JPH0598271A - Hydrocracking of hydrocarbon - Google Patents

Hydrocracking of hydrocarbon

Info

Publication number
JPH0598271A
JPH0598271A JP3289467A JP28946791A JPH0598271A JP H0598271 A JPH0598271 A JP H0598271A JP 3289467 A JP3289467 A JP 3289467A JP 28946791 A JP28946791 A JP 28946791A JP H0598271 A JPH0598271 A JP H0598271A
Authority
JP
Japan
Prior art keywords
catalyst
aluminosilicate
periodic table
inorganic oxide
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3289467A
Other languages
Japanese (ja)
Other versions
JP3057651B2 (en
Inventor
Chikanori Nakaoka
哉徳 中岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Nikko Kyodo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Nikko Kyodo Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP3289467A priority Critical patent/JP3057651B2/en
Publication of JPH0598271A publication Critical patent/JPH0598271A/en
Application granted granted Critical
Publication of JP3057651B2 publication Critical patent/JP3057651B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To provide a hydrocracking process which can provide kerosene and gas oil fractions in high yields and can be operated for a long time. CONSTITUTION:A hydrocarbon is hydrogenated at 330-400 deg.C in the presence of a first catalyst prepared by impregnating an inorganic oxide support with at least one member selected from among the metals of groups VI and VIII of the periodic table and then hydrocracked at 360-420 deg.C in the presence of a second catalyst prepared by impregnating a support comprising an inorganic oxide matrix and a crystalline aluminosilicate of an Na2O content of 0.3wt. 5 or below, an SiO2/Al2O3 molar ratio of 5-9 and a lattice constant of 24.42-24.30Angstrom and/or a transition-metal-containing aluminosilicate prepared by treating the aluminosilicate with a transition metal solution and impregnating the impregnated support with an aqueous solution containing at least one member selected from among the metals of group VIII of the periodic table and drying and firing the last impregnated support with an aqueous solution of a pH of 3 or below containing phosphorus and at least one member selected from among the metals of group VI of the periodic table.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は、炭化水素類、特には減
圧軽油、重油等の重質炭化水素類を水素化分解する方法
に関する。
TECHNICAL FIELD The present invention relates to a method for hydrocracking hydrocarbons, particularly heavy hydrocarbons such as vacuum gas oil and heavy oil.

【0002】[0002]

【従来の技術】近年、石油精製においては、処理する原
油が重質化する傾向にあり、しかも需要は白油化、軽質
化が進行し、需給のバランスを取るために重質留分の軽
質留分への転化が図られている。
2. Description of the Related Art In recent years, in petroleum refining, the crude oil to be processed has tended to become heavier, and the demand for white oil has become lighter and lighter. Conversion to fractions is being attempted.

【0003】この転化のための技術は多数開発されてい
るが、その中でも、減圧軽油、重油等の重質炭化水素類
の水素化分解は、良質の軽質油が得られ、二次処理等も
必要がないため、最も好ましい方法と考えられている。
Many techniques for this conversion have been developed. Among them, the hydrocracking of heavy hydrocarbons such as vacuum gas oil and heavy oil gives high quality light oil, and secondary treatment is also possible. It is considered the most preferred method because it is not necessary.

【0004】この水素化分解方法は、従来、アルミナ等
のアモルファスな無機酸化物担体或いは結晶性アルミノ
けい酸塩ゼオライト含有担体に活性金属を担持させた触
媒が用いられている。前記アモルファスな無機酸化物担
体からなる触媒を用いる方法は、高沸点留分の分解性に
優れ中間留分収率が高いが、この高分解率を達成するた
めには高温が必要で、この高温のために脱硫活性や脱窒
素活性の劣化が著しく速くなり、触媒寿命が短くなると
いう欠点があった。一方、ゼオライト含有担体は、上記
アモルファスな無機酸化物担体触媒に比べて、10〜2
0℃低い温度で高分解率を得ることができるが、重質炭
化水素中の重金属、残留炭素、アスファルテン等による
被毒を受けやすく、分解活性の劣化が速いという欠点を
有する。
In this hydrocracking method, conventionally, a catalyst in which an active metal is supported on an amorphous inorganic oxide carrier such as alumina or a carrier containing a crystalline aluminosilicate zeolite is used. The method using a catalyst composed of the amorphous inorganic oxide carrier is excellent in decomposability of high-boiling fractions and high in the yield of middle distillates, but high temperature is required to achieve this high decomposition rate. Therefore, the desulfurization activity and the denitrification activity are significantly deteriorated, and the catalyst life is shortened. On the other hand, the zeolite-containing carrier is 10 to 2 compared with the above amorphous inorganic oxide carrier catalyst.
Although it is possible to obtain a high decomposition rate at a temperature as low as 0 ° C., it has a drawback that it is easily poisoned by heavy metals, residual carbon, asphaltene, etc. in heavy hydrocarbons and its decomposition activity deteriorates rapidly.

【0005】このため、無機酸化物と周期律表第VI族金
属成分及び周期律表第VIII族金属成分からなる前処理触
媒で水素化処理し、しかるのち、所定の結晶性アルミノ
けい酸塩ゼオライトと無機酸化物、周期律表第VI族金属
成分、同第VIII族金属成分、リン、ホウ素等からなる触
媒で水素化分解する方法が提案されている(特開昭61
−126196号公報)。しかし、この方法は、分解性
能、灯軽油留分収率などで必ずしも満足のいくものでは
ない。
For this reason, a hydrogenation treatment is carried out with a pretreatment catalyst comprising an inorganic oxide, a Group VI metal component of the Periodic Table and a Group VIII metal component of the Periodic Table, and then a predetermined crystalline aluminosilicate zeolite is used. A method has been proposed in which hydrogenolysis is carried out with a catalyst composed of an inorganic oxide, a group VI metal component of the periodic table, a group VIII metal component of the periodic table, phosphorus, boron, and the like (JP-A-61).
-126196 publication). However, this method is not always satisfactory in terms of cracking performance, kerosene gas oil fraction yield, and the like.

【0006】[0006]

【発明が解決しようとする課題】一般に、結晶性アルミ
ノけい酸塩であるゼオライトとアルミナ等の無機酸化物
マトリックスとからなる担体を、pH値が3.0以下の
周期律表第VI族金属化合物、第VIII族金属化合物および
リンの水溶液と接触させると、強い酸性条件下であるた
め、ゼオライトの結晶構造は破壊されてしまい、水素化
分解活性は著しく低下する。
Generally, a carrier composed of a crystalline aluminosilicate zeolite and an inorganic oxide matrix such as alumina is used as a carrier of a Group VI metal compound having a pH value of 3.0 or less. When brought into contact with an aqueous solution of a Group VIII metal compound and phosphorus, the crystal structure of zeolite is destroyed due to the strongly acidic condition, and the hydrocracking activity is significantly reduced.

