JPH0599027A - Fuel supply control method - Google Patents

Fuel supply control method

Info

Publication number
JPH0599027A
JPH0599027A JP3282157A JP28215791A JPH0599027A JP H0599027 A JPH0599027 A JP H0599027A JP 3282157 A JP3282157 A JP 3282157A JP 28215791 A JP28215791 A JP 28215791A JP H0599027 A JPH0599027 A JP H0599027A
Authority
JP
Japan
Prior art keywords
pressure
fuel
fuel supply
water temperature
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3282157A
Other languages
Japanese (ja)
Inventor
Morihito Asano
守人 浅野
Kenichi Inoguchi
憲一 猪口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP3282157A priority Critical patent/JPH0599027A/en
Publication of JPH0599027A publication Critical patent/JPH0599027A/en
Pending legal-status Critical Current

Links

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To prevent an exhaust gas temperature from rising caused by continuing fuel cut. CONSTITUTION:Return pressure for returning from fuel supply stop condition to fuel supply condition is made variable in response to temperatures such as a cooling water temperature, an intake air temperature, an exhaust gas temperature, and the like. When the cooling water temperature is high, return pressure is reduced so as to increase the hysteresis width of supercharging pressure. When the cooling water temperature is low, return pressure is increased so as to reduce the hysteresis width of supercharging pressure. It is thus possible to extend a cooling time by fuel cut when the cooling water temperature is high so as to prevent an exhaust gas temperature from rising caused by continuing fuel cut.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、異常により過給機の
過給圧がフューエルカット圧力まで上昇したときにエン
ジンへの燃料の供給を停止し、所定のヒステリシス幅の
復帰圧力まで過給圧が低下したときに再び燃料を供給す
る燃料供給制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention stops the supply of fuel to the engine when the supercharging pressure of the supercharger rises to the fuel cut pressure due to an abnormality, and increases the supercharging pressure until the return pressure has a predetermined hysteresis width. The present invention relates to a fuel supply control method for supplying fuel again when the fuel consumption decreases.

【0002】[0002]

【従来の技術】従来、特開昭58−204945号公報
や特開昭61−126335号公報などに記載されてい
るように、過給機を備えたエンジンにおいて、過給圧が
異常上昇したときに、エンジンへの燃料の供給を停止し
てエンジンを保護するようにした燃料供給の制御方法が
提案されており、例えば以下のようにして制御が行われ
る。
2. Description of the Related Art Conventionally, as described in JP-A-58-204945 and JP-A-61-126335, when the supercharging pressure is abnormally increased in an engine equipped with a supercharger. A fuel supply control method has been proposed in which the supply of fuel to the engine is stopped to protect the engine. For example, the control is performed as follows.

【0003】図4は一般の過給機付きエンジンの概略を
示し、1はエンジン、2は吸気管、3は吸気管2に設け
られたインジェクタ、4は吸気管圧力にほぼ等しいサー
ジタンク5内の圧力を検出して検出信号を出力する圧力
センサ、6はスロットルバルブ、7はエアバルブ、8は
過給機、9はウェイストゲートバルブ、10はウェイス
トゲートアクチュエータ、11はインタークーラ、12
はエアリリーフバルブ、13はエアクリーナ、14はE
CUである。
FIG. 4 shows the outline of a general engine with a supercharger, 1 is an engine, 2 is an intake pipe, 3 is an injector provided in the intake pipe 2, and 4 is a surge tank 5 which is approximately equal to the intake pipe pressure. A pressure sensor for detecting the pressure of the sensor and outputting a detection signal, 6 a throttle valve, 7 an air valve, 8 a supercharger, 9 a wastegate valve, 10 a wastegate actuator, 11 an intercooler, 12
Is an air relief valve, 13 is an air cleaner, and 14 is E
CU.

【0004】ここで、ECU14には、燃料カット制御
を行う基準となる過給圧としてフューエルカット圧力P
C (例えば1300mmHg)が設定されると共に、
燃料の供給停止状態から復帰する基準となる過給圧とし
て復帰圧力PMR (例えば1200mmHg)が設定さ
れており、ハンチングを防止するためにこのように過給
圧にヒステリシス幅ΔPMが設けられている。
Here, the ECU 14 sends a fuel cut pressure P as a supercharging pressure which serves as a reference for performing fuel cut control.
M C (for example, 1300 mmHg) is set,
The return pressure PM R (for example, 1200 mmHg) is set as the supercharging pressure that serves as a reference for returning from the fuel supply stop state, and the hysteresis width ΔPM is provided in the supercharging pressure in this way to prevent hunting. .

