JPH0596969A - Control device for rear wheel differential limit device - Google Patents

Control device for rear wheel differential limit device

Info

Publication number
JPH0596969A
JPH0596969A JP12303691A JP12303691A JPH0596969A JP H0596969 A JPH0596969 A JP H0596969A JP 12303691 A JP12303691 A JP 12303691A JP 12303691 A JP12303691 A JP 12303691A JP H0596969 A JPH0596969 A JP H0596969A
Authority
JP
Japan
Prior art keywords
torque
differential limiting
acceleration
turning
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12303691A
Other languages
Japanese (ja)
Other versions
JP3100419B2 (en
Inventor
Kiminaga Shirakawa
公永 白川
Satoru Watanabe
了 渡辺
Koji Matsuno
浩二 松野
Kazuya Morota
和也 諸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP03123036A priority Critical patent/JP3100419B2/en
Priority to US07/869,783 priority patent/US5332059A/en
Priority to DE4213435A priority patent/DE4213435C2/en
Priority to GB9208963A priority patent/GB2255143B/en
Publication of JPH0596969A publication Critical patent/JPH0596969A/en
Application granted granted Critical
Publication of JP3100419B2 publication Critical patent/JP3100419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)

Abstract

PURPOSE:To improve turning property, acceleration, and running durability by searching a torque map per every on of respective running modes according to the acceleration conditions during straight running and turning judged from longitudinal G and lateral G so as to set differential limit torque, and outputting a signal corresponding to the torque so as to carry out control. CONSTITUTION:The signals from wheel speed sensors 41R, 41L for right/left rear wheels and a longitudinal G sensor 42 are input to the body speed computing part 51 of a control unit 50, and the computed body speed V, the signals of the longitudinal G sensor 42, and the lateral G sensor 43 are input to an acceleration running mode judging part 52. Respective acceleration modes of steady running, turning, and straight running are judged, differential limit torque Td is set by a differetial limit torque setting part 53, and together with a slow speed large steering judging part 55 signal, a slip judging part 56 signal, and a ABS control signal 60 are input to a duty ratio conversion part 54 so as to be converted into a prescribed duty ratio, and the signal is input to a solenoid valve 40'. Consequently, the differential limit torque suitable for acceleration condition during straight running or turning is set, and acceleration, running durability, traction control, and the like can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車両のリヤディファレ
ンシャルに装備される後輪差動制限装置の差動制限トル
クを、各運転走行の条件に応じて制御する制御装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for controlling a differential limiting torque of a rear wheel differential limiting device mounted on a rear differential of a vehicle according to each driving condition.

【0002】[0002]

【従来の技術】一般に、車両においては、駆動方式によ
り異なった特有の運動性能になることが知られている。
例えば、2輪駆動のFF車、FR車は、4輪駆動の4W
D車に比較して悪路でスリップを生じ易い。また、FF
車では、旋回中にアクセルペダルを踏込んで加速すると
前輪の横力が減少してドリフトしアンダステアの傾向に
なり、アクセルペダルを離して減速すると前輪にエンジ
ンブレーキがかかってコーナリングフォースの増加をも
たらす結果タックイン現象を生じる。FR車では旋回中
にスロットルオンすると、後輪の横力が減少して横すべ
りを生じオーバステアの傾向になる。一方、4輪駆動の
4WD車では4輪を駆動することで、スリップやスキッ
ドが回避されて駆動、制動、旋回の走行時の限界性能が
向上する。また、スロットルオン、オフ時の影響が同時
に前、後輪に作用するので、アンダステアとオーバステ
アの傾向が共に弱くなって両者の中間的な特性になるの
であり、このような利点から近年通常の車両においても
4WD車が大幅に普及している。
2. Description of the Related Art Generally, it is known that a vehicle has different peculiar motion performance depending on the drive system.
For example, 2 wheel drive FF and FR vehicles have 4 wheel drive 4W
Compared to car D, it is more likely to slip on rough roads. Also, FF
In a car, when the accelerator pedal is depressed while accelerating while accelerating, the lateral force on the front wheels decreases and drifts, resulting in an understeer tendency.When the accelerator pedal is released and decelerated, the engine brakes on the front wheels, resulting in an increase in cornering force. Tuck-in phenomenon occurs. In an FR vehicle, if the throttle is turned on during turning, the lateral force on the rear wheels decreases and side slippage occurs, resulting in an oversteering tendency. On the other hand, in a four-wheel drive, four-wheel drive vehicle, by driving four wheels, slip and skid are avoided and the limit performance during driving, braking, and turning is improved. Also, since the effects of throttle on / off simultaneously act on the front and rear wheels, both the tendency of understeer and oversteer is weakened, and the characteristics intermediate between the two are obtained. 4WD vehicles are also widely used in Japan.

【0003】ところで、上記4WD車においては、前後
輪や左右後輪のトルク配分が更に旋回性能や車両挙動変
化に対して影響を与え、これらのトルク配分を適正化す
ることで運動性能、動的安定性を一層向上できる。即
ち、旋回初期、車線変更時の応答が良く、低速旋回時に
ブレーキング現象を生じないように操縦性能を向上し、
旋回時のスロットルオン、オフ時の車両姿勢を保つよう
に方向安定性を向上し、横風等の外乱に対する直進安定
性を向上し、制動時にABS制御を効果的に作用するこ
と等の性能が期待されている。そこで、このような運動
性能を満たすため、前後輪や影響の大きい左右後輪のト
ルク配分を、種々のパラメータを用いて可変制御するこ
とが提案されている。
By the way, in the above-mentioned 4WD vehicle, the torque distribution of the front and rear wheels and the left and right rear wheels further affects the turning performance and the vehicle behavior change, and by optimizing these torque distributions, the dynamic performance and the dynamic performance can be improved. The stability can be further improved. That is, the response is good at the beginning of turning and when changing lanes, and the steering performance is improved so that the braking phenomenon does not occur at low speed turning,
Improves directional stability so as to maintain the vehicle posture when turning on and off when turning, improves straight running stability against disturbance such as cross wind, and expects that ABS control will work effectively during braking. Has been done. Therefore, in order to satisfy such exercise performance, it has been proposed to variably control the torque distribution of the front and rear wheels and the left and right rear wheels, which have a large influence, using various parameters.

