large amount of platinum is plated not only in the vicinity of the negative electrode surface which is actually effective for absorbing oxygen gas but also in the deep part of the negative electrode.

また本実施例のカドミウム負極を用いた電池では、触媒
使用量が極めて少ないので、放電率に支障をきたすこと
なく、かつ結着剤と練合したことにより直接カドミウム
と接触することが少ないので、触媒による水素発生過電
圧の低下(充電効率を低減させる)を招くこともなかっ
た。
Further, in the battery using the cadmium negative electrode of the present example, since the amount of catalyst used is extremely small, since it does not hinder the discharge rate, and because there is little direct contact with cadmium by being kneaded with the binder, The hydrogen generation overvoltage due to the catalyst (reduction of charging efficiency) was not caused.

また実施例のアルミナ粉末は一般のα−アルミナを主体
とする粒径0.2〜40μmのものを用いたが、1200℃以上
で焼成したγ−アルミナを用いた方が充放電サイクルを
繰返しても安定した特性を示した。さらにこの場合0.2
〜10μmの比較的微粉末を用いると、第5図Aよりやや
低い内圧を示す傾向は認められた。
The alumina powder used in the examples was a general α-alumina having a particle size of 0.2 to 40 μm, but the use of γ-alumina fired at 1200 ° C. or higher is more stable even after repeated charge and discharge cycles. It showed the following characteristics. In this case 0.2
When a relatively fine powder of -10 μm was used, there was a tendency that the internal pressure was slightly lower than that in FIG. 5A.

なお、実施例ではカドミウム負極を一例に取り上げた
が、酸素ガス吸収現象を応用する、亜鉛や水素吸蔵合金
等を負極に用いる密閉形アルカリ蓄電池にも適用できる
ものである。
In the examples, the cadmium negative electrode is taken as an example, but the present invention can also be applied to a sealed alkaline storage battery that uses an oxygen gas absorption phenomenon and uses zinc or a hydrogen storage alloy as the negative electrode.

発明の効果 以上のように本発明によれば、高価な白金族金属の使用
量も少なく、かつ充電効率,放電率等の特性を低下させ
ることなく、急速充電特性に優れた密閉形アルカリ蓄電
池が得られる。
EFFECTS OF THE INVENTION As described above, according to the present invention, there is provided a sealed alkaline storage battery which is excellent in rapid charging characteristics without using a large amount of expensive platinum group metal and reducing characteristics such as charging efficiency and discharge rate. can get.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例における負極の断面図、第2図
は同要部の拡大断面を示す模式図、第3図は白金を担持
したアルミナ粉末の断面模式図、第4図および第5図は
KR−AAサイズ電池における過充電時の内圧特性の比較を
示す図である。 1……白金、2……アルミナ粉末、3……負極に塗着さ
れた触媒と結着剤の層、4……酸化カドミウムを主とす
る活物質部、5……芯材、6……ポリビニルアルコー
ル、7……酸化カドミウムを主とする活物質粉末、8…
…空間。
FIG. 1 is a cross-sectional view of a negative electrode in an example of the present invention, FIG. 2 is a schematic view showing an enlarged cross-section of the relevant part, FIG. 3 is a schematic cross-sectional view of alumina powder carrying platinum, FIG. 4 and FIG. 5 figures
It is a figure which shows the comparison of the internal pressure characteristic at the time of overcharge in a KR-AA size battery. 1 ... Platinum, 2 ... Alumina powder, 3 ... Layer of catalyst and binder coated on the negative electrode, 4 ... Active material part mainly containing cadmium oxide, 5 ... Core material, 6 ... Polyvinyl alcohol, 7 ... Active material powder mainly containing cadmium oxide, 8 ...
…space.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】正極,負極,セパレータおよびアルカリ性
電解液とで構成される発電素子群を容器内に密閉した密
閉形アルカリ蓄電池であって、前記負極が、微量の白金
族金属が担持されたアルミナ粉末と結着性を有する樹脂
との混合物を、表面もしくは表面付近の内部に配した構
造であることを特徴とする密閉形アルカリ蓄電池。
1. A sealed alkaline storage battery in which a power generating element group composed of a positive electrode, a negative electrode, a separator and an alkaline electrolyte is sealed in a container, wherein the negative electrode is an alumina carrying a small amount of platinum group metal. A sealed alkaline storage battery having a structure in which a mixture of a powder and a resin having a binding property is disposed inside or near the surface.
【請求項2】アルミナ粉末がγ−アルミナで、その粒径
の大部分は0.2〜10μmの範囲にある特許請求の範囲第
1項記載の密閉形アルカリ蓄電池。
2. The sealed alkaline storage battery according to claim 1, wherein the alumina powder is γ-alumina, and most of the particle size thereof is in the range of 0.2 to 10 μm.
JP61293943A 1986-12-10 1986-12-10 Sealed alkaline storage battery Expired - Lifetime JPH06101328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61293943A JPH06101328B2 (en) 1986-12-10 1986-12-10 Sealed alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61293943A JPH06101328B2 (en) 1986-12-10 1986-12-10 Sealed alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS63148547A JPS63148547A (en) 1988-06-21
JPH06101328B2 true JPH06101328B2 (en) 1994-12-12

Family

ID=17801181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61293943A Expired - Lifetime JPH06101328B2 (en) 1986-12-10 1986-12-10 Sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH06101328B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6428897B1 (en) * 1999-09-24 2002-08-06 General Electric Company Low temperature curable organopolysiloxane coatings

Also Published As

Publication number Publication date
JPS63148547A (en) 1988-06-21

Similar Documents

Publication Publication Date Title
JPH06101328B2 (en) Sealed alkaline storage battery
JP3411365B2 (en) Negative electrode active material containing Ga as main component and secondary battery using the same
JP3188000B2 (en) Non-sintered nickel positive electrode
JPS6137733B2 (en)
JP2591988B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2930331B2 (en) Paste nickel positive electrode and alkaline storage battery
JP3501378B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2861057B2 (en) Alkaline secondary battery
JP2994850B2 (en) Paste cadmium negative electrode for alkaline storage batteries
JP2564172B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2577964B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2591985B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2796674B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH0234433B2 (en)
JPH0888001A (en) Hydrogen storage alloy electrode and manufacture thereof
JP2600307B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2595664B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2591986B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2623775B2 (en) Sealed rectangular nickel-cadmium storage battery
JP3316687B2 (en) Nickel-metal hydride storage battery
JP2564176B2 (en) Cadmium negative electrode plate for sealed alkaline secondary battery and sealed alkaline secondary battery using the negative electrode plate
JP2591987B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH10275619A (en) Paste type cadmium electrode
JPH08213003A (en) Nickel-metal hydride battery
JPS63148548A (en) Manufacture of negative electrode for sealed alkaline storage battery