JPH06101246B2 - Laminated conductor - Google Patents

Laminated conductor

Info

Publication number
JPH06101246B2
JPH06101246B2 JP17084882A JP17084882A JPH06101246B2 JP H06101246 B2 JPH06101246 B2 JP H06101246B2 JP 17084882 A JP17084882 A JP 17084882A JP 17084882 A JP17084882 A JP 17084882A JP H06101246 B2 JPH06101246 B2 JP H06101246B2
Authority
JP
Japan
Prior art keywords
resistance
present
thickness
conductor
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17084882A
Other languages
Japanese (ja)
Other versions
JPS5963613A (en
Inventor
勝次 中原
和夫 松浦
桂典 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP17084882A priority Critical patent/JPH06101246B2/en
Publication of JPS5963613A publication Critical patent/JPS5963613A/en
Publication of JPH06101246B2 publication Critical patent/JPH06101246B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は積層型導電体に関するものであり、特に高抵抗
領域で抵抗値の安定性がよく、バラツキの少ない面状導
電体に関するものである。
The present invention relates to a layered conductor, and more particularly to a planar conductor having a stable resistance value and a small variation in a high resistance region.

導電体としては各種金属が古くから広範に利用されてい
るが、近年科学技術の進歩に伴ない、面方向に特定の導
電性(電気抵抗)を有する導電体の需要が高まると共
に、要求特性も本来の導電性に加え種々の特性の具備を
要求されるようになつてきており、金属材料では不都合
の場合が少なくない。たとえば、ある種の抵抗素子、面
状発熱体、静電記録や電子写真などの導電基板は10〜10
9Ω/口の表面電気抵抗を要し、これらにはバルクな金
属材料以外の導電体が用いられている。これらの導電体
としては、 (1) 一般に絶縁性基板に導電性有機高分子を塗布し
たもの、 (2) 絶縁性基板に金属材料や導電性金属化合物を蒸
着、スパツタリング、イオンプレーテイングなどの方法
で薄膜形成したもの、 (3) 導電性粉体を有機高分子結着剤中に分散したも
の、などがある。しかしながら、これらのものは、次の
ようにそれぞれ欠点があり、要求に対応しきれていない
のが実状である。たとえば(1)のものは、有機高分子
が4級アンモニウムやスルホン酸ナトリウムなどの高分
子電解質であり、要するに吸湿によつて導電性を発現さ
せているために湿度変化によつて導電性が大幅に変化す
る欠点を有し、安定使用できない。(2)のものは、導
電層が本来強靭性がない上に高々1μという薄膜である
ために、耐摩耗性がなく、耐久性に乏しいなどの欠点が
あり、表面に露出するような形状では使用できない。
(3)のものは、相対的低抵抗を目的とすると導電粉を
多量に要するため強靭性、可撓性がなく、相対的高抵抗
を目的とすると導電粉の分散に著しく高精度な微調節を
必要とししかも均一な抵抗を有したものが得にくい。
Various metals have been widely used as conductors since ancient times, but with recent advances in science and technology, the demand for conductors with specific conductivity (electrical resistance) in the plane direction has increased, and the required characteristics have also increased. In addition to the original conductivity, it is required to have various properties, and it is often the case that metal materials are inconvenient. For example, some resistive elements, planar heating elements, conductive substrates for electrostatic recording, electrophotography, etc., have 10 to 10
A surface electrical resistance of 9 Ω / mouth is required, and conductors other than bulk metallic materials are used for these. These conductors include (1) generally an insulating substrate coated with a conductive organic polymer, (2) a method such as vapor deposition of a metal material or a conductive metal compound on the insulating substrate, sputtering, and ion plating. A thin film formed by (3), a conductive powder dispersed in an organic polymer binder, and the like. However, these things have the following drawbacks, respectively, and in reality, they cannot meet the demands. For example, in (1), the organic polymer is a polyelectrolyte such as quaternary ammonium or sodium sulfonate. In short, since conductivity is exhibited by absorbing moisture, the conductivity is significantly changed by changing humidity. It has the drawback of changing to, and cannot be used stably. In the case of (2), since the conductive layer originally has no toughness and is a thin film of at most 1 μm, it has drawbacks such as lack of wear resistance and poor durability, and is not exposed to the surface. I can not use it.
(3) does not have toughness and flexibility because a large amount of conductive powder is required for the purpose of relative low resistance, and remarkably highly precise fine adjustment for dispersion of conductive powder for the purpose of relative high resistance. It is difficult to obtain the one which requires a uniform resistance.