【0004】従来、上記左右後輪のトルク配分の制御装
置は、リヤディファレンシャルに差動制限装置を装着
し、差動制限トルクを必要に応じて付与するように構成
されている。この場合の差動制限装置として、トルク感
応の機械式は、アクセル操作に応じて差動制限トルクを
生じることで、駆動力を有効に伝達でき、直進の安定性
を向上できるが、旋回中のスロットルオン、オフの際に
操舵感に直接影響して操縦性を損う。回転差感応のビス
カスカップリング式は、上記旋回中のスロットルオン、
オフに伴う影響を受けないため操縦性を良好に確保する
ことができ、同時に片輪のスリップも防止できるが、任
意に差動制限トルクを可変制御することはできない。こ
の点で、多板クラッチ式のものは、差動制限トルクを任
意に可変制御して、操縦性、走破性以外の性能も向上す
ることが可能になる。
Conventionally, the above-mentioned control device for torque distribution between the left and right rear wheels is constructed so that a differential limiting device is mounted on the rear differential and a differential limiting torque is applied as required. As the differential limiting device in this case, the torque-sensitive mechanical type can effectively transmit the driving force by generating the differential limiting torque according to the accelerator operation, and can improve the stability of straight traveling, but When the throttle is turned on or off, it directly affects the steering feel and impairs maneuverability. Rotation difference sensitive viscous coupling type is throttle on during turning,
Since it is not affected by turning off, good maneuverability can be secured and, at the same time, slip of one wheel can be prevented, but the differential limiting torque cannot be variably controlled. In this respect, in the multi-disc clutch type, it is possible to arbitrarily variably control the differential limiting torque and improve the performance other than the maneuverability and the running performance.

【0005】そこで、後輪差動制限装置に多板クラッチ
を用いて電子制御するものに関しては、従来、以下の先
行技術がある。特開昭62−178434号公報では、
車速が所定値以上で舵角が所定値以下の高速直進走行時
に差動制限トルクを増大して、走行安定性を向上するこ
とが示されている。特開昭64−4537号公報では、
旋回走行後に左右の回転数が等しくなった時に差動制限
トルクを増大して、トラクションを確保することが示さ
れている。特開昭64−106737号公報では、旋回
半径、求心加速度の値を検出し、これらにより旋回状態
やスピンを判断して差動制限トルクを制御することが示
されている。
In view of this, the following prior arts have been conventionally known for electronically controlling a rear wheel differential limiting device using a multi-plate clutch. In Japanese Patent Laid-Open No. 62-178434,
It has been shown that the differential limiting torque is increased during high-speed straight traveling when the vehicle speed is equal to or higher than a predetermined value and the steering angle is equal to or lower than the predetermined value, and traveling stability is improved. In Japanese Patent Laid-Open No. 64-4537,
It is shown that the differential limiting torque is increased and the traction is ensured when the left and right rotational speeds become equal after turning. Japanese Unexamined Patent Publication No. 64-106737 discloses that the differential radius limiting torque is controlled by detecting the values of the turning radius and centripetal acceleration, and judging the turning state and spin from these values.

【0006】[0006]

【発明が解決しようとする課題】ところで、上記先行技
術のものにあっては、車速、舵角、旋回半径等により直
進や旋回の走行状態のみを判断して差動制限トルクを制
御する構成であるから、この走行条件での緩加速や急加
速の際に一律に制御されてしまい、加速状態に応じて所
定の性能を適切に得ることができない。
By the way, in the above-mentioned prior art, the differential limiting torque is controlled by judging only the traveling state of straight traveling or turning based on the vehicle speed, the steering angle, the turning radius and the like. Therefore, it is uniformly controlled during the slow acceleration or the rapid acceleration under these traveling conditions, and it is not possible to appropriately obtain a predetermined performance according to the acceleration state.

【0007】本発明は、この点に鑑みてなされたもの
で、後輪差動制限装置に多板クラッチを用いた左右後輪
のトルク配分制御において、直進や旋回時の加速状態を
適確に判断して差動制限トルクを制御し、旋回性、加速
性、走破性等を向上することを目的とする。
The present invention has been made in view of this point, and in the torque distribution control of the left and right rear wheels using a multi-plate clutch in the rear wheel differential limiting device, the acceleration state during straight traveling or turning can be accurately adjusted. The objective is to improve the turning performance, acceleration performance, and running performance by making a judgment and controlling the differential limiting torque.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、左右後輪のリヤディファレンシャルに多
板クラッチの差動制限装置を備え、この差動制限装置の
差動制限トルクを電子的に制御する制御系において、前
後Gセンサ、横Gセンサ等を有し、差動制限装置を制御
する制御ユニットは少なくとも前後Gと横Gにより直
進、旋回時の加速状態に応じた走行モードを判断する加
速走行モード判定手段と、この各走行モード毎にトルク
マップを検索して差動制限トルクを設定する差動制限ト
ルク設定手段と、差動制限トルクに応じた信号を出力す
る変換手段とを備えるものである。
In order to achieve the above object, the present invention is provided with a differential limiting device of a multi-disc clutch on the rear differentials of the left and right rear wheels, and the differential limiting torque of this differential limiting device is electronically controlled. In a control system for controlling the movement, a control unit having a front-rear G sensor, a lateral G sensor, and the like, and a control unit for controlling the differential limiting device travels straight at least by the front-rear G and the lateral G, and has a traveling mode corresponding to an acceleration state at the time of turning. Acceleration traveling mode determination means for determining, differential limiting torque setting means for searching a torque map for each traveling mode and setting differential limiting torque, and conversion means for outputting a signal according to the differential limiting torque. It is equipped with.

