JPH059815Y2 - - Google Patents

Info

Publication number
JPH059815Y2
JPH059815Y2 JP5180386U JP5180386U JPH059815Y2 JP H059815 Y2 JPH059815 Y2 JP H059815Y2 JP 5180386 U JP5180386 U JP 5180386U JP 5180386 U JP5180386 U JP 5180386U JP H059815 Y2 JPH059815 Y2 JP H059815Y2
Authority
JP
Japan
Prior art keywords
zinc
electrode
separator
fibrous
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5180386U
Other languages
Japanese (ja)
Other versions
JPS62163861U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5180386U priority Critical patent/JPH059815Y2/ja
Publication of JPS62163861U publication Critical patent/JPS62163861U/ja
Application granted granted Critical
Publication of JPH059815Y2 publication Critical patent/JPH059815Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Cell Separators (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

(イ) 産業上の利用分野 本考案はニツケル−亜鉛蓄電池、銀−亜鉛蓄電
池などのように負極活物質として亜鉛を用いるア
ルカリ蓄電池に係り、特にセパレータの構成に関
するものである。 (ロ) 従来の技術 近年、ポータブルの電子機器が著しく普及し、
その駆動電源としての二次電池の需要が急増して
いる。この駆動電源の二次電池はニツケル−カド
ミウム蓄電池が大半を占めているが、ニツケル−
カドミウム蓄電池より高性能化したものとして負
極活物質に亜鉛を用いたアルカリ亜鉛蓄電池が注
目されている。 アルカリ亜鉛蓄電池は単位重量あたりの高いエ
ネルギー密度及び高い作動電圧を有し、且つ経済
性や安全性に優れるなどの利点を有するものであ
るが、反面電池寿命が短いという欠点をも有して
いる。この欠点は放電時に負極活物質の亜鉛が電
解液中に亜鉛酸イオンとして溶解することが基本
的原因となつて引き起こされる。すなわち、放電
時に亜鉛酸イオンとなつて溶出した亜鉛が充電時
に亜鉛極表面に樹枝状に析出するため、充放電を
繰り返すと、この樹枝状亜鉛が生長して正極に達
して内部短絡を起こしたり、また、放電時に亜鉛
酸イオンとなつて溶出した亜鉛が多孔質電極であ
る亜鉛極表面に酸化亜鉛となつて緻密に生成して
亜鉛極表面の孔を塞ぎ、電解液の亜鉛極内部への
拡散が制限されて亜鉛内部の反応性が低下するこ
とによつてアルカリ亜鉛蓄電池の寿命が短くな
る。 上記亜鉛酸イオンの生成は電解液が過剰に存在
する程促進されるため、特公昭55−29548号公報
では電解液量を実質的に遊離のものを存在させな
い程度に制限することが提案され、これによつて
亜鉛酸イオンの電解液への逸散が抑えられてサイ
クル寿命が向上したが、まだ充分に満足したもの
とは言えなかつた。 (ハ) 考案が解決しようとする問題点 本考案はアルカリ亜鉛蓄電池に於ける亜鉛極表
面近傍の電解液量を効果的に規制することによ
り、亜鉛酸イオンの電解液への溶解を抑制し、亜
鉛極表面からの樹枝状亜鉛の生長及び亜鉛極表面
の高密度化を抑え、サイクル寿命を向上させよう
とするものである。 (ニ) 問題点を解決するための手段 本考案のアルカリ亜鉛蓄電池は、亜鉛極と、正
極と、これら両極間に配置されたセパレータと、
遊離のものが存在しない程度に液量が制限された
電解液とを備えるものであつて、前記セパレータ
は少なくとも同材質の一対の繊維状セパレータと
2枚の微孔性フイルムとからなる多装構造であ
り、前記微孔性フイルムの1枚が前記亜鉛極に接
し、前記微孔性フイルムの他の1枚が前記一対の
繊維状セパレータ間に配置されており、前記亜鉛
極に近接する一方の前記繊維状セパレータの平均
繊維径が前記正極に近接する他方の前記繊維セパ
レータの平均繊維径より大であることを特徴とす
るものである。 (ホ) 作用 不織布や抄紙法により作製した繊維状セパレー
タは、セパレータを構成する繊維の径の大小によ
つて物性に著しい差異が生じる。すなわち、径の
小さい繊維を主体とするセパレータは繊維の表面
積が増大し電解液の接触面積が大きくなるので保
液能力が高いのに対し、径の大きい繊維を主体と
するセパレータは繊維の表面積が減少し電解液の
接触面積が小さくなるので保液性が低く、セパレ
ータ中には電解液を世事できないで残る空間が比
較的多く存在する。つまり、径の小さい繊維を主
体とするセパレータは径の大きい繊維を主体とす
るセパレータより、単位体積あたりの保液量が小
さくなる。 したがつて亜鉛極と正極との間に介在させるセ
パレータとして、前記径の大きい繊維を主体とす
るセパレータが亜鉛極に近接し、且つ前記径の小
さい繊維を主体とするセパレータが正極に近傍す
るよう構成した多層構造のセパレータを用いる
と、多層セパレータ内で正極から亜鉛極に向つて
電解液の保液量が減少するという保液量の勾配を
つくり出すことができ、亜鉛極表面の電解液量を
制限することができる。そして、これにより亜鉛
極表面に供給する電解液量が減少して亜鉛極表面
の電解液量を効果的に制限でき、また、径の大き
い繊維を主体とするセパレータは保液量が少なく
ガス透過性が良好であるため、酸素ガスが亜鉛極
に到達し易く、亜鉛極の酸化ガス吸収能力を向上
することができる。 (ヘ) 実施例 酸化亜鉛45重量部、金属亜鉛45重量部に添加剤
としての酸化水銀5重量部を加えて充分に混合し
た後、ポリテトラフルオロエチレンデイスパージ
ヨン5重量部を加え、水で希釈し混練してペース
ト状とし、次いで圧延ローラで圧延して所定の厚
みのカレンダーシートを作製し、このカレンダー
シートを集電体の両面に貼り合わせ圧着ローラで
圧着して亜鉛極を得る。 この亜鉛極と焼結式ニツケル極とを組み合わせ
第1図に示す構成の単二サイズのニツケル−亜鉛
蓄電池を作製した。第1図中1は亜鉛極、2はニ
ツケル極であつて、これら亜鉛極1及びニツケル
極2の間に多層セパレータ3を介して渦巻状に巻
回することによつて電極体が構成されている。ま
た、電解液(KOH)は亜鉛極1、ニツケル2及
び多層セパレータ3に吸収保持されているため、
遊離の電解液は実質的に存在しない状態となつて
いる。尚、4は負極端子兼用電池管、5は正極端
子兼用封口体、6は絶縁パツキングである。 上記構成のニツケル−亜鉛蓄電池を、亜鉛極と
ニツケル極との間に介挿する多層セパレータのみ
種々変化させて作製した。多層セパレータは繊維
径10μm以下(平均8μm)と繊維径15μm以上(平
均17μm)のポリアミド(ナイロン)繊維を単独
または混合して得た不織布と、ポリプロピレン微
孔性フイルムとを組合せたものであり、繊維状セ
パレータである前記不織布として第1表に示す
種々の形態のものを用い、第2表に示す構成とし
た。なお、第2表中PPはポリプロピレン微孔性
フイルムを示し、また保液量はセパレータの単位
体積当りの比重1.30のKOH溶液の吸収量を示す。
(a) Field of Industrial Application The present invention relates to alkaline storage batteries that use zinc as a negative electrode active material, such as nickel-zinc storage batteries and silver-zinc storage batteries, and particularly relates to the structure of separators. (b) Conventional technology In recent years, portable electronic devices have become extremely popular.