このように、たとえば10〜109Ω/口の表面抵抗を要す
る領域では、抵抗値が、環境条件的にも、経時的にも、
機械的にも、安定で、しかも抵抗値のバラツキの少ない
面状の導電体は未だ開発されていず、そのため装置やそ
の使用方法を工夫して実用しているのが実情である。
Thus, for example, in a region requiring a surface resistance of 10 to 10 9 Ω / mouth, the resistance value is
A plane conductor that is mechanically stable and has a small variation in resistance value has not been developed yet. Therefore, in reality, the device and the method of using the device are devised and put to practical use.

本発明の目的は従来知られた面状導電体の欠点を克服
し、抵抗値のバラツキが少なく、環境条件的にも、経時
的にも、機械的にも安定な面状導電体を提供することに
ある。
An object of the present invention is to overcome the drawbacks of the conventionally known planar conductors, to provide a planar conductor that has a small variation in resistance value and is environmentally stable, temporally and mechanically stable. Especially.

かかる本発明の目的は、実質的に金属および/または半
導体のみからなる面状導電性物質(A)表面に、平均粒
子径が10μ以下で体積固有抵抗が10-6〜108Ω・cmの導
電粉末を絶縁性有機高分子中に0.05〜15wt%添加したも
のの層(B)を付設してなる積層体構成物により達成さ
れる。
The object of the present invention is to provide an average particle size of 10 μm or less and a volume resistivity of 10 −6 to 10 8 Ω · cm on the surface of the sheet-like conductive material (A) substantially consisting of metal and / or semiconductor. This can be achieved by a laminate structure in which a layer (B) of an electrically conductive powder added to an insulating organic polymer in an amount of 0.05 to 15 wt% is additionally provided.

本発明において、面状導電性物質(A)が強度保持力を
有していればそれは単体で構成成分として用いることも
できるが、箔もしくは薄膜状物である場合等にあつて
は、必要に応じ、紙、プラスチツクシート、プラスチツ
クフイルム、ガラス、セラミツク、布などの絶縁性基板
(C)上に積層して用いることもできる。この場合該絶
縁性基板との積層は接着剤や粘着剤を用いて行なつても
よいし、それらを用いず該絶縁性基板表面にメツキ、真
空蒸着、化学蒸着、スパツタリング、イオンプレーテイ
ングなどの方法で薄膜形成したものであつてもよい。面
状導電性物質(A)の材料は金属(合金を含む)および
半導体から選ばれる。たとえば、Al、Cu、Sn、Zn、Pd、
Ag、Au、Pt、Rh、Fe、Co、Cr、Ni、ステンレス、真ちゆ
う、パーマロイ、その他多くの金属や合金類やSi、C、
In2O3、SnO2、CdO、CdS、In2O3-SnO2などの半導体があ
り、これらは単独で用いてもよいし、2種類以上が積層
されたり、混合されたりしてもよい。これらの面状導電
性物質の表面抵抗としては109Ω/口以下であることが
よい。表面抵抗が109Ω/口を越えると本発明の目的で
ある10〜109Ω/口の表面抵抗を有する構成物が得にく
く好ましくない。
In the present invention, if the sheet-like conductive material (A) has a strength holding force, it can be used alone as a constituent component, but if it is a foil or a thin film-like object, it may be necessary. According to the requirement, it can also be used by laminating it on an insulating substrate (C) such as paper, plastic sheet, plastic film, glass, ceramics or cloth. In this case, the insulating substrate may be laminated by using an adhesive or a pressure-sensitive adhesive, and without using them, the surface of the insulating substrate may be plated, vacuum-deposited, chemically vapor-deposited, sputtered, ion-plated, or the like. It may be a thin film formed by the method. The material of the planar conductive substance (A) is selected from metals (including alloys) and semiconductors. For example, Al, Cu, Sn, Zn, Pd,
Ag, Au, Pt, Rh, Fe, Co, Cr, Ni, stainless steel, brass, permalloy, many other metals and alloys, Si, C,
There are semiconductors such as In 2 O 3 , SnO 2 , CdO, CdS, and In 2 O 3 -SnO 2 , and these may be used alone, or two or more kinds may be laminated or mixed. . The surface resistance of these planar conductive materials is preferably 10 9 Ω / port or less. Surface resistance arrangement is obtained hardly undesirably having more than the surface resistivity of which is the object 10 to 10 9 Omega / mouth of the invention 10 9 Omega / mouth.