【0009】[0009]

【作用】上記構成に基づき、車両走行時に制御ユニット
で前後Gと横Gにより直進、旋回及びそれらの定常、加
速の各走行モードが判断され、これらの走行モード毎に
差動制限トルクと共に左右後輪のトルク配分が可変制御
されることで、定常時の旋回性等を確保し、加速時の加
速性、トラクション等を向上するようになる。
According to the above construction, when the vehicle is traveling, the control unit determines forward / backward G and lateral G traveling modes such as straight traveling, turning, and their steady and accelerated modes, and the left and right rear with the differential limiting torque for each of these traveling modes. By variably controlling the torque distribution of the wheels, it is possible to secure the turning performance in the steady state and improve the acceleration performance and traction during acceleration.

【0010】[0010]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図2において、センターディファレンシャルを備
えたフルタイム式4輪駆動車の駆動系の概略について説
明すると、符合1はエンジン、2はクラッチ、3は変速
機であり、変速機出力軸4がセンターディファレンシャ
ル20に入力している。センターディファレンシャル2
0から前方にフロント駆動軸5が、後方にリヤ駆動軸6
が出力し、フロント駆動軸5はフロントディファレンシ
ャル7、車軸8を介して左右の前輪9L,9Rに、リヤ
駆動軸6はプロペラ軸10、リヤディファレンシャル1
1、車軸12を介して左右の後輪13L,13Rにそれ
ぞれ連結して伝動構成される。
Embodiments of the present invention will be described below with reference to the drawings. Referring to FIG. 2, a drive system of a full-time four-wheel drive vehicle having a center differential will be schematically described. Reference numeral 1 is an engine, 2 is a clutch, 3 is a transmission, and the transmission output shaft 4 is a center differential 20. Are typing in. Center differential 2
0 to the front drive shaft 5 in the front and rear drive shaft 6 in the rear
The front drive shaft 5 is output to the left and right front wheels 9L and 9R via the front differential 7 and the axle 8, and the rear drive shaft 6 is the propeller shaft 10 and the rear differential 1.
1, via left and right rear wheels 13L and 13R via the axle 12, respectively.

【0011】リヤディファレンシャル11はベベルギヤ
式であり、このリヤディファレンシャル11の例えばデ
フケース11aと一方のサイドギヤ11bとの間に、差
動制限装置として油圧多板式リヤクラッチ28がバイパ
スして付設されている。そして、リヤクラッチ28の差
動制限トルクTdが零の場合は、左右後輪13L,13
Rに等しくトルク配分し、所定の差動制限トルクTdを
生じると、この差動制限トルクTdの分だけ高速輪から
低速輪にトルク移動し、最も大きい差動制限トルクTd
でデフロックする場合は、左右後輪13L,13Rにか
かる車重Wと路面摩擦係数μとの積W・μに応じてトル
ク配分するようになっている。
The rear differential 11 is a bevel gear type, and a hydraulic multi-plate type rear clutch 28 is attached as a differential limiting device between the differential case 11a and one side gear 11b of the rear differential 11 so as to bypass. When the differential limiting torque Td of the rear clutch 28 is zero, the left and right rear wheels 13L, 13
When the torque is distributed equally to R and a predetermined differential limiting torque Td is generated, the torque is moved from the high speed wheel to the low speed wheel by the differential limiting torque Td, and the largest differential limiting torque Td.
In the case of differential lock, the torque is distributed according to the product W · μ of the vehicle weight W applied to the left and right rear wheels 13L, 13R and the road surface friction coefficient μ.

【0012】センターディファレンシャル20は複合プ
ラネタリギヤ式であり、変速機出力軸4と一体の第1サ
ンギヤ21、リヤ駆動軸6と一体の第2サンギヤ22、
及びこれらのサンギヤ21,22の周囲に複数個配置さ
れるピニオン23を有し、ピニオン23の第1ピニオン
ギヤ23aが第1サンギヤ21に、第2ピニオンギヤ2
3bが第2サンギヤ22にそれぞれ噛合っている。ま
た、変速機出力軸4にはリダクションのドライブギヤ2
5が回転自在に設けられ、このドライブギヤ25と一体
のキャリヤ24にピニオン23が軸支され、ドライブギ
ヤ25はフロント駆動軸5と一体のドリブンギヤ26に
噛合って構成される。一方、上記センターディファレン
シャル20には、差動制限装置として油圧式多板センタ
ークラッチ27が付設されている。このセンタークラッ
チ27は、例えばセンターディファレンシャル20の直
後方でドラム27aをキャリヤ24に、ハブ27bをリ
ヤ駆動軸6にそれぞれ結合して同軸上に配置される。
The center differential 20 is a compound planetary gear type, and has a first sun gear 21 integrated with the transmission output shaft 4, a second sun gear 22 integrated with the rear drive shaft 6,
And a plurality of pinions 23 arranged around the sun gears 21 and 22, and the first pinion gear 23a of the pinion 23 is provided to the first sun gear 21 and the second pinion gear 2
3b meshes with the second sun gear 22, respectively. Further, the transmission output shaft 4 has a reduction drive gear 2
5 is rotatably provided, a pinion 23 is pivotally supported by a carrier 24 that is integral with the drive gear 25, and the drive gear 25 is configured to mesh with a driven gear 26 that is integral with the front drive shaft 5. On the other hand, the center differential 20 is provided with a hydraulic multi-plate center clutch 27 as a differential limiting device. The center clutch 27 is coaxially arranged, for example, by connecting the drum 27a to the carrier 24 and the hub 27b to the rear drive shaft 6 immediately after the center differential 20, respectively.