【0007】このため、ゼオライト結晶構造の破壊を避
けるために、pH値が3より高い水溶液を用いる方法が
提案されている(特開昭59-216635号公報)。し
かし、この方法では、無機酸化物マトリックスの等電点
が低い場合、担体上に均質に担持できない。また、pH
が3より高い水溶液中ではリンと周期律表第VI族金属成
分は一部は重合錯体を形成するが、一部は単核イオンと
して存在する。この単核イオンはゼオライト細孔内に入
り、ゼオライトの結晶構造を一部破壊し、分解活性の低
下を招くことが知られている(例えば、特開昭59-21
6635号公報、特公昭59-40058号公報参照)。
Therefore, in order to avoid the destruction of the zeolite crystal structure, a method of using an aqueous solution having a pH value higher than 3 has been proposed (JP-A-59-216635). However, in this method, when the inorganic oxide matrix has a low isoelectric point, it cannot be supported uniformly on the carrier. Also, the pH
In an aqueous solution having a value of higher than 3, phosphorus and Group VI metal components of the Periodic Table partially form a polymer complex, but some exist as mononuclear ions. It is known that these mononuclear ions enter the pores of the zeolite and partially destroy the crystal structure of the zeolite, leading to a decrease in the decomposition activity (for example, JP-A-59-21).
(See Japanese Patent No. 6635 and Japanese Patent Publication No. 59-40058).

【0008】本発明者は、かかる問題を解決するために
鋭意検討した結果、Y型ゼオライトを特定の処理をし、
所定の格子定数を有する結晶性アルミノシリケートとし
たものを用いると、初期pH値が3.0以下の水溶液と
接触させても、結晶構造の崩壊を起こさず、しかもこの
方法で調製した触媒を用いて炭化水素類の水素化分解反
応を行なったところ、極めて高い分解活性と灯軽油留分
収率を得られることを見出した。
The present inventor has conducted extensive studies in order to solve such a problem, and as a result, treated the Y-type zeolite with a specific treatment,
If a crystalline aluminosilicate having a predetermined lattice constant is used, even if it is brought into contact with an aqueous solution having an initial pH value of 3.0 or less, the crystal structure does not collapse, and the catalyst prepared by this method is used. When hydrocracking reaction of hydrocarbons was carried out, it was found that extremely high cracking activity and kerosene gas oil fraction yield could be obtained.

【0009】また、上記触媒で水素化分解する前に、無
機酸化物担体に活性金属を担持した触媒を用いて水素化
処理を行うと、上記触媒の被毒を著しく低減でき、高い
分解活性を長期に渡って維持できることが分かった。
If hydrogenation is carried out using a catalyst in which an active metal is supported on an inorganic oxide carrier before hydrocracking with the above catalyst, poisoning of the above catalyst can be remarkably reduced and high decomposition activity can be achieved. It turns out that it can be maintained for a long time.

【0010】本発明はかかる知見に基づきなされたもの
で、本発明の目的は灯軽油留分の収率が高く、しかも長
期に渡って運転が可能な水素化分解方法を提供するもの
である。
The present invention has been made on the basis of such findings, and an object of the present invention is to provide a hydrocracking method which has a high yield of a kerosene gas oil fraction and which can be operated for a long period of time.

【0011】[0011]

【課題を解決するための手段】本発明は、炭化水素類
を、周期律表第VI族及び周期律表第VIII族に属する金属
の少なくとも1種を無機酸化物担体に担持した第1の触
媒を用いて、330〜400℃の温度で水素化処理し、
次いで、Na2Oの含有量が0.3重量%以下、SiO2
/Al23のモル比が5〜9で、かつ格子定数が24.
42乃至24.30Åの結晶性アルミノシリケート及び
/又は前記格子定数が24.42乃至24.30Åの結晶
性アルミノシリケートを遷移金属含有溶液で処理した遷
移金属含有アルミノシリケートと無機酸化物マトリック
スとからなる担体に周期律表第VI族に属する金属の少な
くとも1種とリンとを含むpH3以下の水溶液を含浸、
乾燥させた後、或いは乾燥させることなく、周期律表第
VIII族に属する金属の少なくとも1種を含む水溶液を含
浸、乾燥、焼成して得られた第2の触媒を用いて、36
0〜420℃の温度で水素化分解する方法である。
The present invention provides a first catalyst in which at least one metal belonging to Group VI and Group VIII of the Periodic Table of Hydrocarbons is supported on an inorganic oxide carrier. Is hydrotreated at a temperature of 330 to 400 ° C.,
Next, the content of Na 2 O is 0.3 wt% or less, SiO 2
/ Al 2 O 3 molar ratio is 5-9, and the lattice constant is 24.
42 to 24.30Å crystalline aluminosilicate and / or crystalline aluminosilicate having a lattice constant of 24.42 to 24.30Å treated with a transition metal-containing solution, and a transition metal-containing aluminosilicate and an inorganic oxide matrix The carrier is impregnated with an aqueous solution of pH 3 or less containing at least one metal belonging to Group VI of the periodic table and phosphorus.
After drying or without drying,
Using a second catalyst obtained by impregnating with an aqueous solution containing at least one metal belonging to Group VIII, drying and firing, 36
It is a method of hydrocracking at a temperature of 0 to 420 ° C.

【0012】本発明は、原油、石炭液化油、シェールオ
イル等から得られる炭化水素類、全てを原料とすること
ができるが、特には、これらの蒸圧蒸留残油、減圧蒸留
軽油、減圧蒸留残油等、残留炭素、アスファルテンを含
有するものが好適である。
In the present invention, all hydrocarbons obtained from crude oil, coal liquefied oil, shale oil, etc. can be used as raw materials, but in particular, steam distillation residual oil, vacuum distillation gas oil, vacuum distillation of these Those containing residual carbon such as residual oil and asphaltene are preferable.

【0013】上記本発明の第1の触媒とは、従来公知の
無機酸化物担体、例えば、アルミナ、シリカ、チタニ
ア、ボリア、ジルコニア、マグネシアの1種あるいは2
種以上の耐火性無機酸化物からなる担体に、周期律表第
VI族金属、例えばモリブデンまたはタングステン及び周
期律表第VIII族金属、例えばコバルトまたはニッケルの
いずれか1種または2種以上を8〜20重量%担持した
もので、特には、アルミナ担体に6〜15重量%のモリ
ブデン及び2〜5重量%のニッケルまたはコバルトを担
持したものを用いることが好ましい。この触媒は、15
0m2/g以上の表面積、0.5〜0.8ml/gの細孔容積、8
0〜150Åの平均細孔直径を有するものが好ましい。
The first catalyst of the present invention is a conventionally known inorganic oxide carrier, for example, one or two of alumina, silica, titania, boria, zirconia and magnesia.
A carrier consisting of one or more refractory inorganic oxides and a periodic table
A Group VI metal such as molybdenum or tungsten and a Group VIII metal of the periodic table, such as cobalt or nickel, supported on 8 to 20% by weight, and particularly on an alumina carrier of 6 to 15%. It is preferable to use one supporting molybdenum by weight and 2 to 5% by weight of nickel or cobalt. This catalyst is 15
Surface area of 0 m 2 / g or more, pore volume of 0.5 to 0.8 ml / g, 8
Those having an average pore diameter of 0 to 150Å are preferred.