本発明における該面状導電性物質(A)の平均厚さは、
5Å〜5mmの範囲が好ましい。平均膜厚がこの範囲に達
しないと109Ω/口以下の表面抵抗が得にくく、逆に5mm
を越えると面状導電体として実用しにくい面があり好ま
しくない。また形状としては、平面状ないし、円筒状で
あることが実用面、製造面から好ましい。なお上記平均
膜質において、特に100Å以下の場合は必ずしも連続膜
にならず島状構造を呈していることが多いが、これらに
ついての上記厚さは全体が均一な厚みの膜であると仮定
してあらわしたものでもある。このような島状構造を呈
する極薄膜を含めて、上記面状導電性物質(A)の膜厚
が10μ以下であるような場合は上記絶縁性基板(C)や
さらに厚い導電性物質上に積層されたものであることが
強度面から望ましい。特に絶縁性基板上に金属および/
または半導体を5Å〜1μ薄膜形成したものは実用上好
ましく用いられる。
The average thickness of the sheet-like conductive material (A) in the present invention is
The range of 5Å to 5 mm is preferable. If the average film thickness does not reach this range, it will be difficult to obtain a surface resistance of 10 9 Ω / port or less, and conversely 5 mm
If it exceeds the range, it may not be practically used as a planar conductor, which is not preferable. The shape is preferably flat or cylindrical from the practical and manufacturing viewpoints. Incidentally, in the above average film quality, especially in the case of 100 Å or less, it is not always a continuous film and often has an island-like structure, but the above thickness of these is assumed to be a film of uniform thickness as a whole. It is also shown. Including the ultra-thin film having such an island structure, when the thickness of the planar conductive material (A) is 10 μm or less, the insulating substrate (C) or a thicker conductive material is used. It is desirable that they are laminated in terms of strength. Metal and / or
Alternatively, a semiconductor having a thin film formed in a thickness of 5 to 1 μm is preferably used in practice.

本発明において、面状導電性物質(A)表面に付設する
層(B)を構成する必須成分である導電粉末は、体積固
有抵抗が10-6〜108Ω・cmである必要があり、特に好ま
しくは10-4〜105Ω・cmであることがよい。体積固有抵
抗が上記範囲を越えると本発明の目的である10〜109Ω
/口の表面電気抵抗を有するものが得にくかつたり、ま
た導電粉末を多量に添加する必要が生じたりして好まし
くなく、逆に体積固有抵抗が上記範囲に達しないもので
は、得られるものの表面電気抵抗の均質性が悪く好まし
くない。本発明に有用な導電粉末としてはAl、Cu、Ag、
Ni-Crなどの合金を含む金属粉末、SnO2、In2O3、ZnO、T
iOx(x=1〜2)などの金属化合物粉末やSiやCなど
で代表される半導体粉末など多くものがあり、これらは
単独で用いられてもまた2種類以上が化合、混合などさ
れた状態で併用されていてもよい。これらの粉末は平均
粒子径が10μ以下である必要があり、長径でも10μ以
下、特に好ましくは5μ以下であることがよい。粒子径
が上記を越えると得られるものの表面電気抵抗の均質性
が悪くなり好ましくない。
In the present invention, the conductive powder which is an essential component constituting the layer (B) attached to the surface of the planar conductive material (A) needs to have a volume resistivity of 10 −6 to 10 8 Ω · cm, Particularly preferably, it is 10 −4 to 10 5 Ω · cm. When the volume resistivity exceeds the above range, the object of the present invention is 10 to 10 9 Ω
/ It is not preferable because it has a surface electric resistance of the mouth, and it is necessary to add a large amount of conductive powder, and conversely, when the volume resistivity does not reach the above range, it is obtained. The homogeneity of the surface electric resistance is poor, which is not preferable. As the conductive powder useful in the present invention, Al, Cu, Ag,
Metal powders containing alloys such as Ni-Cr, SnO 2 , In 2 O 3 , ZnO, T
There are many metal compound powders such as iOx (x = 1 to 2) and semiconductor powders represented by Si and C. Even if these are used alone, two or more kinds are compounded and mixed. May be used in combination. These powders need to have an average particle size of 10 μm or less, and the major axis is preferably 10 μm or less, particularly preferably 5 μm or less. If the particle size exceeds the above value, the obtained product is not preferable because the homogeneity of the surface electric resistance is deteriorated.