Demand for secondary batteries as a driving power source is rapidly increasing. Most of the secondary batteries used in this drive power source are nickel-cadmium storage batteries;
Alkaline zinc storage batteries that use zinc as the negative electrode active material are attracting attention as higher performance than cadmium storage batteries. Alkaline zinc storage batteries have advantages such as high energy density per unit weight and high operating voltage, and are excellent in economy and safety, but on the other hand, they also have the disadvantage of short battery life. . This drawback is basically caused by the fact that zinc, which is a negative electrode active material, dissolves in the electrolytic solution as zincate ions during discharge. In other words, the zinc eluted as zincate ions during discharge is deposited in a dendritic form on the surface of the zinc electrode during charging, so when charging and discharging are repeated, these dendritic zinc may grow and reach the positive electrode, causing an internal short circuit. In addition, the zinc eluted as zincate ions during discharge becomes dense zinc oxide on the surface of the zinc electrode, which is a porous electrode, and closes the pores on the surface of the zinc electrode, preventing the electrolyte from entering the inside of the zinc electrode. Limited diffusion and reduced reactivity within the zinc reduce the lifetime of alkaline zinc batteries. Since the production of the above-mentioned zincate ions is accelerated as the electrolyte is present in excess, Japanese Patent Publication No. 55-29548 proposes to limit the amount of the electrolyte to such an extent that substantially no free substances are present. This suppressed the dissipation of zincate ions into the electrolytic solution and improved the cycle life, but it was still not completely satisfactory. (c) Problems to be solved by the invention The invention suppresses the dissolution of zincate ions into the electrolyte by effectively regulating the amount of electrolyte near the surface of the zinc electrode in an alkaline zinc storage battery. The purpose is to suppress the growth of dendritic zinc from the surface of the zinc electrode and increase the density of the surface of the zinc electrode, thereby improving cycle life. (d) Means for solving the problems The alkaline zinc storage battery of the present invention includes a zinc electrode, a positive electrode, and a separator disposed between these two electrodes.
The electrolytic solution is provided with an electrolytic solution whose amount is limited to such an extent that there is no free electrolyte, and the separator has a multi-packed structure consisting of at least a pair of fibrous separators made of the same material and two microporous films. One of the microporous films is in contact with the zinc electrode, and the other microporous film is disposed between the pair of fibrous separators, and one of the microporous films is in contact with the zinc electrode. The average fiber diameter of the fibrous separator is larger than the average fiber diameter of the other fibrous separator adjacent to the positive electrode. (e) Effects Fibrous separators produced using nonwoven fabrics or papermaking methods have significant differences in physical properties depending on the diameter of the fibers that make up the separator. In other words, a separator made mainly of fibers with a small diameter has a high liquid retention capacity because the surface area of the fibers increases and the contact area with the electrolyte becomes large, whereas a separator