【0014】また、特には上記無機酸化物に、リン及び
/またはホウ素を0.01〜3重量%含有或いは担持さ
せたものが、重質炭化水素油の水素添加処理能力に優
れ、第2触媒の劣化抑制に効果的であり、好ましい。
In particular, the above-mentioned inorganic oxide containing or supporting phosphorus and / or boron in an amount of from 0.01 to 3% by weight is excellent in the hydrogenation treatment capacity of heavy hydrocarbon oils, and is the second catalyst. It is effective and effective in suppressing deterioration, and is preferable.

【0015】一方、本発明の第2の触媒は、Na2Oの
含有量が0.3重量%以下で、SiO2/Al23のモル
比が5〜9で、かつ格子定数が24.42乃至24.30
Åの結晶性アルミノシリケートを用いて調製されるもの
である。
On the other hand, the second catalyst of the present invention has a Na 2 O content of 0.3% by weight or less, a SiO 2 / Al 2 O 3 molar ratio of 5 to 9, and a lattice constant of 24. .42 to 24.30
It is prepared using Å crystalline aluminosilicate.

【0016】この場合、Na2Oが0.3重量%以上であ
るとpH3以下の水溶液と接触したときに結晶構造の崩
壊が生じ、分解活性が低下し、灯軽油留分の収率が減少
する。また、SiO2/Al23のモル比が5以下であ
れば骨格が十分に安定化されておらず、前記のNa2
の場合と同様に酸により結晶崩壊を生じ、さらに9以上
では酸性点の減少により分解活性が低下する。さらに格
子定数が24.42Å以上でも、前記と同様酸との接触
により結晶構造の崩壊が生じ、格子定数が24.30Å
以下では結晶性が悪く、酸量も少ないことから同様に分
解活性が低下し、灯軽油留分の収率が減少する。尚、格
子定数とはX線回折法により得られた面間隔dの値よ
り、次式数1で算出されるものである。
In this case, when the content of Na 2 O is 0.3% by weight or more, the crystal structure is disintegrated when it comes into contact with an aqueous solution having a pH of 3 or less, the decomposition activity is lowered, and the yield of the kerosene gas oil fraction is reduced. To do. Further, if the SiO 2 / Al 2 O 3 molar ratio is 5 or less, the skeleton is not sufficiently stabilized, and the Na 2 O
In the same manner as in the case of 1, the acid causes crystal collapse, and when it is 9 or more, the decomposition activity decreases due to the decrease of the acid point. Further, even if the lattice constant is 24.42 Å or more, the crystal structure collapses due to contact with an acid as described above, and the lattice constant is 24.30 Å
In the following, the crystallinity is poor and the amount of acid is small, so that the cracking activity is similarly reduced and the yield of kerosene gas oil fraction is reduced. The lattice constant is calculated by the following equation 1 from the value of the interplanar spacing d obtained by the X-ray diffraction method.

【数1】 [Equation 1]

【0017】このような特性を有する結晶性アルミノシ
リケートは、Y型ゼオライトから調製することができ
る。このY型ゼオライトとしては、アルミニウムとケイ
素の比率が1:2.2〜1:3.0のもので、フォージャ
サイト構造を有するものであれば、製法の如何にかかわ
らず、いずれをも支障なく用いることができる。このY
型ゼオライトを、先ず、脱アルカリ処理し、ついで水蒸
気処理及び/又は酸処理することにより、上記特性の結
晶性アルミノシリケートを得ることができる。
The crystalline aluminosilicate having such characteristics can be prepared from Y-type zeolite. As this Y-type zeolite, if the ratio of aluminum to silicon is 1: 2.2 to 1: 3.0, and it has a faujasite structure, it does not matter which method is used. Can be used without. This Y
The crystalline aluminosilicate having the above characteristics can be obtained by first subjecting the type zeolite to dealkalization, and then steam treatment and / or acid treatment.

【0018】尚、上記脱アルカリ処理は、例えば、Y型
ゼオライトをアンモニア含有溶液等に浸漬処理して、N
a+のようなアルカリ金属を、アンモニウムイオン等に
よりイオン交換しこれを焼成する、この一連の処理を数
回くりかえすことにより行うことにより、Na2Oを0.
3重量%以下とすることができる。
The dealkalizing treatment may be carried out, for example, by dipping the Y-type zeolite in an ammonia-containing solution, etc.
The alkali metal such as a + is ion-exchanged with ammonium ion or the like and baked, and this series of treatments is repeated several times, whereby Na 2 O is reduced to 0.
It can be 3% by weight or less.

【0019】また、水蒸気処理は上記脱アルカリしたゼ
オライトを、好ましくは500〜800℃の温度の水蒸
気と接触させる方法により行うことができる。さらに酸
処理はpH3以下の硝酸水溶液等に浸漬することにより
行うとよい。この水蒸気処理と酸処理はどちらか一方で
も良いが、両処理を併用することにより部分的な脱アル
ミニウムを行ない、SiO2/Al23のモル比が5〜
9のものが得られ、これを乾燥、焼成により、上記格子
定数を有する結晶性アルミノシリケートを調製すること
ができる。
The steam treatment can be carried out by a method of bringing the dealkalized zeolite into contact with steam at a temperature of preferably 500 to 800 ° C. Further, the acid treatment may be performed by immersing in an aqueous nitric acid solution having a pH of 3 or less. Either one of the steam treatment and the acid treatment may be used, but by using both treatments together, partial dealumination is performed, and the molar ratio of SiO 2 / Al 2 O 3 is 5 to 5.
No. 9 is obtained, which is dried and calcined to prepare a crystalline aluminosilicate having the above-mentioned lattice constant.