本発明において、層(B)を構成する他方の必須成分で
ある絶縁性有機高分子としては、各種の周知の熱可塑性
樹脂、たとえばポリ酢酸ビニル、ポリ塩化ビニル、ポリ
アクリル酸エステル、ポリメタクリル酸エステル、ポリ
塩化ビニリデン、ポリビニルアセタールやこれらの共重
合体、ポリエステル、ポリアミド、ポリウレタン、セル
ロース誘導体、シリコン樹脂、ポリエーテル、ポリエス
テルアミド、ポリエステルエーテル、ポリアミドイミ
ド、ケトン樹脂、アルキツド樹脂、などの熱可塑性樹
脂、エポキシ樹脂、ポリウレタン、不飽和ポリエステ
ル、ポリイミド、ポリアミド、さらに水酸基やカルボキ
シル基やアミノ基を含有するポリアクリル酸エステル共
重合体やポリメタクリル酸エステル共重合体などの熱可
塑性樹脂と硬化剤からなるもの、などの熱硬化性樹脂が
あり、これらは単独でも2種以上の共重合体やブレンド
物の形でも用いられる。勿論上記に限定されない。また
必要に応じて接着促進剤、可塑剤、安定剤、酸化防止
剤、紫外線吸収剤、増粘剤、消泡剤などの添加剤を配合
して使用してもよい。
In the present invention, as the insulating organic polymer which is the other essential component constituting the layer (B), various well-known thermoplastic resins such as polyvinyl acetate, polyvinyl chloride, polyacrylic acid ester, polymethacrylic acid are used. Thermoplastic resins such as esters, polyvinylidene chloride, polyvinyl acetals and their copolymers, polyesters, polyamides, polyurethanes, cellulose derivatives, silicone resins, polyethers, polyesteramides, polyester ethers, polyamideimides, ketone resins, alkyd resins, etc. , Epoxy resin, polyurethane, unsaturated polyester, polyimide, polyamide, and thermoplastic resin such as polyacrylic acid ester copolymer or polymethacrylic acid ester copolymer containing hydroxyl group, carboxyl group or amino group, and a curing agent. Things, there are thermosetting resins such as these are also used in the form of individually 2 or more copolymers and blends also. Of course, it is not limited to the above. If necessary, additives such as an adhesion promoter, a plasticizer, a stabilizer, an antioxidant, an ultraviolet absorber, a thickener and a defoaming agent may be blended and used.

上記層(B)の厚さは、目的により適宜選択されるが、
1μ〜100μ、さらに好ましくは2μ〜20μの範囲であ
る。
The thickness of the layer (B) is appropriately selected depending on the purpose,
It is in the range of 1 μ to 100 μ, more preferably 2 μ to 20 μ.

上記(B)は組成あるいは成分比率の異なる2種類以上
の層になつていてもよい。
The above (B) may be composed of two or more types of layers having different compositions or component ratios.