【0013】このセンターディファレンシャル20の構
成により、第1サンギヤ21に入力する変速動力を、キ
ャリヤ24と第2サンギヤ22とに所定の基準トルク配
分で分けて伝達する。また、旋回時の前後輪の回転差
を、ピニオン23の遊星回転により吸収するようにな
る。ここで基準トルク配分は、2つのサンギヤ21,2
2と2つのピニオンギヤ23a,23bとの4つのギヤ
噛合いピッチ円半径で自由に設定されることになる。そ
こで、前輪トルクTFと後輪トルクTRの基準トルク配
分etを例えば、
With the structure of the center differential 20, the speed change power input to the first sun gear 21 is dividedly transmitted to the carrier 24 and the second sun gear 22 with a predetermined reference torque distribution. Further, the rotation difference between the front and rear wheels during turning is absorbed by the planetary rotation of the pinion 23. Here, the reference torque distribution is two sun gears 21 and 2.
It is freely set by the four gear meshing pitch circle radii of the two and the two pinion gears 23a and 23b. Therefore, the reference torque distribution et of the front wheel torque TF and the rear wheel torque TR is, for example,

【数1】 のように充分に後輪偏重に設定することが可能になる。[Equation 1] As described above, it is possible to set the rear wheel with a heavy weight.

【0014】また上記センターディファレンシャル20
の直後方には、油圧式多板センタークラッチ27が、ド
ラム27aをキャリヤ24に、ハブ27bを第2サンギ
ヤ22と一体的なリヤドライブ軸6に結合して同軸上に
配置される。そしてセンタークラッチ27の差動制限ト
ルクTcにより、センターディファレンシャル20の差
動を制限すると共に、後輪側から前輪側にトルク移動す
ることが可能になっている。ここでフロントエンジンの
搭載の場合は、車両の前輪重量WFと後輪重量WRの静
的重量配分ewが例えば、
The center differential 20 described above
Immediately after, a hydraulic multi-plate center clutch 27 is coaxially arranged by connecting the drum 27a to the carrier 24 and the hub 27b to the rear drive shaft 6 integrated with the second sun gear 22. The differential limiting torque Tc of the center clutch 27 limits the differential of the center differential 20 and allows the torque to move from the rear wheel side to the front wheel side. Here, when the front engine is installed, the static weight distribution ew of the front wheel weight WF and the rear wheel weight WR of the vehicle is, for example,

【数2】 であり、センタークラッチ27による直結の場合は、前
後輪の路面摩擦係数μが等しいとすると、この重量配分
ewに応じて前輪偏重にトルク配分される。従って、セ
ンタークラッチ27の差動制限トルクTc により前後
輪のトルク配分を、後輪偏重の基準トルク配分etと、
前輪偏重の重量配分ewとの広い範囲で制御することが
可能になるのである。
[Equation 2] In the case of direct connection by the center clutch 27, assuming that the road surface friction coefficients μ of the front and rear wheels are equal, torque is distributed to the front wheels in an unbalanced manner according to this weight distribution ew. Accordingly, the torque distribution of the front and rear wheels is determined by the differential limiting torque Tc of the center clutch 27, and the reference torque distribution et of the rear wheel bias is set to
It is possible to control the weight distribution ew of the front wheel bias in a wide range.

【0015】次に、センタークラッチ27とリヤクラッ
チ28の油圧制御系について説明する。先ず、変速機が
自動変速機の場合は、その油圧制御系のオイルポンプ3
0の油圧をレギュレータ弁31で調圧したライン圧を利
用して構成される。そこで、センタークラッチ油圧制御
手段32はライン圧油路33と連通するクラッチ制御弁
34を有し、このクラッチ制御弁34が油路35を介し
てセンタークラッチ27に連通する。また、ライン圧油
路33は、パイロット弁36及びオリフィス37を有す
る油路38によりソレノイド弁40に連通し、ソレノイ
ド弁40によるデューティ圧が油路39を介してクラッ
チ制御弁34の制御側に作用する。ソレノイド弁40は
制御ユニット50からの各走行条件に応じたデューティ
信号が入力すると、それにより油圧をドレンしてデュー
ティ圧Pdを生じるものであり、このデューティ圧Pd
に応じてクラッチ制御弁34を動作し、センタークラッ
チ27の差動制限トルクTcを可変制御する。また、リ
ヤクラッチ油圧制御手段32’は、同様に油路33,3
8と連通したクラッチ制御弁34’とソレノイド弁4
0’を有し、ソレノイド弁40’のデューティ圧Pdに
よりリヤクラッチ28の差動制限トルクTdを可変制御
するようになっている。
Next, the hydraulic control system for the center clutch 27 and the rear clutch 28 will be described. First, when the transmission is an automatic transmission, the oil pump 3 of its hydraulic control system is used.
It is configured by using the line pressure obtained by adjusting the hydraulic pressure of 0 with the regulator valve 31. Therefore, the center clutch hydraulic pressure control means 32 has a clutch control valve 34 that communicates with the line pressure oil passage 33, and this clutch control valve 34 communicates with the center clutch 27 via an oil passage 35. Further, the line pressure oil passage 33 communicates with the solenoid valve 40 through an oil passage 38 having a pilot valve 36 and an orifice 37, and the duty pressure by the solenoid valve 40 acts on the control side of the clutch control valve 34 through the oil passage 39. To do. When a duty signal corresponding to each traveling condition from the control unit 50 is input to the solenoid valve 40, the hydraulic pressure is drained to generate a duty pressure Pd. The duty pressure Pd
The clutch control valve 34 is operated in accordance with the above, and the differential limiting torque Tc of the center clutch 27 is variably controlled. In addition, the rear clutch hydraulic pressure control means 32 ′ is also similar to the oil passages 33, 3
Clutch control valve 34 'and solenoid valve 4 in communication with 8
The differential limiting torque Td of the rear clutch 28 is variably controlled by the duty pressure Pd of the solenoid valve 40 '.