made mainly of fibers with a large diameter has a high surface area. Since the contact area of the electrolyte becomes smaller, the liquid retention property is low, and a relatively large amount of space remains in the separator without being able to hold the electrolyte. In other words, a separator mainly composed of fibers with a small diameter has a smaller amount of liquid retained per unit volume than a separator mainly composed of fibers with a large diameter. Therefore, as a separator to be interposed between the zinc electrode and the positive electrode, the separator mainly composed of fibers with a large diameter should be close to the zinc electrode, and the separator mainly composed of fibers with a small diameter should be near the positive electrode. By using the separator with the constructed multilayer structure, it is possible to create a gradient in the amount of electrolyte retained within the multilayer separator, in which the amount of retained electrolyte decreases from the positive electrode toward the zinc electrode, thereby reducing the amount of electrolyte on the surface of the zinc electrode. can be restricted. This reduces the amount of electrolyte supplied to the surface of the zinc electrode, effectively limiting the amount of electrolyte on the surface of the zinc electrode.In addition, a separator made mainly of large-diameter fibers has a small amount of liquid retention and gas permeability. Since the zinc electrode has good properties, oxygen gas can easily reach the zinc electrode, and the oxidizing gas absorption ability of the zinc electrode can be improved. (F) Example After adding 5 parts by weight of mercury oxide as an additive to 45 parts by weight of zinc oxide and 45 parts by weight of metal zinc and thoroughly mixing the mixture, 5 parts by weight of polytetrafluoroethylene dispersion was added, and the mixture was diluted with water. The mixture is diluted and kneaded to form a paste, and then rolled with a rolling roller to produce a calender sheet of a predetermined thickness.The calender sheet is pasted on both sides of a current collector and pressed with a pressure roller to obtain a zinc electrode. This zinc electrode and a sintered nickel electrode were combined to produce a AA size nickel-zinc storage battery having the configuration shown in FIG. In FIG. 1, 1 is a zinc electrode and 2 is a nickel electrode, and the electrode body is constructed by spirally winding the zinc electrode 1 and the nickel electrode 2 with a multilayer separator 3 in between. There is. In addition, since the electrolyte (KOH) is absorbed and retained by the zinc electrode 1, nickel 2, and multilayer separator 3,
There is substantially no free electrolyte. In addition, 4 is a battery tube that also serves as a negative electrode terminal, 5 is a sealing body that also serves as a positive electrode terminal, and 6 is an insulating packing. Nickel-zinc storage batteries having the above structure were manufactured by varying only the multilayer separator interposed between the zinc electrode and the nickel electrode. The multilayer separator is a combination of a nonwoven fabric obtained by singly or mixing polyamide (nylon) fibers with a fiber diameter of 10 μm or less (average 8 μm) and a fiber diameter of 15 μm or more (average 17 μm) and a polypropylene microporous film. Various types of nonwoven fabrics shown in Table 1 were used as the fibrous separator, and the structures shown in Table 2 were prepared. In Table 2, PP indicates a polypropylene microporous film, and the amount of liquid retained indicates the amount of KOH solution having a specific gravity of 1.30 absorbed per unit volume of the separator.