上記層(B)を構成する導電粉末の割合は0.05〜15wt%
であることが必要であるが、特に好ましくは、0.1〜10w
t%であることがよい。導電粉末の割合が上記範囲に達
しないと本発明の目的に必要な導電性が発現せず好まし
くなく、逆に上記範囲を越えると上記(3)で述べたよ
うな可撓性の不足、表面平滑性の不足などの問があり好
ましくない。
The ratio of the conductive powder constituting the layer (B) is 0.05 to 15 wt%
It is necessary, but particularly preferably 0.1 to 10w
It should be t%. If the ratio of the conductive powder does not reach the above range, the conductivity required for the purpose of the present invention is not exhibited, which is not preferable. On the contrary, if the ratio exceeds the above range, the flexibility and surface as described in (3) above are insufficient. It is not preferable because of problems such as lack of smoothness.

本発明において、上記(A)表面への(B)の積層方式
としては、上記導電粉末と上記有機高分子との混合物を
必要に応じて溶媒や分散媒などを用いて(A)の表面に
刷毛塗り、浸漬塗り、ナイフ塗り、ロール塗り、スプレ
ー塗り、流し塗り、回転塗り(スピンナー、ホエラーな
ど)、押出し塗り(押出しラミネートを含む)、フアン
テン塗りなど通常に行なわれている方式が適宜用いられ
うる。また予め上記(B)のシートもしくはフイルムを
つくつておき、これを上記(A)表面に積層してもよ
い。
In the present invention, as a method of laminating (B) on the surface of (A), a mixture of the conductive powder and the organic polymer is used on the surface of (A) by optionally using a solvent or a dispersion medium. Brush coating, dip coating, knife coating, roll coating, spray coating, flow coating, spin coating (spinner, whaler, etc.), extrusion coating (including extrusion lamination), fanten coating, etc., which are commonly used, are used as appropriate. sell. Alternatively, the above-mentioned sheet (B) or film may be prepared in advance and laminated on the surface (A).

かくして、特に高抵抗領域で抵抗値の安定性がよく、バ
ラツキの少ない面状導電体が得られるものであるが、本
発明の積層型導電体は、それを構成する各層単独の作用
効果からは予測し得ない作用効果を示す。即ち本発明の
積層型導電体の表面抵抗値は、層(A)単独の表面抵抗
値よりも高く、層(B)単独の表面抵抗値よりも低く、
しかも抵抗値にバラツキが少ない。そのため、(B)中
への導電性粉末の添加量は、(B)単独で用いる場合
(上記(2)の場合)にくらべて、著しく低くて済み、
その結果、強靭性、可撓性がすぐれており、また導電粉
末の分散に高度な調節手段を採る必要もない。また一般
に積層状態の構成体の表面抵抗は、表面層の表面電気抵
抗が支配因子となる(たとえば導電体の表面層に絶縁体
を積載した場合はその絶縁体の(表面)電気抵抗が支配
因子となり、導電性は発現しない)にもかかわらず、導
電粉末を絶縁性有機高分子中に0.5wt%添加してたとえ
ば厚さ10μ程度のシートとした表面電気抵抗が1016Ω/
口以上であるような平面方向にも厚さ方向にも実質的に
絶縁体であつても、これを本発明の(B)成分として用
いると得られる積層体106Ω/口以下の表面抵抗を示
す。極論をすれば、導電体の表面に絶縁体を積層して導
電性が発現したことを意味しており、これが本発明の骨
子である。何故にこのような効果が発現するのか、本発
明者らにも明らかでなく、積層構成における表面電気抵
抗およびその抵抗の均質性に関し、現時点で理論的説明
を行ない得ない新規知見といわざるを得ない。
Thus, the stability of the resistance value is particularly good in the high resistance region, and a planar conductor with less variation is obtained, but the laminated conductor of the present invention has a function and effect of each of the layers constituting the conductor. It shows unpredictable effects. That is, the surface resistance value of the laminated conductor of the present invention is higher than the surface resistance value of the layer (A) alone and lower than the surface resistance value of the layer (B) alone,
Moreover, there is little variation in the resistance value. Therefore, the amount of the conductive powder added to (B) is significantly lower than that when (B) is used alone (case (2) above),
As a result, the toughness and flexibility are excellent, and it is not necessary to use a sophisticated adjusting means for dispersing the conductive powder. In general, the surface resistance of a laminated structure is governed by the surface electrical resistance of the surface layer (for example, when an insulator is loaded on the surface layer of a conductor, the (surface) electrical resistance of the insulator is the controlling factor). However, even if a conductive powder is added to the insulating organic polymer in an amount of 0.5 wt%, a sheet having a thickness of about 10 μ has a surface electric resistance of 10 16 Ω /
Laminates obtained by using this as the component (B) of the present invention, even if it is substantially an insulator both in the plane direction and the thickness direction such as the mouth or more, the surface resistance of 10 6 Ω / mouth or less. Indicates. From an extreme point of view, it means that an insulator is laminated on the surface of a conductor to exhibit conductivity, and this is the essence of the present invention. It is not clear to the present inventors why such an effect is exhibited, and it must be said that it is a new finding that cannot be theoretically explained at this point regarding the surface electric resistance and the homogeneity of the resistance in the laminated structure. I don't get it.