【0016】図1において、特に左右後輪トルク配分の
電子制御系について説明する。先ず、入力情報として、
左右後輪13L,13Rの車輪速NL,NRを検出する
車輪速センサ41L,41Rと、車体前後加速度の前後
Gを検出する前後Gセンサ42と、車体左右加速度の横
Gを検出する横Gセンサ43と、操舵時の舵角φを検出
する舵角センサ44とを有する。
Referring to FIG. 1, an electronic control system for left and right rear wheel torque distribution will be described. First, as input information,
Wheel speed sensors 41L and 41R that detect the wheel speeds NL and NR of the left and right rear wheels 13L and 13R, a front and rear G sensor 42 that detects the front and rear G of the vehicle body longitudinal acceleration, and a lateral G sensor that detects the lateral G of the vehicle body lateral acceleration. 43 and a rudder angle sensor 44 that detects a rudder angle φ during steering.

【0017】制御ユニット50は、車輪速NL,NRと
前後Gとが入力する車体速度算出部51を有し、車輪速
NL,NRと前後Gを積分した速度により車輪のグリッ
プとスリップを判断して、4WD車の車体速度Vを常に
正確に算出する。前後G、横G及び車体速度Vは加速走
行モード判定部52に入力し、走行中の両Gが小さい場
合に定常走行を、前後Gが小さいのに横Gが大きい場合
に定常旋回を、横Gが小さいのに前後Gが大きい場合に
直進加速を、両Gが大きい場合に旋回加速の各加速走行
モードをそれぞれ判定する。このモード信号は差動制限
トルク設定部53に入力し、トルクマップにより各モー
ドでの差動制限トルクTdを設定する。ここで、トルク
マップは図3に示すように、定常の走行と旋回では差動
制限トルクTdが小に、旋回加速では差動制限トルクT
dが大に、直進加速では大に設定されており、このマッ
プを検索して差動制限トルクTdを設定する。このトル
ク信号はデューティ比変換部54に入力して所定のデュ
ーティ比Dに変換し、このデューティ信号をソレノイド
弁40’に出力する。
The control unit 50 has a vehicle body speed calculator 51 for inputting the wheel speeds NL, NR and the front and rear G, and judges the grip and slip of the wheel based on the speed obtained by integrating the wheel speeds NL, NR and the front and rear G. Therefore, the vehicle body speed V of the 4WD vehicle is always accurately calculated. The front-rear G, the lateral G, and the vehicle body speed V are input to the acceleration traveling mode determination unit 52, and steady traveling is performed when both the traveling Gs are small, and steady traveling is performed when the lateral G is large while the front-rear G is small. When the G is small but the front and rear G are large, the straight-line acceleration is determined, and when the both G are large, each acceleration traveling mode of the turning acceleration is determined. This mode signal is input to the differential limiting torque setting unit 53, and the differential limiting torque Td in each mode is set by the torque map. Here, as shown in FIG. 3, the torque map shows that the differential limiting torque Td is small in steady traveling and turning, and the differential limiting torque Td is small in turning acceleration.
Since d is set to a large value and straight-line acceleration is set to a large value, the map is searched to set the differential limiting torque Td. This torque signal is input to the duty ratio conversion unit 54 and converted into a predetermined duty ratio D, and this duty signal is output to the solenoid valve 40 '.

【0018】また、定常走行の低速大転舵を各別に判断
するため、車体速度Vと舵角φが入力する低速大転舵判
定部55を有し、車体速度Vが小さくて舵角φが大きい
旋回状態を判断する。そして、この低速大転舵の判定信
号はデューティ比変換部54に入力し、デューティ比D
を強制的に差動制限トルクが零の例えば100%に設定
する。一方、ABS制御信号が入力する場合も、同様に
デューティ比Dを設定する。更に左右後輪13L,13
Rの車輪速NL,NRが入力するスリップ判定部56を
有し、車輪速NL,NRの差ΔNが設定値以上の場合は
スリップ判断し、デューティ比変換部54でデューティ
比Dを強制的に差動制限トルクが最大の例えば0%に設
定するように構成されている。
Further, in order to judge the low speed large steering during steady running separately, a low speed large steering determining section 55 for inputting the vehicle speed V and the steering angle φ is provided, and the vehicle speed V is small and the steering angle φ is small. Determine a large turning condition. Then, the determination signal of the low speed large turning is input to the duty ratio conversion unit 54, and the duty ratio D
Is forcibly set to, for example, 100% at which the limited differential torque is zero. On the other hand, when the ABS control signal is input, the duty ratio D is similarly set. Furthermore, the left and right rear wheels 13L, 13
There is a slip determination unit 56 to which the R wheel speeds NL and NR are input. When the difference ΔN between the wheel speeds NL and NR is equal to or greater than a set value, slip determination is performed, and the duty ratio conversion unit 54 forces the duty ratio D. The differential limiting torque is set to, for example, 0% of the maximum.