【0020】また、このようにして得られる所定の特性
を有する結晶性アルミノシリケートは、亜鉛、銅、鉄、
コバルト、ニッケル、チタン、バナジウム、ジルコニ
ア、カドミウム、スズ、鉛等の遷移金属の塩を含有する
溶液に浸漬することにより、これらのイオンを導入し、
遷移金属含有アルミノシリケートとすることができる。
この遷移金属含有アルミノシリケートを上記結晶性アル
ミノシリケートに代えて第2の触媒の調製のために用い
ることもできる。この場合、遷移金属としては、特に亜
鉛が好ましい。この遷移金属含有アルミノシリケート
は、上記の結晶性アルミノシリケートと混合して用いて
も良い。
Further, the crystalline aluminosilicate having the predetermined characteristics obtained in this way is composed of zinc, copper, iron,
Cobalt, nickel, titanium, vanadium, zirconia, cadmium, tin, by introducing these ions by immersing in a solution containing a salt of a transition metal such as lead,
It can be a transition metal-containing aluminosilicate.
This transition metal-containing aluminosilicate can be used in place of the above crystalline aluminosilicate for the preparation of the second catalyst. In this case, zinc is particularly preferable as the transition metal. This transition metal-containing aluminosilicate may be used as a mixture with the above crystalline aluminosilicate.

【0021】上記結晶性アルミノシリケート及び/又は
遷移金属含有結晶性アルミノシリケートは、無機酸化物
マトリックスと混合して担体とする。この担体の調製
は、常法によって行うことができる。すなわち、上記の
格子定数を有する結晶性アルミノシリケート及び/又は
遷移金属含有アルミノシリケートと無機酸化物マトリッ
クスのヒドロゲルとを十分に混合し、所定の形状に成形
し、常温乃至150℃、好ましくは、100〜130℃
で0.5時間以上乾燥した後、350〜800℃、好ま
しくは、450〜600℃で0.5時間以上焼成するこ
とにより担体を得ることができる。この場合、結晶性ア
ルミノシリケート及び/又は遷移金属含有結晶性アルミ
ノシリケートを5〜90重量%、特には、20〜50重
量%、無機酸化物マトリックスを95〜10重量%とす
ることが触媒の活性及び寿命上、好ましい。また、無機
酸化物マトリックスとしては、アルミナ、シリカ−アル
ミナ、チタニア−アルミナ、ジルコニア−アルミナな
ど、多孔質で、非晶質のものが好適に用いられる。これ
らの無機酸化物マトリックスは活性金属の担持物として
働くと共に、上記結晶性アルミノシリケート及び/又は
遷移金属含有結晶性アルミノシリケートのバインダーと
して働き、触媒の強度を向上させる役割がある。このマ
トリックスの表面積は30m2/g以上とすることが望ま
しい。
The crystalline aluminosilicate and / or the transition metal-containing crystalline aluminosilicate are mixed with an inorganic oxide matrix to form a carrier. The carrier can be prepared by a conventional method. That is, a crystalline aluminosilicate and / or a transition metal-containing aluminosilicate having the above-mentioned lattice constant and a hydrogel of an inorganic oxide matrix are thoroughly mixed and molded into a predetermined shape at room temperature to 150 ° C, preferably 100 ~ 130 ° C
The carrier can be obtained by drying it for 0.5 hours or more and then calcining at 350 to 800 ° C., preferably 450 to 600 ° C. for 0.5 hour or more. In this case, it is preferable that the crystalline aluminosilicate and / or the transition metal-containing crystalline aluminosilicate is 5 to 90% by weight, particularly 20 to 50% by weight, and the inorganic oxide matrix is 95 to 10% by weight. Also, it is preferable in terms of life. As the inorganic oxide matrix, porous, amorphous ones such as alumina, silica-alumina, titania-alumina and zirconia-alumina are preferably used. These inorganic oxide matrices function not only as a support for the active metal but also as a binder for the crystalline aluminosilicate and / or the transition metal-containing crystalline aluminosilicate, and have the role of improving the strength of the catalyst. The surface area of this matrix is preferably 30 m 2 / g or more.

【0022】次に、このようにして得られる担体にリン
と第VI族の金属成分を含有したpH3以下の水溶液を含
浸させる。リンと第VI族の金属成分を含有した水溶液の
pHを3以下とすることにより、第VI族の金属イオンの
大部分が重合錯体として存在する。この重合錯体の形成
により、第VI族の金属イオンが上記結晶性アルミノシリ
ケート及び遷移金属含有アルミノシリケートのゼオライ
ト固有の細孔内に入ることはなくなり、これらの結晶構
造を破壊し、分解活性を低下させることがなくなる。実
際には、かかる水溶液の含浸の際にも、3〜20%程度
の結晶性の低下が見られるが、この程度では、分解性
能、脱硫性能、脱窒素性能において、大きな性能低下は
認められない。
Next, the carrier thus obtained is impregnated with an aqueous solution containing phosphorus and a Group VI metal component and having a pH of 3 or less. By adjusting the pH of the aqueous solution containing phosphorus and the Group VI metal component to 3 or less, most of the Group VI metal ions are present as a polymer complex. The formation of this polymer complex prevents Group VI metal ions from entering the zeolite-specific pores of the crystalline aluminosilicates and transition metal-containing aluminosilicates, destroying their crystal structure and reducing the decomposition activity. There is nothing to do. In reality, even when impregnating with such an aqueous solution, a decrease in crystallinity of about 3 to 20% is observed, but at such an extent, no major decrease in performance is observed in decomposition performance, desulfurization performance, and denitrification performance. ..

【0023】尚、上記含浸する第VI族金属成分は、パラ
モリブデン酸アンモニウム、モリブデン酸、モリブデン
酸アンモニウム、リンモリブデン酸、タングステン酸ア
ンモニウム、タングステン酸、無水タングステン酸、タ
ングストリン酸などの化合物を水溶液として用いるとよ
い。また、重合錯体形成のためのリンは、リン酸、亜リ
ン酸、次亜リン酸、リンモリブデン酸、リンタングステ
ン酸などの酸及びそれらの塩などの水溶液が用いられ
る。このうち、リンモリブデン酸、リンタングステン酸
を用いると、リンと第VI族の金属成分が同時に低PHで
重合錯イオンとして担体に担持できるため、操作が簡便
となり、特に好ましい。これらの担持量は、最終触媒組
成物に対し、第VI族金属成分は、その合計量として、酸
化物換算で約5〜25重量%、リンは同様に0.05〜
5重量%とすることが好ましい。
The impregnated Group VI metal component is an aqueous solution of a compound such as ammonium paramolybdate, molybdic acid, ammonium molybdate, phosphomolybdic acid, ammonium tungstate, tungstic acid, tungstic anhydride, and tungstophosphoric acid. It is good to use as. As the phosphorus for forming the polymer complex, an aqueous solution of an acid such as phosphoric acid, phosphorous acid, hypophosphorous acid, phosphomolybdic acid, phosphotungstic acid, or a salt thereof is used. Of these, phosphomolybdic acid and phosphotungstic acid are particularly preferable because the phosphorus and Group VI metal components can be simultaneously carried on the carrier as polymerized complex ions with a low PH, and the operation is simplified. The loading amount of the Group VI metal component is about 5 to 25% by weight in terms of oxide as a total amount thereof with respect to the final catalyst composition, and phosphorus is similarly 0.05 to 5.
It is preferably 5% by weight.