本発明の効果は、面状導電性物質(A)が絶縁性基板
(C)上に積層された厚さ500Å以下の薄膜である場合
に特に有効である。すなわち、厚さが1μ以下、特に50
0Å以下の薄膜は上記(2)で述べたような多くの問題
点があり、しかも特に実用上可撓性を要し、絶縁性基板
(C)がプラスチツクシートであるような場合や、常に
他の物体と接触しながら用いられる場合は上記問題点が
大きな障害となつていたが、本発明により、導電性を保
持、導電性の安定化、耐摩耗性や耐薬品性の向上が一挙
に達成できたことになる。要するに本発明は、上記
(2)と(3)で述べたものを積層構成とした場合にそ
れぞれの欠点を克服できるとともに両者から期待できな
い表面電気抵抗の発現、表面電気抵抗の均質性などが発
現することが大きな特長であり、面状導電性物質の実用
範囲の拡大、これを用いた部材、機器の信頼性、寿命の
向上に大きく寄与するものである。
The effect of the present invention is particularly effective when the sheet-like conductive material (A) is a thin film having a thickness of 500 Å or less laminated on the insulating substrate (C). That is, the thickness is 1μ or less, especially 50
A thin film having a thickness of 0 Å or less has many problems as described in (2) above, and is particularly required to have flexibility in practical use, and when the insulating substrate (C) is a plastic sheet or when it is always When used while contacting with an object of the above, the above problems were a major obstacle, but by the present invention, conductivity is maintained, conductivity is stabilized, and abrasion resistance and chemical resistance are improved at once. It was done. In short, the present invention can overcome the respective drawbacks when the ones described in (2) and (3) above are formed into a laminated structure, and exhibit surface electrical resistance and homogeneity of surface electrical resistance that cannot be expected from both. This is a great feature, and it greatly contributes to the expansion of the practical range of the planar conductive material and the improvement of the reliability and life of the member and equipment using the same.

以下実施例に基づいて本発明を説明する。ただし、本発
明はこの実施例に限定されるものではない。
The present invention will be described below based on examples. However, the present invention is not limited to this embodiment.

尚実施例において、表面抵抗値は、荷重が500gの35mm角
型電極で測定した面抵抗値を表面抵抗値として表示し
た。
In the examples, the surface resistance value is represented by the surface resistance value measured with a 35 mm square electrode having a load of 500 g.