【0019】次いで、この実施例の作用を説明する。先
ず、車両走行時にエンジン1の動力がクラッチ2を介し
て変速機3に入力し、変速動力がセンターディファレン
シャル20の第1サンギヤ21に入力する。ここで、セ
ンターディファレンシャル20の各歯車諸元により基準
トルク配分が後輪偏重に設定されているため、このトル
ク配分でキャリヤ24と第2サンギヤ22に分配して動
力が出力される。このとき、センタークラッチ27が解
放されていると、上記基準トルク配分で更に前後輪側に
動力伝達して4輪駆動でありながらFR的になって、旋
回性、操縦性が良好になり、センターディファレンシャ
ル20がフリーになって、前後輪の回転差を吸収しなが
ら自由に旋回することが可能になる。また、油圧制御手
段32によりセンタークラッチ27に差動制限トルクT
cを生じると、差動制限トルクTcに応じて第2サンギ
ヤ22とキャリヤ24の間で更にバイパスしてトルク移
動し、後輪偏重から直結時の車重配分に応じた前輪偏重
のトルク配分に可変制御されて、前輪または後輪のスリ
ップ等が防止され、且つセンターディファレンシャル2
0の差動制限で有効に動力伝達して脱出、走破性、安定
性等が向上するようになる。
Next, the operation of this embodiment will be described. First, when the vehicle is traveling, the power of the engine 1 is input to the transmission 3 via the clutch 2, and the power of the shift is input to the first sun gear 21 of the center differential 20. Here, since the reference torque distribution is set to be biased to the rear wheels by the gear specifications of the center differential 20, the torque is distributed to the carrier 24 and the second sun gear 22 to output power. At this time, if the center clutch 27 is released, power is further transmitted to the front and rear wheels by the above-mentioned reference torque distribution, and FR is achieved even though it is a four-wheel drive, and turning performance and maneuverability are improved. The differential 20 becomes free, and it becomes possible to freely turn while absorbing the rotation difference between the front and rear wheels. Further, the differential limiting torque T is applied to the center clutch 27 by the hydraulic control means 32.
When c occurs, the torque is further bypassed between the second sun gear 22 and the carrier 24 according to the differential limiting torque Tc, and the torque is moved from the rear wheel heavy load to the front wheel heavy load torque distribution according to the vehicle weight distribution at the direct connection. It is variably controlled to prevent front wheels or rear wheels from slipping, and the center differential 2
With 0 differential limitation, power is transmitted effectively and escape, running performance and stability are improved.

【0020】上記センターディファレンシャル20とセ
ンタークラッチ27によりトルク配分して後輪側に伝達
する動力は、リヤディファレンシャル11に入力し、こ
のリヤディファレンシャル11とリヤクラッチ28によ
り更に左右後輪13L,13Rにトルク配分制御して伝
達される。即ち、リヤクラッチ28が解放すると、リヤ
ディファレンシャル11がフリーになり、且つその歯車
諸元により図4の点P1のように等トルク配分される。
また、油圧制御手段32’によりリヤクラッチ28に図
4のように差動制限トルクTdを生じると、リヤディフ
ァレンシャル11の差動制限でグリップ車輪に有効に動
力伝達され、且つ差動制限トルクTdに応じて高速輪か
ら低速輪にトルク移動し、デフロックの直結時は図4の
点P2のように左右後輪13L,13Rの車重配分に応
じて不等トルク配分される。
The power distributed by the center differential 20 and the center clutch 27 and transmitted to the rear wheels is input to the rear differential 11, and the rear differential 11 and the rear clutch 28 further apply torque to the left and right rear wheels 13L, 13R. It is distributed and transmitted. That is, when the rear clutch 28 is disengaged, the rear differential 11 becomes free, and due to the specifications of the gears, equal torque is distributed as shown by point P1 in FIG.
When the differential limiting torque Td is generated in the rear clutch 28 by the hydraulic control means 32 'as shown in FIG. 4, the power is effectively transmitted to the grip wheels by the differential limiting of the rear differential 11, and the differential limiting torque Td is obtained. Accordingly, the torque is moved from the high speed wheel to the low speed wheel, and when the diff lock is directly connected, unequal torque is distributed according to the vehicle weight distribution of the left and right rear wheels 13L and 13R as shown by point P2 in FIG.

【0021】一方、上述のようにトルク配分可変制御し
て4輪駆動走行するとき制御ユニット50では、前後G
と横Gのパラメータにより直進と旋回の加速状態に応じ
た加速走行モードが適確に判断され、更に低速大転舵、
左右輪のスリップの有無等が判断されている。そこで、
前後Gの小さい定常走行では、図3のトルクマップで差
動制限トルクTdが小さく設定され、これに応じたデュ
ーティ信号がソレノイド弁40’に出力して差動制限ト
ルクTdが低下制御されるため、リヤディファレンシャ
ル11は略フリーの状態になって旋回性、回頭性等が良
好に確保される。また、前後Gの大きい加速時には直ち
に差動制限トルクTdが増大制御されるため、リヤディ
ファレンシャル11は差動制限して左右後輪13L,1
3Rのスリップ防止と共にトラクションが良好に確保さ
れ、同時に左右後輪13L,13Rに有効に動力伝達し
大きい駆動力が確保されて走破性等を向上する。このと
き旋回時では、遠心力により外輪の車重が増大して外輪
に多くトルク配分されるようになり、これにより駆動力
が確保されると共にオーバステア方向にモーメントを生
じて操縦性も良好になる。そして加速状態から定常状態
に移行すると、再びリヤクラッチ28の差動制限トルク
Tdは低下することで、元の旋回し易い状態に戻る。
On the other hand, when the torque distribution is variably controlled as described above and the vehicle travels by four-wheel drive, the front and rear G
And the lateral G parameter accurately determine the acceleration driving mode according to the acceleration state of straight traveling and turning, and further low speed large steering,
Whether or not the left and right wheels have slipped is determined. Therefore,
During steady running with a small front-rear G, the differential limiting torque Td is set small in the torque map of FIG. 3, and a duty signal corresponding to this is output to the solenoid valve 40 ′ to control the differential limiting torque Td to decrease. The rear differential 11 is in a substantially free state, and good turning performance, turning performance, and the like are ensured. Further, since the differential limiting torque Td is immediately increased and controlled at the time of a large acceleration in the front-rear G, the rear differential 11 is differentially limited and the left and right rear wheels 13L, 1L.
3R slip prevention and good traction are ensured, and at the same time, power is effectively transmitted to the left and right rear wheels 13L, 13R and a large driving force is ensured to improve running performance and the like. At this time, at the time of turning, the vehicle weight of the outer wheel increases due to the centrifugal force and more torque is distributed to the outer wheel, which ensures the driving force and also produces a moment in the oversteer direction to improve maneuverability. .. When the acceleration state shifts to the steady state, the differential limiting torque Td of the rear clutch 28 decreases again, and the original state where the vehicle is easily turned is restored.