【0005】そして、過給機の動作中にウェイストゲー
トバルブ9の故障等により、図5に示すように圧力セン
サ4による吸気管圧力,即ち過給圧が異常上昇してフュ
ーエルカット圧力PMC に達すると、ECU14により
インジェクタ3への噴射信号が停止され、エンジン1へ
の燃料の供給が停止されていわゆるフューエルカットが
行われる。
As shown in FIG. 5, the intake pipe pressure by the pressure sensor 4, that is, the supercharging pressure is abnormally increased due to a failure of the waste gate valve 9 or the like during the operation of the supercharger, resulting in the fuel cut pressure PM C. When it reaches, the injection signal to the injector 3 is stopped by the ECU 14, the fuel supply to the engine 1 is stopped, and so-called fuel cut is performed.

【0006】一方、フューエルカット中に、図5に示す
ように、過給圧が低下して燃料カット圧力PMC より低
い復帰圧力PMR まで下がると、ECU14によりイン
ジェクタ3に再び噴射信号が出力され、所定量の燃料が
エンジン1に供給される。
On the other hand, during the fuel cut, as shown in FIG. 5, when the supercharging pressure is lowered to the return pressure PM R lower than the fuel cut pressure PM C , the injection signal is output again to the injector 3 by the ECU 14. A predetermined amount of fuel is supplied to the engine 1.

【0007】[0007]

【発明が解決しようとする課題】しかし、従来の場合、
上記したフューエルカットが連続して行われると、ミス
ファイヤ等が発生し、排気温が上昇して触媒の劣化等を
招くという問題点がある。
However, in the conventional case,
If the above fuel cut is continuously performed, there is a problem that misfire or the like occurs, the exhaust temperature rises, and the catalyst deteriorates.

【0008】そこでこの発明は、上記のような問題点を
解消するためになされたもので、従来のように、フュー
エルカットの連続による排気温度の上昇を防止できるよ
うにすることを目的とする。
Therefore, the present invention has been made in order to solve the above problems, and an object thereof is to prevent an increase in exhaust temperature due to continuous fuel cuts as in the conventional case.

【0009】[0009]

【課題を解決するための手段】この発明に係る燃料供給
制御方法は、過給機付きのエンジンであって、圧力セン
サにより吸気管圧力を検出し、前記過給機による過給圧
がフューエルカット圧力に達したときにエンジンへの燃
料の供給を停止し、燃料の供給停止状態で前記過給圧が
前記フューエルカット圧力よりも低い復帰圧力まで低下
したときに再び燃料を供給する燃料供給制御方法におい
て、冷却水温,吸気温,排気温などのエンジン温度に応
じ、燃料の供給停止状態から供給状態に復帰する前記復
帰圧力を可変することを特徴としている。
A fuel supply control method according to the present invention is an engine with a supercharger, wherein an intake pipe pressure is detected by a pressure sensor, and the supercharge pressure by the supercharger is fuel cut. A fuel supply control method of stopping fuel supply to the engine when the pressure is reached, and supplying fuel again when the supercharging pressure decreases to a return pressure lower than the fuel cut pressure in the fuel supply stopped state. In the above, the return pressure for returning from the fuel supply stop state to the supply state is variable according to the engine temperature such as the cooling water temperature, the intake air temperature, and the exhaust temperature.

【0010】[0010]

【作用】この発明においては、冷却水温,吸気温又は排
気温などのエンジン温度に応じ、燃料の供給停止状態か
ら供給状態に復帰する復帰圧力を可変するようにしたた
め、エンジン温度が高いときには復帰圧力を低くして過
給圧のヒステリシス幅を大きく、エンジン温度が低いと
きには復帰圧力を高くして過給圧のヒステリシス幅を小
さくすることにより、特にエンジン温度が高いときには
燃料の供給停止,即ちフューエルカットによる冷却時間
を長くとれ、従来のようにフューエルカットの連続によ
る排気温の上昇が防止される。
According to the present invention, the return pressure for returning from the fuel supply stop state to the supply state is changed according to the engine temperature such as the cooling water temperature, the intake air temperature or the exhaust temperature. Therefore, when the engine temperature is high, the return pressure is changed. To increase the hysteresis width of the boost pressure and increase the return pressure to reduce the hysteresis width of the boost pressure when the engine temperature is low, so that the fuel supply is stopped, that is, the fuel cut, especially when the engine temperature is high. As a result, the cooling time can be extended and the rise in exhaust temperature due to continuous fuel cut can be prevented as in the conventional case.