【表】【table】

【表】 こうして作製した電池を夫々360mAで5時間
充電し、360mAで電池電圧が1.0Vに達するまで
放電する条件で充放電を行なつたときのサイクル
特性を各電池の初期容量を夫々100として第2図
に示す。第2図から本考案の多層セパレータの構
成を用いた電池A乃至Hは、比較電池I乃至Nと
比べてサイクル特性が優れることが明らかであ
る。 本考案電池A乃至Hは径の大きい繊維を主体と
する繊維状セパレータを亜鉛極に近接して配する
と共に、径の小さい繊維を主体とする繊維状セパ
レータを正極に近接して配しているので、電解液
が主として多層セパレータの正極側で保持でき正
極に充分な量の電解液を供給することができると
共に、亜鉛極に近接するセパレータの単位体積あ
たりの電解液の保液量を少なくでき亜鉛極表面に
供給する電解液が減少して亜鉛の溶解が抑制され
て樹枝状亜鉛の生長を防止しサイクル寿命が向上
したものと考えられる。特にこの様な効果が得ら
れるのは、亜鉛極に近傍する繊維状セパレータの
繊維の50%以上を繊維径15μm以上とし、且つ正
極に近接する繊維状セパレータの繊維の50%以上
を繊維径10μm以下とした場合である。 これに対して比較電池I乃至Lは正極に近接す
る繊維状セパレータの繊維径が大きくセパレータ
の単位体積あたりの保液量が少ないものであるた
め、正極に充分な量の電解液を供給することがで
きず、また、亜鉛極に近接する繊維状セパレータ
の繊維径が小さくセパレータの単位体積あたりの
保液量が多いものであるため亜鉛極への電解液供
給量が多くなり亜鉛が溶出し易くなりサイクル寿
命が短くなつたものと考えられる。更に、比較電
池M及びNにおいては、亜鉛極に近接する繊維状
セパレータとして、本発明電池A,D,G及び本
発明電池C,Fと同一の5及び3を使用している
が、単にこの繊維状セパレータを亜鉛極側に配置
した構成としたからといつて電池特性を向上させ
ているものではないことが理解できる。 尚、本考案電池の多層セパレータは電解液の保
液性の極めて低い微孔性薄膜と、電解液の保液性
の優れた不織布あるいは湿式での抄紙法で得た繊
維状のものとを使用するが、微孔性薄膜としては
ポリチレン、ポリプロピレン、ポリテトラフルオ
ロエチレンのマイクロポーラスフイルムまたはこ
れらフイルムの表面に界面活性剤処理を施した
り、アクリル酸などをグラフト重合させたものな
どを使用でき、繊維状としてはポリアミド、ポリ
エステル、ポリオレフイン、ビニロン、レーヨン
などの繊維を混合したものを単独または数種類組
み合わせて使用することができる。 (ト) 考案の効果 本考案のアルカリ亜鉛蓄電池は、セパレータと
して亜鉛極に近接する繊維状セパレータの平均繊
維径を正極に近接する繊維状セパレータの平均繊
維径より大である多層構造のセパレータを用いた
ものであり、亜鉛極表面の電解液量を制限するこ
とができるので、亜鉛極からの樹枝状亜鉛の生長
を防止できサイクル寿命が向上する。
[Table] The cycle characteristics of each battery prepared in this way were calculated by charging each battery at 360mA for 5 hours and discharging at 360mA until the battery voltage reached 1.0V, assuming that the initial capacity of each battery was 100. Shown in Figure 2. It is clear from FIG. 2 that batteries A to H using the multilayer separator structure of the present invention have superior cycle characteristics compared to comparative batteries I to N. Batteries A to H of the present invention have a fibrous separator mainly composed of large-diameter fibers arranged close to the zinc electrode, and a fibrous separator mainly composed of small-diameter fibers arranged close to the positive electrode. Therefore, the electrolyte is mainly retained on the positive electrode side of the multilayer separator, and a sufficient amount of electrolyte can be supplied to the positive electrode, and the amount of electrolyte retained per unit volume of the separator near the zinc electrode can be reduced. It is thought that this is because the amount of electrolyte supplied to the surface of the zinc electrode was reduced, suppressing the dissolution of zinc, preventing the growth of dendritic zinc, and improving the cycle life. In particular, this effect can be obtained when 50% or more of the fibers in the fibrous separator near the zinc electrode have a fiber diameter of 15 μm or more, and when 50% or more of the fibers in the fibrous separator near the positive electrode have a fiber diameter of 10 μm. This is the case as follows. On the other hand, in comparative batteries I to L, the fiber diameter of the fibrous separator close to the positive electrode is large and the amount of liquid retained per unit volume of the separator is small, so it is difficult to supply a sufficient amount of electrolyte to the positive electrode. In addition, since the fibrous separator adjacent to the zinc electrode has a small fiber diameter and can hold a large amount of liquid per unit volume of the separator, the amount of