【0022】一方、定常走行時に車体速度Vと舵角φの
関係で低速大転舵が判断されると、デューティ比最大の
信号がソレノイド弁40’に出力し、リヤクラッチ28
の差動制限トルクTdが強制的に零に制御されること
で、タイトコーナブレーキ現象が回避される。制動時の
ABS制御の際も同様に制御されることで、左右後輪1
3L,13Rは独立して良好に回転制御されてタイヤロ
ックを確実に防止する。また、左右車輪速NL,NRの
回転差で左右後輪13L,13Rの一方のスリップが判
断されると、デューティ比最小の信号がソレノイド弁4
0’に出力し、リヤクラッチ28の差動制限トルクTd
が強制的に最大に制御されてデフロックするのであり、
これにより容易に悪路から脱出することが可能になる。
On the other hand, when the low speed large turning is judged in the relationship between the vehicle body speed V and the steering angle φ during steady running, a signal with the maximum duty ratio is output to the solenoid valve 40 ', and the rear clutch 28 is operated.
The tight corner braking phenomenon is avoided by forcibly controlling the differential limiting torque Td of 0 to zero. The same applies to the ABS control during braking, so that the left and right rear wheels 1
The 3L and 13R are independently controlled in good rotation to reliably prevent tire lock. When it is determined that one of the left and right rear wheels 13L and 13R slips based on the rotation difference between the left and right wheel speeds NL and NR, the solenoid valve 4 outputs a signal with the minimum duty ratio.
0 ', and the differential limiting torque Td of the rear clutch 28 is output.
Is forcibly controlled to the maximum and differential locks,
This makes it possible to easily escape from a bad road.

【0023】以上、本発明の実施例について説明した
が、FR車にも適応できる。差動制限トルクの設定マッ
プは実施例のみに限定されない。
Although the embodiments of the present invention have been described above, the present invention can also be applied to FR vehicles. The differential limiting torque setting map is not limited to the example.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
後輪差動制限装置に多板クラッチを用いた左右後輪のト
ルク配分制御において、前後Gと横Gにより走行モード
を設定するので、直進や旋回時の加速状態を適確に判断
して差動制限トルクを適切に可変制御することができ、
加速性、走破性、トラクション制御等を向上することが
できる。定常と加速時に差動制限トルクが可変制御され
るので、これらの走行条件で最適な運動性能を得ること
ができる。前後Gと横Gでは判断できない低速大転舵の
走行は、車体速度と舵角で各別に判断するので、この場
合のタイトコーナブレーキ現象を確実に防止できる。
As described above, according to the present invention,
In the torque distribution control of the left and right rear wheels using the multi-plate clutch in the rear wheel differential limiting device, the running mode is set by the front-rear G and the lateral G. The dynamic limit torque can be appropriately variably controlled,
Acceleration, running performance, traction control, etc. can be improved. Since the differential limiting torque is variably controlled during steady state and acceleration, optimum motion performance can be obtained under these traveling conditions. In the case of traveling at low speed and large turning which cannot be determined by the front and rear G and the lateral G, the tight corner braking phenomenon in this case can be reliably prevented because the vehicle speed and the steering angle are separately determined.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の後輪差動制限装置の制御装置の実施例
の電子制御系を示すブロック図である。
FIG. 1 is a block diagram showing an electronic control system of an embodiment of a control device for a rear wheel differential limiting device of the invention.

【図2】本発明が適応される4輪駆動車の駆動系と油圧
制御系の構成を示す構成図である。
FIG. 2 is a configuration diagram showing a configuration of a drive system and a hydraulic control system of a four-wheel drive vehicle to which the present invention is applied.

【図3】前後Gと横Gによる各加速走行モードに対する
差動制限トルクのマップを示す図である。
FIG. 3 is a diagram showing a map of a differential limiting torque for each acceleration running mode by front-rear G and lateral G.

【図4】左右後輪のトルク配分の制御状態を示す図であ
る。
FIG. 4 is a diagram showing a control state of torque distribution of the left and right rear wheels.

【符号の説明】[Explanation of symbols]

11 リヤディファレンシャル 13L,13R 後輪 28 リヤクラッチ、 32’ リヤクラッチ油圧制御手段 50 制御ユニット 52 加速走行モード判定部 53 差動制限トルク設定部 54 デューティ比変換部 11 Rear Differentials 13L, 13R Rear Wheels 28 Rear Clutch, 32 'Rear Clutch Hydraulic Control Unit 50 Control Unit 52 Acceleration Running Mode Determining Section 53 Differential Limiting Torque Setting Section 54 Duty Ratio Converting Section