【0011】[0011]

【実施例】図1はこの発明の燃料供給制御方法の一実施
例の動作説明用フローチャートである。
1 is a flow chart for explaining the operation of an embodiment of a fuel supply control method of the present invention.

【0012】ところで、この発明が適用されるシステム
は図4に示すものと同じであるため、重複した説明は避
けるが、図4における説明と相違するのは、エンジン1
の冷却水の水温を検出する水温センサの出力をECU1
4に取り込み、この水温センサによる冷却水温に応じて
復帰圧力PMR を可変すべく、冷却水温とフューエルカ
ット圧力PMC と復帰圧力PMR との差であるヒステリ
シス幅ΔPMとの関係を、予めECU14に内蔵のメモ
リに二次元マップとして記憶させたことである。
By the way, the system to which the present invention is applied is the same as that shown in FIG. 4, and therefore a duplicate description will be avoided, but the difference from the description in FIG.
The output of the water temperature sensor for detecting the water temperature of the cooling water of the ECU 1
In order to change the return pressure PM R in accordance with the cooling water temperature by the water temperature sensor, the relationship between the cooling water temperature and the hysteresis width ΔPM, which is the difference between the fuel cut pressure PM C and the return pressure PM R , is calculated in advance by the ECU 14 It was stored as a two-dimensional map in the built-in memory.

【0013】このとき、ECU14のメモリに記憶させ
る冷却水温とヒステリシス幅ΔPMとの関係は例えば図
2に示すようなものであり、冷却水温が高いほどヒステ
リシス幅が大きくなっている。
At this time, the relationship between the cooling water temperature stored in the memory of the ECU 14 and the hysteresis width ΔPM is as shown in FIG. 2, for example. The higher the cooling water temperature, the larger the hysteresis width.

【0014】つぎに、制御手順について図1に示すフロ
ーチャートを参照しつつ説明する。
Next, the control procedure will be described with reference to the flowchart shown in FIG.

【0015】まず、圧力センサ4による過給圧がフュー
エルカット圧力PMC に達していわゆる過過給圧時のフ
ューエルカット中かどうかの判定がなされ(ステップS
1)、判定の結果がYESであれば、水温センサによる
冷却水温に対応するヒステリシス幅ΔPMがメモリから
読み出され、一定値であるフューエルカット圧力PMC
からこのヒステリシス幅ΔPMを差し引いた復帰圧力P
R が導出される(ステップS2)。
First, it is judged whether or not the supercharging pressure by the pressure sensor 4 reaches the fuel cut pressure PM C and the fuel is being cut during so-called supercharging pressure (step S).
1) If the result of the determination is YES, the hysteresis width ΔPM corresponding to the cooling water temperature by the water temperature sensor is read from the memory, and the fuel cut pressure PM C that is a constant value.
Return pressure P obtained by subtracting this hysteresis width ΔPM from
M R is derived (step S2).

【0016】そして、圧力センサ4による現在の吸気管
圧力PMがステップS2において導出された復帰圧力P
R より低いかどうかの判定がなされ(ステップS
3)、この判定の結果がYESであれば、ECU14か
らインジェクタ3に噴射信号が出力されてフューエルカ
ット状態から復帰し(ステップS4)、エンジン1に燃
料が再び供給されたのち動作は終了し、ステップS3の
判定結果がNOであればそのまま一連の動作が終了す
る。
Then, the current intake pipe pressure PM obtained by the pressure sensor 4 is returned to the return pressure P derived in step S2.
It is determined whether or not it is lower than M R (step S
3) If the result of this determination is YES, the ECU 14 outputs an injection signal to the injector 3 to recover from the fuel cut state (step S4), the fuel is supplied again to the engine 1, and then the operation ends, If the decision result in the step S3 is NO, a series of operation is finished as it is.