electrolyte supplied to the zinc electrode is large and zinc is easily eluted. This is thought to have shortened the cycle life. Furthermore, in comparative batteries M and N, the same fibrous separators 5 and 3 as in the present invention batteries A, D, G and the present invention batteries C and F are used as the fibrous separators close to the zinc electrode, but only this It can be seen that the structure in which the fibrous separator is placed on the zinc electrode side does not improve the battery characteristics. The multilayer separator of the battery of the present invention uses a microporous thin film with extremely low electrolyte retention, and a nonwoven fabric or fibrous material obtained by wet papermaking that has excellent electrolyte retention. However, as the microporous thin film, microporous films of polyethylene, polypropylene, and polytetrafluoroethylene, or those whose surfaces are treated with surfactants or graft polymerized with acrylic acid, etc., can be used. As for the fibers, a mixture of fibers such as polyamide, polyester, polyolefin, vinylon, rayon, etc. can be used alone or in combination. (g) Effects of the invention The alkaline zinc storage battery of the invention uses a separator with a multilayer structure in which the average fiber diameter of the fibrous separator adjacent to the zinc electrode is larger than the average fiber diameter of the fibrous separator adjacent to the positive electrode. Since the amount of electrolyte on the surface of the zinc electrode can be limited, the growth of dendritic zinc from the zinc electrode can be prevented and the cycle life can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例によるアルカリ亜鉛
蓄電池の断面図、第2図は本考案電池A乃至Hと
比較電池I乃至Nのサイクル特性図である。 1……亜鉛極、2……ニツケル極、3……セパ
レータ。
FIG. 1 is a sectional view of an alkaline zinc storage battery according to an embodiment of the present invention, and FIG. 2 is a cycle characteristic diagram of batteries A to H of the present invention and comparative batteries I to N. 1...Zinc electrode, 2...Nickel electrode, 3...Separator.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 亜鉛極と、正極と、これら両極間に配置された
セパレータと、遊離のものが存在しない程度に液
量が制限された電解液とを備えるものであつて、
前記セパレータは少なくとも同材質の一対の繊維
状セパレータと2枚の微孔性フイルムとからなる
多層構造であり、前記微孔性フイルムの1枚が前
記亜鉛極に接し、前記微孔性フイルムの他の1枚
が前記一対の繊維状セパレータ間に配置されてお
り、前記亜鉛極に近接する一方の前記繊維状セパ
レータの平衡繊維径が、前記正極に近接する他方
の前記繊維状セパレータの平均繊維径より大であ
ることを特徴とするアルカリ亜鉛蓄電池。
It comprises a zinc electrode, a positive electrode, a separator disposed between these two electrodes, and an electrolytic solution whose amount is limited to such an extent that no free substances are present,
The separator has a multilayer structure consisting of at least a pair of fibrous separators made of the same material and two microporous films, one of the microporous films is in contact with the zinc electrode, and the other microporous films are in contact with the zinc electrode. is arranged between the pair of fibrous separators, and the equilibrium fiber diameter of one of the fibrous separators near the zinc electrode is the average fiber diameter of the other fibrous separator near the positive electrode. Alkaline zinc storage battery characterized by being larger.
JP5180386U 1986-04-07 1986-04-07 Expired - Lifetime JPH059815Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5180386U JPH059815Y2 (en) 1986-04-07 1986-04-07