【0024】このようにして、担体にリンと第VI族の金
属成分を含浸させた後、常温乃至150℃、好ましく
は、100〜130℃で0.5時間以上乾燥させるか、
或いは乾燥させることなくそのまま、第VIII族の金属成
分を含有した水溶液を含浸させ、常温乃至150℃、好
ましくは、100〜130℃で0.5時間以上乾燥させ
た後、350〜800℃、好ましくは、450〜600
℃で0.5時間以上焼成することにより、本発明の第2
の触媒を調製することができる。
Thus, the carrier is impregnated with phosphorus and the metal component of Group VI and then dried at room temperature to 150 ° C., preferably 100 to 130 ° C. for 0.5 hour or more, or
Alternatively, without being dried, it is directly impregnated with an aqueous solution containing a Group VIII metal component, dried at room temperature to 150 ° C., preferably 100 to 130 ° C. for 0.5 hour or more, and then 350 to 800 ° C., preferably Is 450-600
By firing at 0.5 ° C. for 0.5 hour or longer, the second
Can be prepared.

【0025】この場合、第VIII族成分の含浸には、ニッ
ケルあるいはコバルトの硝酸塩、硫酸塩、塩化物、フッ
化物、臭化物、酢酸塩、炭酸塩、リン酸塩などの水溶液
が用いられる。この第VIII族金属成分はその合計量とし
て酸化物換算で約0.5〜7重量%とすることが好まし
い。
In this case, for impregnation of the Group VIII component, an aqueous solution of nickel or cobalt nitrate, sulfate, chloride, fluoride, bromide, acetate, carbonate, phosphate or the like is used. It is preferable that the total amount of the Group VIII metal component is about 0.5 to 7% by weight in terms of oxide.

【0026】上記第1の触媒を用いて炭化水素類を水素
化処理する場合、この反応の条件は、温度約330〜4
00℃、好ましくは350〜380℃、水素分圧約20
〜200kg/cm2、液空間速度約0.2〜2.0hr-1
水素対炭化水素類の比、約200〜2000Nl/lの
範囲で選定することが好ましい。一般に、この触媒は、
炭化水素類を処理するに先立ち、硫化水素、二硫化炭素
といった硫黄化合物を含有した炭化水素類で、予備硫化
したのち、用いるとよい。
In the case of hydrotreating hydrocarbons using the above-mentioned first catalyst, the condition of this reaction is that the temperature is about 330-4.
00 ° C., preferably 350-380 ° C., hydrogen partial pressure about 20
~ 200 kg / cm 2 , liquid space velocity of about 0.2 to 2.0 hr -1 ,
It is preferable to select a ratio of hydrogen to hydrocarbons in the range of about 200 to 2000 Nl / l. Generally, this catalyst is
Prior to treating the hydrocarbons, it is preferable to pre-sulfide the hydrocarbons containing a sulfur compound such as hydrogen sulfide or carbon disulfide before use.

【0027】引き続き、上記の水素化処理油を第2の触
媒を用いて水素化分解するが、上記水素化処理油は、そ
のまま水素化分解しても良いが、軽質分を分離した後の
重質分のみを水素化分解してもよい。この反応の条件
は、温度約360〜420℃、水素分圧約20〜200
kg/cm2、液空間速度約0.2〜2.0hr-1、水素対炭
化水素類の比、約200〜2000Nl/lの範囲で選
定することが好ましい。また、この触媒も、炭化水素類
を処理するに先立ち、硫化水素、二硫化炭素といった硫
黄化合物を含有した炭化水素類で、予備硫化したのち、
用いるとよい。
Subsequently, the above-mentioned hydrotreated oil is hydrocracked by using a second catalyst. The hydrotreated oil may be hydrocracked as it is, but after the light fraction is separated, it is subjected to heavy cracking. Only the mass may be hydrocracked. The conditions for this reaction are a temperature of about 360 to 420 ° C. and a hydrogen partial pressure of about 20 to 200.
It is preferable to select in the range of kg / cm 2 , liquid hourly space velocity of about 0.2 to 2.0 hr −1 and hydrogen to hydrocarbons ratio of about 200 to 2000 Nl / l. Also, this catalyst is also pre-sulfidized with hydrocarbons containing a sulfur compound such as hydrogen sulfide and carbon disulfide before treating the hydrocarbons,
Good to use.

【0028】[0028]

【実施例】第2の触媒製造例(触媒A) (a)ナトリウム型Y型結晶性アルミノシリケート(Si
O2/Al2O3比2.9、Na2O含量12.3重量%、格子定数2
4.60Å)200gを1Mの硝酸アンモニウム水溶液
2lを用いて、50℃の温度で、イオン交換し、ろ過、
洗浄し、さらに130℃の温度で、3時間乾燥したの
ち、450℃の温度で、3時間焼成した。この操作を9
回繰返した結果、Na2O含量が0.5重量%に減少し、
SiO2/Al2O3比が5.8、格子定数が24.55Åになった
(以下これを「SY」と称する)。これを700℃の水
蒸気と3時間接触させ、pH値約1.5に調製した50
℃の硝酸水溶液2lに2時間浸し、ろ過、洗浄し、13
0℃で、3時間乾燥した後、450℃で、3時間焼成し
た(以下これを「USY」と称する)。このようにして
得られたUSYは、格子定数が、24.38Åの値を持
ち、400m2/gの表面積を有していた。
[Example] Second catalyst production example (Catalyst A) (a) Sodium-type Y-type crystalline aluminosilicate (Si
O 2 / Al 2 O 3 ratio 2.9, Na 2 O content 12.3% by weight, lattice constant 2
4.60 Å) 200 g of 2 M of 1 M ammonium nitrate aqueous solution was used for ion exchange at 50 ° C., filtration,
It was washed, further dried at a temperature of 130 ° C. for 3 hours, and then baked at a temperature of 450 ° C. for 3 hours. Do this operation 9
As a result of repeating the process twice, the Na 2 O content was reduced to 0.5% by weight,
The SiO 2 / Al 2 O 3 ratio was 5.8 and the lattice constant was 24.55Å (hereinafter referred to as “SY”). This was brought into contact with steam at 700 ° C for 3 hours to adjust the pH value to about 1.5.
Soak in 2 l of nitric acid aqueous solution at ℃ for 2 hours, filter, wash,
After drying at 0 ° C. for 3 hours, it was baked at 450 ° C. for 3 hours (hereinafter referred to as “USY”). The thus-obtained USY had a lattice constant of 24.38Å and a surface area of 400 m 2 / g.