【0017】一方、ステップS1の判定の結果がNOで
あれば、圧力センサ4による現在の吸気管圧力PMがフ
ューエルカット圧力PMC より大きいかどうかの判定が
なされ(ステップS5)、判定の結果がNOであれば動
作は終了し、YESであればECU14からインジェク
タ3への噴射信号が停止され、フューエルカットが実行
され(ステップS6)、その後一連の動作が終了する。
On the other hand, if the decision result in the step S1 is NO, it is decided by the pressure sensor 4 whether or not the current intake pipe pressure PM is larger than the fuel cut pressure PM C (step S5), and the decision result is If NO, the operation ends. If YES, the injection signal from the ECU 14 to the injector 3 is stopped, fuel cut is executed (step S6), and then a series of operations ends.

【0018】このとき、図2に示すように水温センサに
よる冷却水温が高いときにはヒステリシス幅は大きく、
冷却水温が低いときにはヒステリシス幅は小さいため、
冷却水温が高いほど復帰圧力は低くなり、図3に示すよ
うに冷却水温が高い順より復帰圧力はPMR1,PMR2
PMR3,PMR4,…(PMR1<PMR2<PMR3<P
R4)となる。
At this time, as shown in FIG. 2, the hysteresis width is large when the cooling water temperature by the water temperature sensor is high,
Since the hysteresis width is small when the cooling water temperature is low,
The higher the cooling water temperature, the lower the return pressure. As shown in FIG. 3, the return pressures PM R1 , PM R2 ,
PM R3 , PM R4 , ... (PM R1 <PM R2 <PM R3 <P
M R4 ).

【0019】こうして、冷却水温が高いときには復帰圧
力を低くして過給圧のヒステリシス幅ΔPMを大きく、
冷却水温が低いときには復帰圧力を高くして過給圧のヒ
ステリシス幅ΔPMを小さくできるので、冷却水温が高
いときにはフューエルカットによる冷却時間を長くして
従来のようにフューエルカットの連続による排気温の上
昇を防止することが可能になり、エンジン1の保護を図
ることができる。
Thus, when the cooling water temperature is high, the return pressure is lowered and the hysteresis width ΔPM of the supercharging pressure is increased,
When the cooling water temperature is low, the return pressure can be increased to reduce the hysteresis width ΔPM of the supercharging pressure. Therefore, when the cooling water temperature is high, the cooling time by fuel cut can be lengthened to raise the exhaust temperature by continuous fuel cut as in the past. Can be prevented, and the engine 1 can be protected.

【0020】なお、上記実施例では、エンジン温度とし
て水温センサによる冷却水温を用いた場合について説明
したが、吸気温や排気温などの他のエンジン温度を用い
てもよいのは勿論である。
In the above embodiment, the case where the cooling water temperature by the water temperature sensor is used as the engine temperature has been described, but it goes without saying that other engine temperatures such as intake air temperature and exhaust gas temperature may be used.

【0021】また、上記実施例では、冷却水温に対する
ヒステリシス幅の関係をECU14のメモリにマップと
して記憶させる場合について説明したが、復帰圧力をマ
ップとして記憶させてもよい。
Further, in the above embodiment, the case where the relationship between the cooling water temperature and the hysteresis width is stored as a map in the memory of the ECU 14 has been described, but the return pressure may be stored as a map.

【0022】[0022]

【発明の効果】以上のように、この発明の燃料供給制御
方法によれば、エンジン温度に応じ、燃料の供給停止状
態から供給状態に復帰する復帰圧力を可変するようにし
たため、特にエンジン温度が高いときの復帰圧力を低く
して燃料の供給停止による冷却時間を長くすることがで
き、従来のような排気温の上昇による触媒の劣化等の発
生を未然に防止することができ、過給機による過給圧の
異常上昇時にエンジンを効果的に保護することが可能と
なる。
As described above, according to the fuel supply control method of the present invention, the return pressure for returning from the fuel supply stop state to the fuel supply state is changed according to the engine temperature. It is possible to lower the return pressure when it is high and to lengthen the cooling time by stopping the supply of fuel, and prevent the deterioration of the catalyst due to the rise in exhaust temperature as in the past and prevent it from occurring. It becomes possible to effectively protect the engine when the boost pressure is abnormally increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の燃料供給制御方法の一実施例の動作
説明用フローチャートである。
FIG. 1 is a flowchart for explaining the operation of an embodiment of a fuel supply control method of the present invention.

【図2】この発明の動作説明図である。FIG. 2 is an operation explanatory diagram of the present invention.

【図3】この発明の動作説明図である。FIG. 3 is an operation explanatory diagram of the present invention.