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5180386U JPH059815Y2 (en) 1986-04-07 1986-04-07

Publications (2)

Publication Number Publication Date
JPS62163861U JPS62163861U (en) 1987-10-17
JPH059815Y2 true JPH059815Y2 (en) 1993-03-10

Family

ID=30876403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5180386U Expired - Lifetime JPH059815Y2 (en) 1986-04-07 1986-04-07

Country Status (1)

Country Link
JP (1) JPH059815Y2 (en)

Also Published As

Publication number Publication date
JPS62163861U (en) 1987-10-17

Similar Documents

Publication Publication Date Title
JP3287367B2 (en) Sealed nickel zinc battery
JPH01187760A (en) Cylindrical alkaline zinc storage battery
JPH059815Y2 (en)
JPH0787102B2 (en) Sealed nickel-zinc battery
JPH04206468A (en) Sealed alkali-zinc storage battery
JPS63261670A (en) Alkaline zinc storage battery
JP3006371B2 (en) Battery
JPH0588507B2 (en)
JP3332139B2 (en) Sealed alkaline storage battery
JPS6230285Y2 (en)
CN209401718U (en) Composite diaphragm and alkaline zinc-manganese battery comprising same
JP2734523B2 (en) Battery separator
JPH07161376A (en) Sealed alkaline zinc storage battery
JPH0750602B2 (en) Lead acid battery
JPH01100872A (en) Sealed type nickel-zinc cell
JPH02216757A (en) Alkaline zinc storage battery
JPH0722028A (en) Sealed alkaline zinc storage battery
JP2755634B2 (en) Alkaline zinc storage battery
JPS58128658A (en) Silver oxide secondary battery
JPH02155159A (en) Alkaline zinc storage battery
JPH0530291Y2 (en)
JPH10284117A (en) Alkaline storage battery
JPH06181068A (en) Sealed type alkaline storage battery
JPS62287569A (en) Manufacture of zinc electrode for alkaline storage battery
JPS63124367A (en) Alkaline zinc storage battery