JPH0596266A - Method for melting filter dust - Google Patents

Method for melting filter dust

Info

Publication number
JPH0596266A
JPH0596266A JP8385892A JP8385892A JPH0596266A JP H0596266 A JPH0596266 A JP H0596266A JP 8385892 A JP8385892 A JP 8385892A JP 8385892 A JP8385892 A JP 8385892A JP H0596266 A JPH0596266 A JP H0596266A
Authority
JP
Japan
Prior art keywords
electrode
melting
melt
filter dust
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8385892A
Other languages
Japanese (ja)
Inventor
Otto Stenzel
シユテンツエル オツトー
Alok Choudhury
コードフリー アローク
Detlev Schlebusch
シユレブツシユ デトレフ
Harald Scholz
シヨルツ ハラルト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balzers und Leybold Deutschland Holding AG
Original Assignee
Leybold AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold AG filed Critical Leybold AG
Publication of JPH0596266A publication Critical patent/JPH0596266A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/10Burned or pyrolised refuse
    • C04B18/105Gaseous combustion products or dusts collected from waste incineration, e.g. sludge resulting from the purification of gaseous combustion products of waste incineration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/20Agglomeration, binding or encapsulation of solid waste
    • B09B3/25Agglomeration, binding or encapsulation of solid waste using mineral binders or matrix
    • B09B3/29Agglomeration, binding or encapsulation of solid waste using mineral binders or matrix involving a melting or softening step
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/005Melting in furnaces; Furnaces so far as specially adapted for glass manufacture of glass-forming waste materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/002Use of waste materials, e.g. slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/10Burned or pyrolised refuse
    • C04B18/108Burned or pyrolised refuse involving a melting step
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00767Uses not provided for elsewhere in C04B2111/00 for waste stabilisation purposes
    • C04B2111/00784Uses not provided for elsewhere in C04B2111/00 for waste stabilisation purposes for disposal only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Furnace Details (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE: To solve the problem of material in a glass tank furnace technique, to avoid a remarkable erosion of electrodes and dust formation, to lessen the heat loss and to enable a higher inclusion rate of a flux by immersing the electrode from above into a molten liquid. CONSTITUTION: Filter dust is mixed with other material, such as lime, silica sand or flyash, in order to melt the filter dust in a melting furnace provided with a glass tank. The melting of the filter dust and the flux is executed by using a current supply electrode in a melting tank. More particularly, an electrode to be operated by AC of a line net frequency is immersed into a molten bath surface perpendicularly from above and the molten liquid is directly heated by current conduction. The immersion depth of the electrode is made regulatable and is controlled by the molten bat level and electrode burn, by which the melting tank is cooled in the range below the molten bath surface. Further, the space of the melting furnace existing above the molten bath surface is separated from the atmosphere enclosing the same by a cap-like hermetic sealing device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、請求項1記載のフィル
ターダストの溶融方法に関し、その際溶融液はガラス状
物質として凝固する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for melting filter dust according to claim 1, in which the melt solidifies as a glassy substance.

【0002】[0002]

【従来の技術】燃焼装置、例えば塵芥−及び清澄化汚泥
燃焼のための装置中に、化学的組成の著しく変動する高
毒性のフィルターダストが生じる。そのようなフィルタ
ーダストは、高い危険物群に分類されるので、このダス
トは未処理では特別な堆積所(鉱山跡)に貯蔵しうるに
すぎない。これらのダストの輸送には、適当な安全策を
講じるべきであり、輸送及び貯蔵のために費やす費用は
相当のものである。危険度を減少させる1つの方法は、
これらのダストを公知方法で、例えば水により浸出され
ず、従って、慣用の堆積所に投棄できる凝固した状態に
変えることである。
Highly toxic filter dusts of highly variable chemical composition are produced in combustion devices, for example for dust and clarified sludge combustion. Since such filter dusts are classified in the high dangerous goods group, they can only be stored untreated in special deposits (mine sites). Appropriate safety measures should be taken for the transportation of these dusts and the costs incurred for transportation and storage are considerable. One way to reduce the risk is
The purpose is to convert these dusts in a known manner into a solidified state which is not leached, for example by water, and can therefore be dumped into conventional deposits.

【0003】このガラス化方法のためには、たんに生じ
るダストを溶融して、溶融及び凝固した後ガラス状物を
製造するだけでは不十分である。他の物質、例えば石
灰、珪砂、アルミナ、長石等も添加しなければならない
ので、溶融すべきフィルターダストの量は、確実なガラ
ス化のために必要な融剤の分だけ高くなる。
For this vitrification method, it is not sufficient to melt the dust that is simply generated, melt and solidify it, and then produce a glass-like material. Since other substances such as lime, silica sand, alumina, feldspar, etc. must also be added, the amount of filter dust to be melted is higher by the amount of flux necessary for reliable vitrification.