【0029】このUSY150gをアルミナ粉末(コン
デア社製アルミナpural SB)200gと混合し、イオ
ン交換水約230gを添加して混練し、直径1mm、長さ
5mmの円柱に押し出し成形し、130℃で、3時間乾燥
した後、600℃で2時間焼成して担体とした。
150 g of this USY was mixed with 200 g of alumina powder (alumina pural SB manufactured by Condea), about 230 g of ion-exchanged water was added and kneaded, and the mixture was extruded into a cylinder having a diameter of 1 mm and a length of 5 mm at 130 ° C. After drying for 3 hours, it was baked at 600 ° C. for 2 hours to obtain a carrier.

【0030】(b)この担体にリンモリブデン酸溶液A
(pH=0.85;黄色溶液)を、細孔容積に見合った
量だけの含浸液を用いて担持を行う湿潤法により含浸さ
せ、130℃で、3時間乾燥し、550℃の温度で、2
時間焼成して触媒とした(触媒A)。この時、リンモリ
ブデン酸溶液は、最終触媒時に、MoO3を8.0重量
%、Pを0.2重量%含むように濃度を調整した。
(B) Phosphomolybdic acid solution A is added to this carrier.
(PH = 0.85; yellow solution) is impregnated by a wetting method in which an amount of the impregnating liquid commensurate with the pore volume is used for supporting, drying at 130 ° C. for 3 hours, and at a temperature of 550 ° C. Two
It was calcined for a time to obtain a catalyst (catalyst A). At this time, the concentration of the phosphomolybdic acid solution was adjusted so that the final catalyst contained 8.0% by weight of MoO 3 and 0.2% by weight of P.

【0031】第2の比較触媒製造例(触媒B) 実施例1において、リンモリブデン酸溶液Aのかわり
に、リンモリブデン酸溶液B(pH=6;無色溶液;溶
液Aにアンモニア水を添加して、pHを向上させた)を
用いたことを除いては実施例1と同じ方法により、触媒
Bを調製した。
Second Comparative Catalyst Production Example (Catalyst B) In Example 1, instead of phosphomolybdic acid solution A, phosphomolybdic acid solution B (pH = 6; colorless solution; ammonia water was added to solution A). Catalyst B was prepared by the same method as in Example 1, except that the pH was increased.

【0032】第2の触媒製造例(触媒C) (a)実施例1において得られるUSY150gを50
℃の0.2M塩化亜鉛溶液1.5lと2時間接触させたの
ち、ろ過、洗浄、乾燥、焼成した。(これをZnUSY
と称する。)このようにして得られた遷移金属含有アル
ミナシリケートには、ZnOとして、約2重量%の亜鉛
導入されおり、24.38Åの格子定数、380m2/gの
表面積を持っている。このZnUSY150gを実施例
1の(a)に記載した方法と同様の操作で担体とした。
Second catalyst production example (Catalyst C) (a) 50 g of USY 150 g obtained in Example 1
After contacting with 1.5 l of a 0.2 M zinc chloride solution at 0 ° C. for 2 hours, the mixture was filtered, washed, dried and calcined. (This is ZnUSY
Called. The transition metal-containing alumina silicate thus obtained contains about 2% by weight of zinc as ZnO and has a lattice constant of 24.38Å and a surface area of 380 m 2 / g. 150 g of this ZnUSY was used as a carrier by the same operation as in the method described in Example 1 (a).

【0033】(b)この担体に、モリブデン酸アンモニ
ウム、硝酸ニッケル及びリン酸を、最終触媒時に、Mo
3、NiO、Pとしてそれぞれ8.0wt%、2.2wt
%、1.0wt%となるように、混合し、これを湿潤法に
より担持した。この時の含浸液のpHは約2.8であっ
た。担持後に、実施例1と同様の条件で乾燥、焼成して
触媒Cを調製した。
(B) Ammonium molybdate, nickel nitrate and phosphoric acid were added to this carrier at the time of final catalyst, and Mo was added.
O 3, NiO, respectively as P 8.0 wt%, 2.2 wt
%, 1.0 wt% and mixed by a wet method. The pH of the impregnating liquid at this time was about 2.8. After the loading, the catalyst C was prepared by drying and firing under the same conditions as in Example 1.

【0034】第2の比較触媒製造例(触媒D) 実施例2において、担体として、ZnUSYを含まない
アルミナのみの形成体を用いたことを除いて、実施例2
と同じ方法により、触媒Dを調製した。
Second Comparative Catalyst Preparation Example (Catalyst D) Example 2 except that in the Example 2 the carrier formed was only alumina without ZnUSY.
Catalyst D was prepared by the same method as described above.

【0035】第2の比較触媒製造例(触媒E) 実施例1のナトリウム型Y型結晶性アルミノシリケート
をイオン交換して得たNa2O含量が0.5重量%、SiO2
/Al2O3比が5.8、格子定数が24.55Åの脱アルカリ
処理したアルミノシリケートSYを、実施例2のUSY
の代わりに用いて、実施例2の方法でMoO3、Ni
O、Pとしてそれぞれ8.0wt%、2.2wt%、1.0wt
%となるように担持し、触媒Eを調製した。
Second Comparative Catalyst Production Example (Catalyst E) Na 2 O content obtained by ion-exchange of the sodium-type Y-type crystalline aluminosilicate of Example 1 was 0.5 wt%, SiO 2
USY of Example 2 was prepared by treating the dealkalized aluminosilicate SY having a ratio of / Al 2 O 3 of 5.8 and a lattice constant of 24.55Å.
In the same manner as in Example 2, except that MoO 3 , Ni
O and P are 8.0 wt%, 2.2 wt% and 1.0 wt, respectively
% So that the catalyst E was prepared.

【0036】第2比較触媒製造例(触媒F) ナトリウム型Y型結晶性アルミノシリケートをイオン交
換し、さらに酸処理してNa2O含量が0.03重量%、
SiO2/Al2O3比が14.6、格子定数が24.29Åのアル
ミノシリケートを実施例2のUSYの代わりに用いて、
実施例2の方法でMoO3、NiO、Pとしてそれぞれ
8.0wt%、2.2wt%、1.0wt%となるように担持
し、触媒Fを調製した。
Second Comparative Catalyst Production Example (Catalyst F) Sodium-type Y-type crystalline aluminosilicate was ion-exchanged and further acid-treated to give a Na 2 O content of 0.03% by weight,
Using an aluminosilicate having a SiO 2 / Al 2 O 3 ratio of 14.6 and a lattice constant of 24.29Å instead of USY of Example 2,
According to the method of Example 2, MoO 3 , NiO, and P were loaded so as to be 8.0 wt%, 2.2 wt%, and 1.0 wt%, respectively, to prepare a catalyst F.