実施例1〜6,比較例1 厚さ100μmの二軸延伸ポリエチレンテレフタレートフ
イルム(東レ製“ルミラー”)の片側にAlを真空蒸着し
て表面抵抗値が5Ω/口の面状導電性物質を得た。次い
で、アクリル樹脂固形型分100重量部に対して、平均粒
径が0.1μm以下で体積固有抵抗が1Ω・cmのSnO2系導
電粉末を0.05、0.1、0.5、1.0、10、15、20重量部を加
え、トルエンと酢酸ブチル(重量比1:1)を溶媒とし
て、全固型分含量を20重量%とし各々を16時間ボールミ
ルで混合(それぞれ混合液1〜7)して、上記面状導電
性物質の表面に乾燥後の厚さが5μmになるようにリバ
ースロールコーターで塗工して、積層型導電体実施例1
〜6および比較例1を得た。これらの表面抵抗値は第1
表の通りであつた。第1表から、SnO2系導電粉末の添加
量は、アクリル樹脂固型分100重量部に対して、0.05〜1
5重量%のものが、表面抵抗値の中心値及びバラツキの
特性からみて、特にすぐれた積層型導電体であることは
明らかである。
Examples 1 to 6 and Comparative Example 1 Al was vacuum-deposited on one side of a biaxially stretched polyethylene terephthalate film (“Lumirror” manufactured by Toray) having a thickness of 100 μm to obtain a planar conductive material having a surface resistance value of 5Ω / mouth. It was Next, 0.05, 0.1, 0.5, 1.0, 10, 15, 20 parts by weight of SnO 2 type conductive powder having an average particle size of 0.1 μm or less and a volume resistivity of 1 Ω · cm, relative to 100 parts by weight of the solid content of acrylic resin. Parts, and using toluene and butyl acetate (weight ratio 1: 1) as a solvent to make the total solid content of 20% by weight, and mixing each with a ball mill for 16 hours (mixtures 1 to 7 respectively), Laminated conductor Example 1 was coated on the surface of a conductive material with a reverse roll coater so that the thickness after drying was 5 μm.
6 and Comparative Example 1 were obtained. These surface resistance values are the first
It was as shown in the table. From Table 1, the amount of SnO 2 -based conductive powder added was 0.05 to 1 with respect to 100 parts by weight of the solid content of acrylic resin.
It is clear that 5 wt% is a particularly excellent laminated conductor in view of the center value of surface resistance and the characteristics of variation.

第1表 比較例2〜7 厚さ100μmの“ルミラー”の上に、上記混合液1〜6
を乾燥後の厚さが、5μmになるようにリバースロール
コーターで塗工した。これらは、第1表にそれぞれ比較
例2〜7としてまとめた。これらの表面抵抗値はいずれ
も2×109Ω/口より大きかつた。
Table 1 Comparative Examples 2 to 7 The above-mentioned mixed liquids 1 to 6 were placed on a 100 μm-thick “lumirror”
Was coated with a reverse roll coater so that the thickness after drying was 5 μm. These are summarized in Table 1 as Comparative Examples 2 to 7, respectively. All of these surface resistance values were higher than 2 × 10 9 Ω / mouth.

実施例7 厚さ100μの“ルミラー”の上に、In2O3-SnO2を真空蒸
着して、表面抵抗値が、5×103Ω/口の面状導電性物
質を得た。次いで、実施例1の混合液2を上記面状導電
性物質の表面に乾燥後の厚さが10μmになるようにリバ
ースロールコーターで塗工して、積層型導電体実施例を
得た。この実施例7の表面抵抗値は第1表の通りであつ
た。第1表から、本発明の積層型導電体は表面抵抗値及
びバラツキの特性からみて、すぐれていることは明らか
である。
Example 7 In 2 O 3 —SnO 2 was vacuum-deposited on a 100 μm thick “lumirror” to obtain a planar conductive substance having a surface resistance value of 5 × 10 3 Ω / mouth. Then, the mixed liquid 2 of Example 1 was applied on the surface of the above-mentioned planar conductive material by a reverse roll coater so that the thickness after drying was 10 μm, to obtain a laminated conductor example. The surface resistance value of this Example 7 is as shown in Table 1. It is clear from Table 1 that the laminated conductor of the present invention is excellent in terms of surface resistance and variation characteristics.

比較例8 実施例1で得た表面抵抗値が5Ω/口の面状導電性物質
の上に上記アクリル樹脂のみを乾燥後の厚さが10μmに
なるようにリバースロールコーターで塗工して比較例8
を得た。この表面抵抗値は、2×109Ω/口より大きか
つた。
Comparative Example 8 On the surface conductive material having a surface resistance value of 5 Ω / mouth obtained in Example 1, only the above acrylic resin was coated with a reverse roll coater so that the thickness after drying was 10 μm and compared. Example 8
Got This surface resistance was greater than 2 × 10 9 Ω / mouth.