【図4】一般の過給機付きエンジンのシステム図であ
る。
FIG. 4 is a system diagram of a general supercharged engine.

【図5】従来の燃料供給制御方法の動作説明図である。FIG. 5 is an operation explanatory view of a conventional fuel supply control method.

【符号の説明】[Explanation of symbols]

1 エンジン 4 圧力センサ 8 過給機 14 ECU 1 Engine 4 Pressure Sensor 8 Supercharger 14 ECU

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F02D 45/00 345 J 8109−3G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location F02D 45/00 345 J 8109-3G

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 過給機付きのエンジンであって、圧力セ
ンサにより吸気管圧力を検出し、前記過給機による過給
圧がフューエルカット圧力に達したときにエンジンへの
燃料の供給を停止し、燃料の供給停止状態で前記過給圧
が前記フューエルカット圧力よりも低い復帰圧力まで低
下したときに再び燃料を供給する燃料供給制御方法にお
いて、 冷却水温,吸気温,排気温などのエンジン温度に応じ、
燃料の供給停止状態から供給状態に復帰する前記復帰圧
力を可変することを特徴とする燃料供給制御方法。
1. An engine with a supercharger, wherein an intake pipe pressure is detected by a pressure sensor, and the supply of fuel to the engine is stopped when the supercharging pressure by the supercharger reaches a fuel cut pressure. However, in the fuel supply control method for supplying fuel again when the supercharging pressure drops to a return pressure lower than the fuel cut pressure in the fuel supply stopped state, engine temperature such as cooling water temperature, intake air temperature, exhaust gas temperature, etc. According to
A fuel supply control method, wherein the return pressure for returning from a fuel supply stop state to a supply state is varied.
JP3282157A 1991-10-01 1991-10-01 Fuel supply control method Pending JPH0599027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3282157A JPH0599027A (en) 1991-10-01 1991-10-01 Fuel supply control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3282157A JPH0599027A (en) 1991-10-01 1991-10-01 Fuel supply control method

Publications (1)

Publication Number Publication Date
JPH0599027A true JPH0599027A (en) 1993-04-20

Family

ID=17648845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3282157A Pending JPH0599027A (en) 1991-10-01 1991-10-01 Fuel supply control method

Country Status (1)

Country Link
JP (1) JPH0599027A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021049808A (en) * 2019-09-20 2021-04-01 トヨタ自動車株式会社 Control device of hybrid vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021049808A (en) * 2019-09-20 2021-04-01 トヨタ自動車株式会社 Control device of hybrid vehicle
CN112622904A (en) * 2019-09-20 2021-04-09 丰田自动车株式会社 Control device for hybrid vehicle

Similar Documents

Publication Publication Date Title
US5724950A (en) Exhaust gas recirculating controller
US5447031A (en) Wastegate failure detection apparatus and method for operating same
US5502966A (en) Protection system for a pressure-charged internal combustion engine and method of operation
JP3136968B2 (en) An intake pressure abnormality detection device for an internal combustion engine
US6705301B2 (en) System for producing charge flow and EGR fraction commands based on engine operating conditions
EP0675275A2 (en) A method and an apparatus for altitude compensation for spark-ignited turbocharged internal combusion engines
GB2215869A (en) Fault detector system for an air intake system of an automotive engine
US4903526A (en) Trouble detector system for an intake system of an automotive engine
US6834641B2 (en) Fuel injection system for internal combustion engine
KR0132346B1 (en) Adaptive knock control
JPH0128212B2 (en)
JP2000008962A (en) Actuator control device for internal combustion engine
JPH0599027A (en) Fuel supply control method
JP2001107797A (en) Intake air flow detecting device for diesel engine with supercharger
JP3306144B2 (en) Pressure sensor failure detection device
JP2002174148A (en) Exhaust gas recirculating device
CN112682179A (en) Gas control method for gas engine
JP3018348B2 (en) Supercharging pressure control device for internal combustion engine
KR20030030540A (en) A method for monitoring leakage in an air induction system of a diesel engine provided with an intercoolered turbo-charger
Boccadoro et al. Adaptive spark control with knock detection
JPS62147026A (en) Supercharger control device for internal combustion engine
JP2518317B2 (en) Fail-safe device for internal combustion engine for vehicles
JPH0227160Y2 (en)
JPH0868348A (en) Method for correcting fuel injection amount after complete warming up
JPH0510149A (en) Controller of supercharged engine