【0037】実施例1〜2 無機酸化物として、ホウ素を6.0重量%含有したアル
ミナ担体に、Moを金属として10重量%及びCoを金
属として3重量%担持したもので、200m2/gの表面
積、0.6ml/gの細孔容積、90Åの平均細孔直径を有
する触媒を第1の触媒とし、水素化H2圧=40kg/c
m2、LHSV=0.4hr-1、水素/原料油比=400、
反応温度=360℃の条件下に、表1の性状を有する減
圧蒸留軽油を用いて水素化処理し、引き続いて、上記触
媒Aを第2の触媒として、水素化H2圧=40kg/cm2
LHSV=0.4hr-1、水素/原料油比=400、反応
温度=400℃の条件下に、分解反応を行った。反応開
始後10時間後と80時間後の分解油を採取し、分解率
(360℃以上の留分の減少率で算出)を測定した。こ
の結果を実施例1として表2に示した。第2の触媒とし
て、触媒Cを用いて、まったく同様の操作を行った。こ
の結果を実施例2として表2に示した。
[0037] As Examples 1-2 inorganic oxides, boron alumina support containing 6.0 wt%, obtained by 3 wt% on the 10 wt% and Co to Mo as the metal as a metal, 200 meters 2 / g The first catalyst is a catalyst having a surface area of 0.5, a pore volume of 0.6 ml / g, and an average pore diameter of 90Å, and the hydrogenation H 2 pressure is 40 kg / c.
m 2 , LHSV = 0.4 hr −1 , hydrogen / feed oil ratio = 400,
Under the condition of reaction temperature = 360 ° C., hydrogenation was carried out using vacuum distilled gas oil having the properties shown in Table 1, and subsequently, hydrogenation H 2 pressure = 40 kg / cm 2 using the above catalyst A as a second catalyst. ,
The decomposition reaction was carried out under the conditions of LHSV = 0.4 hr −1 , hydrogen / feed oil ratio = 400, and reaction temperature = 400 ° C. The cracked oil was collected 10 hours and 80 hours after the start of the reaction, and the decomposition rate
(Calculated by the reduction rate of the fraction at 360 ° C. or higher) was measured. The results are shown in Table 2 as Example 1. Using Catalyst C as the second catalyst, exactly the same operation was performed. The results are shown in Table 2 as Example 2.

【表1】 [Table 1]

【表2】 [Table 2]

【0038】比較例1〜4 第1の触媒として実施例1と同じ触媒を用い、第2触媒
として、触媒B、D、E、Fをそれぞれ用いて、実施例
1〜2に記載した条件と同じ条件で、水素化処理及び水
素化分解を行った。実施例1と同様に10時間目と80
時間目の分解率を測定した結果を表2に示した。
Comparative Examples 1 to 4 Using the same catalyst as in Example 1 as the first catalyst and using catalysts B, D, E, and F as the second catalyst, the conditions described in Examples 1 and 2 were used. Under the same conditions, hydrotreatment and hydrocracking were performed. As in Example 1, after 10 hours and 80
The results of measuring the decomposition rate at the time are shown in Table 2.

【0039】比較例5〜7 実施例1の第1の触媒、触媒A、触媒Cをそれぞれ単独
で用い、水素化H2圧=40kg/cm2、LHSV=0.8hr
-1、水素/原料油比=400、反応温度=400℃の条
件下で、水素化分解を行った。実施例1と同様に10時
間目と80時間目の分解率を測定した結果を表2に示し
た。
Comparative Examples 5 to 7 Using the first catalyst of Example 1, catalyst A and catalyst C respectively, hydrogenation H 2 pressure = 40 kg / cm 2 , LHSV = 0.8 hr
The hydrogenolysis was carried out under the conditions of -1 , hydrogen / feed oil ratio = 400, and reaction temperature = 400 ° C. The results of measuring the decomposition rates at 10 hours and 80 hours in the same manner as in Example 1 are shown in Table 2.

【0040】比較例8 実施例1の第1の触媒を単独で用い、水素化H2圧=4
0kg/cm2、LHSV=0.8hr-1、水素/原料油比=4
00、反応温度=360℃の条件下で、水素化分解を行
った。実施例1と同様に10時間目と80時間目の分解
率を測定した結果を表2に示した。
Comparative Example 8 Using the first catalyst of Example 1 alone, hydrogenation H 2 pressure = 4
0 kg / cm 2 , LHSV = 0.8 hr −1 , hydrogen / feed oil ratio = 4
00 and reaction temperature = 360 ° C., hydrogenolysis was carried out. The results of measuring the decomposition rates at 10 hours and 80 hours in the same manner as in Example 1 are shown in Table 2.

【0041】この結果から明らかなように、本発明の触
媒は、比較例の触媒に比べて、分解性能及び分解活性の
寿命の点で優れていることが分かる。
As is clear from these results, the catalyst of the present invention is superior to the catalysts of Comparative Examples in terms of decomposition performance and decomposition activity life.

【発明の効果】【The invention's effect】

【0042】本発明は、炭化水素類の水素化分解反応に
おいて、高分解性能を得ることができ、またこの分解活
性を長時間維持でき、触媒寿命の長期化などを図ること
ができ、重質油を効率良く分解することができる。
The present invention can obtain high cracking performance in the hydrocracking reaction of hydrocarbons, can maintain this cracking activity for a long time, and can prolong the life of the catalyst. Oil can be decomposed efficiently.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C10G 47/16 2115−4H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location C10G 47/16 2115-4H