以上の結果から、本実地例においては、表面抵抗値が5
Ω/口の面状導電性物質の上に、表面抵抗値が2×109
Ω/口より大きい、いわば絶縁性の樹脂層を積層するこ
とにより、表面抵抗値が、2×106〜7×104Ω/口の積
層型導電体が得られたわけである。
From the above results, the surface resistance value is 5 in this practical example.
Ω / Mouth has a surface resistance of 2 × 10 9 on top of the conductive material.
By laminating a so-called insulating resin layer, which is larger than Ω / port, so to speak, a laminated conductor having a surface resistance value of 2 × 10 6 to 7 × 10 4 Ω / port was obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】実質的に金属および/または半導体のみか
らなる面状導電性物質表面に、平均粒子径が10μ以下で
体積固有抵抗が10-6〜108Ω・cmの導電粉末を絶縁性有
機高分子中に0.05〜15重量%添加してなる層を付設して
なる積層型導電体。
1. A conductive powder having an average particle size of 10 μm or less and a volume resistivity of 10 −6 to 10 8 Ω · cm is insulative on the surface of a planar conductive substance which substantially consists of a metal and / or a semiconductor. A laminated conductor comprising a layer formed by adding 0.05 to 15% by weight to an organic polymer.
JP17084882A 1982-10-01 1982-10-01 Laminated conductor Expired - Lifetime JPH06101246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17084882A JPH06101246B2 (en) 1982-10-01 1982-10-01 Laminated conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17084882A JPH06101246B2 (en) 1982-10-01 1982-10-01 Laminated conductor

Publications (2)

Publication Number Publication Date
JPS5963613A JPS5963613A (en) 1984-04-11
JPH06101246B2 true JPH06101246B2 (en) 1994-12-12

Family

ID=15912442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17084882A Expired - Lifetime JPH06101246B2 (en) 1982-10-01 1982-10-01 Laminated conductor

Country Status (1)

Country Link
JP (1) JPH06101246B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5052197B2 (en) * 2007-04-26 2012-10-17 矢崎総業株式会社 Mounting bracket for plastic molded products

Also Published As

Publication number Publication date
JPS5963613A (en) 1984-04-11

Similar Documents

Publication Publication Date Title
US5248517A (en) Paintable/coatable overvoltage protection material and devices made therefrom
JPH0421721B2 (en)
US2808352A (en) Electrically conductive adhesive tape
EP0082477B1 (en) Flexible screen-printable conductive composition
CA1246767A (en) Solderable conductive compositions having high adhesive strength
US4702980A (en) Conductive sheet and electrostatic recording medium formed therefrom
WO1994010697A1 (en) Electrically conductive resin pastes and multilayer ceramic capacitors having a terminal electrode comprised of the same
TW577091B (en) Resistor
US20050121657A1 (en) Thick film conductor compositions for use in membrane switch applications
CA1144012A (en) Electrically conductive white coatings
CN103366862A (en) Polymer thick film solder alloy/metal conductor compositions
US5019418A (en) Metallized film capacitor process
US6248449B1 (en) Flexible printed substrate having a conductive pattern formed thereon
JPH06101246B2 (en) Laminated conductor
CN1227319C (en) Anisotropic conductive adhesive film
JP2002025345A (en) Conductive particle with excellent migration resistance property
JPS6241238A (en) Electroconductive filler
JPH01201486A (en) Ag plated powder for electrically conductive paint having superior migration resistance
US4835508A (en) Zinc oxide type lightning-conducting element
JP3569030B2 (en) Antistatic film for manufacturing antistatic synthetic resin plates
JPH0714665A (en) Sheet-like heat generating body
JPS6337443B2 (en)
JPS61233748A (en) Transparent electrostatic recording film
JP2638162B2 (en) Solid electrolytic capacitors
KR20210107067A (en) silver paste