───────────────────────────────────────────────────── フロントページの続き (72)発明者 諸田 和也 東京都新宿区西新宿1丁目7番2号 富士 重工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuya Moroda 1-7-2 Nishishinjuku, Shinjuku-ku, Tokyo Inside Fuji Heavy Industries Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 左右後輪のリヤディファレンシャルに多
板クラッチの差動制限装置を備え、この差動制限装置の
差動制限トルクを電子的に制御する制御系において、前
後Gセンサ、横Gセンサ等を有し、差動制限装置を制御
する制御ユニットは少なくとも前後Gと横Gにより直
進、旋回時の加速状態に応じた走行モードを判断する加
速走行モード判定手段と、この各走行モード毎にトルク
マップを検索して差動制限トルクを設定する差動制限ト
ルク設定手段と、差動制限トルクに応じた信号を出力す
る変換手段とを備えることを特徴とする後輪差動制限装
置の制御装置。
1. A front-rear G sensor and a lateral G sensor in a control system which includes a differential limiting device of a multi-disc clutch on rear differentials of the left and right rear wheels, and electronically controls a differential limiting torque of the differential limiting device. The control unit for controlling the differential limiting device has an acceleration traveling mode determination means for determining the traveling mode according to the acceleration state at the time of going straight and turning by at least the front and rear G and the lateral G, and each of the traveling modes. Control of a rear wheel differential limiting device comprising: a differential limiting torque setting means for searching a torque map and setting a differential limiting torque; and a converting means for outputting a signal according to the differential limiting torque. apparatus.
【請求項2】 上記トルクマップは、定常の走行時に差
動制限トルクを小さく、加速の走行時に差動制限トルク
を大きく設定することを特徴とする請求項1記載の後輪
差動制限装置の制御装置。
2. The rear wheel differential limiting device according to claim 1, wherein the torque map is set such that the differential limiting torque is set to be small during steady traveling and the differential limiting torque is set to be large during accelerating traveling. Control device.
【請求項3】 上記制御ユニットは、低速大転舵、スリ
ップ等の判定手段を各別に有することを特徴とする請求
項1記載の後輪差動制限装置の制御装置。
3. The control device for a rear wheel differential limiting device according to claim 1, wherein the control unit has separate means for determining low speed large steering, slipping, and the like.
JP03123036A 1991-04-26 1991-04-26 Control device for rear wheel differential limiter Expired - Fee Related JP3100419B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP03123036A JP3100419B2 (en) 1991-04-26 1991-04-26 Control device for rear wheel differential limiter
US07/869,783 US5332059A (en) 1991-04-26 1992-04-16 Control system for a differential of a motor vehicle
DE4213435A DE4213435C2 (en) 1991-04-26 1992-04-23 Control device for a differential
GB9208963A GB2255143B (en) 1991-04-26 1992-04-24 A control system for a differential of a motor vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03123036A JP3100419B2 (en) 1991-04-26 1991-04-26 Control device for rear wheel differential limiter

Publications (2)

Publication Number Publication Date
JPH0596969A true JPH0596969A (en) 1993-04-20
JP3100419B2 JP3100419B2 (en) 2000-10-16

Family

ID=14850624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03123036A Expired - Fee Related JP3100419B2 (en) 1991-04-26 1991-04-26 Control device for rear wheel differential limiter

Country Status (1)

Country Link
JP (1) JP3100419B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100468493B1 (en) * 2000-11-24 2005-01-27 주식회사 만도 Method for operating electric power steering system of automobile
JP2009511323A (en) * 2005-10-06 2009-03-19 ボーグワーナー・インコーポレーテッド Multiplexed hydraulic control for two-coupling all-wheel drive system
CN110023128A (en) * 2016-12-13 2019-07-16 本田技研工业株式会社 The torque control device of four-wheel drive vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100468493B1 (en) * 2000-11-24 2005-01-27 주식회사 만도 Method for operating electric power steering system of automobile
JP2009511323A (en) * 2005-10-06 2009-03-19 ボーグワーナー・インコーポレーテッド Multiplexed hydraulic control for two-coupling all-wheel drive system
CN110023128A (en) * 2016-12-13 2019-07-16 本田技研工业株式会社 The torque control device of four-wheel drive vehicle
CN110023128B (en) * 2016-12-13 2022-09-23 本田技研工业株式会社 Torque control device for four-wheel drive vehicle

Also Published As

Publication number Publication date
JP3100419B2 (en) 2000-10-16

Similar Documents

Publication Publication Date Title
US5332059A (en) Control system for a differential of a motor vehicle
US5259476A (en) Torque distribution control system for a four-wheel drive motor vehicle
US5208755A (en) System for controlling distribution of torque to left and right wheels of a motor vehicle
JPH01114523A (en) Drive power controller for four-wheel-drive vehicle
EP0415630B1 (en) Torque distribution control system for a four-wheel drive motor vehicle
GB2297633A (en) Traction control
US5097921A (en) Torque distribution control system for a four-wheel drive motor vehicle
EP0415554A1 (en) Torque distribution control system for a four-wheel drive motor vehicle
JP3144717B2 (en) Torque distribution control method for four-wheel drive vehicle
JPH0596969A (en) Control device for rear wheel differential limit device
JP3055709B2 (en) Control device for rear wheel differential limiter
JP2612718B2 (en) Torque split control device for four-wheel drive vehicle
JPH05104973A (en) Control device for rear wheel differential limiting device
JPS59184025A (en) Four-wheel-drive vehicle
JP3140844B2 (en) Torque distribution control device for four-wheel drive vehicle
JP2615084B2 (en) Torque split control device for four-wheel drive vehicle
JP3390188B2 (en) Control method of rear wheel differential limiting device
JP3352728B2 (en) Control method of rear wheel differential limiting device
JP3105021B2 (en) Torque distribution control device for four-wheel drive vehicle
JP2615083B2 (en) Torque split control device for four-wheel drive vehicle
JP3075768B2 (en) Torque distribution control device for four-wheel drive vehicle
JP2549875B2 (en) Torque split controller for four-wheel drive vehicle
JPH0735130B2 (en) Four-wheel drive vehicle
JPH02114021A (en) Torque distribution controller for four-wheel drive vehicle
JPH01111535A (en) Torque split controller for four-wheel-drive car

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080818

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080818

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100818

LAPS Cancellation because of no payment of annual fees