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭化水素類を、周期律表第VI族及び周期
律表第VIII族に属する金属の少なくとも1種を無機酸化
物担体に担持した第1の触媒を用いて、330〜400
℃の温度で水素化処理し、次いで、Na2Oの含有量が
0.3重量%以下、SiO2/Al23のモル比が5〜9
で、かつ格子定数が24.42乃至24.30Åの結晶性
アルミノシリケート及び/又は前記格子定数が24.4
2乃至24.30Åの結晶性アルミノシリケートを遷移
金属含有溶液で処理した遷移金属含有アルミノシリケー
トと無機酸化物マトリックスとからなる担体に周期律表
第VI族に属する金属の少なくとも1種とリンとを含むp
H3以下の水溶液を含浸、乾燥させた後、或いは乾燥さ
せることなく、周期律表第VIII族に属する金属の少なく
とも1種を含む水溶液を含浸、乾燥、焼成して得られた
第2の触媒を用いて、360〜420℃の温度で水素化
分解することを特徴とする炭化水素類の水素化分解方
法。
1. A first catalyst in which at least one metal belonging to Group VI and Group VIII of the Periodic Table of Hydrocarbons is supported on an inorganic oxide support, and a catalyst of 330 to 400 is used.
Hydrogenated at a temperature of ℃, then Na 2 O content of 0.3 wt% or less, SiO 2 / Al 2 O 3 molar ratio of 5-9
And a crystalline aluminosilicate having a lattice constant of 24.42 to 24.30Å and / or the lattice constant of 24.4.
2 to 24.30Å crystalline aluminosilicate treated with a transition metal-containing solution, and a carrier comprising a transition metal-containing aluminosilicate and an inorganic oxide matrix, and at least one metal belonging to Group VI of the periodic table and phosphorus. Including p
A second catalyst obtained by impregnating with an aqueous solution containing at least one metal belonging to Group VIII of the Periodic Table, drying and firing after impregnation with an aqueous solution of H3 or less and drying, or without drying. A method for hydrocracking hydrocarbons, which comprises hydrocracking at a temperature of 360 to 420 ° C.
【請求項2】 請求項1に記載の第1の触媒がリン及び
ホウ素の少なくとも1種を含有させたものであることを
特徴とする炭化水素類の水素化分解方法。
2. A method for hydrocracking hydrocarbons, wherein the first catalyst according to claim 1 contains at least one of phosphorus and boron.
【請求項3】 請求項1に記載の第2の触媒中の遷移金
属含有アルミノシリケートが亜鉛含有アルミノシリケー
トであることを特徴とする炭化水素類の水素化分解方
法。 【0001】
3. The method for hydrocracking hydrocarbons, wherein the transition metal-containing aluminosilicate in the second catalyst according to claim 1 is a zinc-containing aluminosilicate. [0001]
JP3289467A 1991-10-09 1991-10-09 Hydrocracking method for hydrocarbons Expired - Lifetime JP3057651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3289467A JP3057651B2 (en) 1991-10-09 1991-10-09 Hydrocracking method for hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3289467A JP3057651B2 (en) 1991-10-09 1991-10-09 Hydrocracking method for hydrocarbons

Publications (2)

Publication Number Publication Date
JPH0598271A true JPH0598271A (en) 1993-04-20
JP3057651B2 JP3057651B2 (en) 2000-07-04

Family

ID=17743655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3289467A Expired - Lifetime JP3057651B2 (en) 1991-10-09 1991-10-09 Hydrocracking method for hydrocarbons

Country Status (1)

Country Link
JP (1) JP3057651B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027537A1 (en) * 2012-08-17 2014-02-20 日揮触媒化成株式会社 Catalyst for hydrocarbon catalytic cracking
WO2014156486A1 (en) * 2013-03-25 2014-10-02 コスモ石油株式会社 Hydrogenation desulfurization catalyst for diesel oil and hydrogenation treatment method for diesel oil

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5151372B2 (en) * 2007-10-01 2013-02-27 セイコーエプソン株式会社 Liquid ejecting apparatus and method for controlling liquid ejecting apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027537A1 (en) * 2012-08-17 2014-02-20 日揮触媒化成株式会社 Catalyst for hydrocarbon catalytic cracking
AU2013303687B2 (en) * 2012-08-17 2016-10-20 Jgc Catalysts And Chemicals Ltd. Catalyst for hydrocarbon catalytic cracking
US9731281B2 (en) 2012-08-17 2017-08-15 Jgc Catalysts And Chemicals Ltd. Catalyst for hydrocarbon catalytic cracking
WO2014156486A1 (en) * 2013-03-25 2014-10-02 コスモ石油株式会社 Hydrogenation desulfurization catalyst for diesel oil and hydrogenation treatment method for diesel oil
JP5928970B2 (en) * 2013-03-25 2016-06-01 コスモ石油株式会社 Gas oil hydrodesulfurization catalyst, hydrodesulfurization catalyst production method, and gas oil hydrotreating method
RU2640583C2 (en) * 2013-03-25 2018-01-10 Космо Ойл Ко., Лтд. Hydrodesulfurization catalyst for diesel fuel and method of hydrocleaning diesel fuel
US9987622B2 (en) 2013-03-25 2018-06-05 Cosmo Oil Co., Ltd. Hydrodesulfurization catalyst for diesel oil and hydrotreating method for diesel oil

Also Published As

Publication number Publication date
JP3057651B2 (en) 2000-07-04

Similar Documents

Publication Publication Date Title
US4419271A (en) Hydrocarbon conversion catalyst
US4517074A (en) Hydrocarbon conversion process
EP0701596B1 (en) Process for preparing an alumina bound zeolite catalyst
US6037300A (en) Catalyst containing boron and silicon and its use for hydrotreating hydrocarbon feeds
JP2529778B2 (en) Catalytic system and method for hydrocarbon hydrotreating
US5030780A (en) Aromatic saturation process with a silica-alumina and zeolite catalyst
JP2547115B2 (en) Hydrotreating catalyst composition for hydrocarbon oil and hydrotreating method using the same
US6500330B2 (en) Hydrocracking process with catalyst comprising a zeolite Y not globally dealuminized, an element of group VB, and a promoter element of boron, phosphorus and silicon
JP2992971B2 (en) Hydrotreating catalyst
US6171474B1 (en) Zeolite Y catalyst containing silicon useful for hydrocracking
US4585748A (en) Crystalline catalyst compositions for the conversion of hydrocarbons
US4600498A (en) Mild hydrocracking with a zeolite catalyst containing silica-alumina
US4610973A (en) Hydrocarbon conversion catalyst
JP3994236B2 (en) Catalyst comprising at least two zeolites Y dealuminated and a conventional hydroconversion process for petroleum fractions using the catalyst
JP3994237B2 (en) Mild hydrocracking process for petroleum fractions using a catalyst comprising dealuminated at least two zeolites Y
JPH11290687A (en) Hydrogenation decomposition catalyst of hydrocarbon oil and hydrogen decomposition
US4664776A (en) Hydrocarbon zeolite catalyst employed in hydrocracking process
JP2003500194A (en) Catalyst comprising partially amorphous zeolite Y and its use in hydroconversion of hydrocarbon petroleum feedstocks
JPH0631333B2 (en) Hydrocracking method for hydrocarbons
US6402936B1 (en) Catalyst that comprises a partially amorphous Y zeolite, an element of group VB and its use in hydroconversion and hydrorefining of hydrocarbon petroleum feedstocks
US4871445A (en) Hydrocarbon conversion
JP3057651B2 (en) Hydrocracking method for hydrocarbons
JPH0242539B2 (en)
JPH025138B2 (en)
EP0070824B2 (en) Hydrocarbon conversion catalyst

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 12