【0004】これらの混合物の溶融のためには、公知技
術水準により、電流導通により加熱されるガラス溶解槽
が使用される。通例、電流は、底部又は側面から耐火内
張りを通って溶融浴中へ突入する電極により供給され
る。
For the melting of these mixtures, according to the state of the art, glass melting tanks are used which are heated by means of an electric current. Typically, current is supplied by electrodes that rush into the molten bath from the bottom or sides through the refractory lining.

【0005】しかしながら、フィルターダストの溶融の
際には通常のガラス製造とは異なり、溶融物の確実な所
定の化学分析値を考慮することはできないので次の欠点
が生じる:炉槽の耐火材料は、溶融液により強く侵食さ
れ、かつ溶融液に電流を供給する電極が、極めて強く侵
食される。強く変動する分析値及び殆どすべての元素の
組合せの存在は、ガラスタンク技術にとり、原則的だ
が、殆ど制御できない問題を意味する。ガラスタンク炉
の場合材料の問題を解決できることは期待できない。
However, when melting the filter dust, unlike in the usual glass production, it is not possible to take into account certain predetermined chemical analysis values of the melt, which leads to the following disadvantages: The refractory material of the furnace tank , The electrodes are strongly eroded by the molten liquid, and the electrodes that supply an electric current to the molten liquid are extremely strongly eroded. The presence of strongly fluctuating analytical values and combinations of almost all elements represents a principle, but almost uncontrollable problem for glass tank technology. In the case of a glass tank furnace, it cannot be expected that the material problem can be solved.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は、ガラ
スタンク炉技術における材料の問題を解決し、電極の著
しい侵食並びにダスト形成を回避し、熱損失を減少さ
せ、かつ融剤のより大きな混入速度を可能にする方法を
開発することである。
The object of the present invention is to solve the material problems in glass tank furnace technology, avoid significant erosion of the electrodes as well as dust formation, reduce heat losses and increase the flux It is to develop a method that allows the mixing rate.

【0007】[0007]

【課題を解決するための手段】この課題は、本発明によ
り請求項1に記載されたようにして、電極を、例えばE
SU(Elektro-Schlacke-Umschmelz:電気−スラグ−再
溶融)法において慣用であるように、上方から溶融液中
に浸漬することによって解決される。
This object is achieved according to the invention as described in claim 1 by means of electrodes, for example E
It is solved by immersion in the melt from above, as is customary in the SU (Elektro-Schlacke-Umschmelz: electro-slag-remelt) process.

【0008】溶解槽は、全体が水冷されているべきであ
る。液状スラグと溶融素地との間の必要な熱バリヤー
は、凝固したガラス層により形成しうる。始めにこれら
の槽を耐火性材料で内張りするのが有利である。しかし
長い運転時間後に、この耐火物層は、所々が損耗され、
この場合水冷された壁に凝固された溶融物とガラス溶融
液の間の動的平衡が生じる。(動的平衡とは、溶融温度
の上昇につれ、溶融液は、希液状になり、従って水冷さ
れた壁に凝固した溶融液も、薄くなり;溶融温度が降下
する際には、粘稠な溶融液に基づき凝固した層は厚くな
ることを意味する。)提案された装置における溶解槽
は、慣用の大容積のガラス溶融液の場合よりも明らかに
小さくすることができるので、槽底部による熱損失は、
許容範囲に保持することができる。溶融炉は、十分に密
閉されているべきであるので、ガスは、制御されずに流
出することはできない。
The dissolver should be entirely water cooled. The required thermal barrier between the liquid slag and the molten matrix can be formed by the solidified glass layer. It is advantageous to first line these tanks with a refractory material. However, after a long operating time, this refractory layer is worn out in places,
In this case, a dynamic equilibrium occurs between the solidified melt and the glass melt on the water-cooled wall. (Dynamic equilibrium means that as the melting temperature rises, the melt becomes a dilute liquid, and therefore the melt solidified on the water-cooled wall also becomes thinner; This means that the layer solidified by the liquid will be thicker.) The melting bath in the proposed device can be made significantly smaller than in the case of conventional large volume glass melts, so that the heat loss at the bottom of the bath Is
It can be kept within an allowable range. The melting furnace should be well sealed so that no gas can flow out uncontrolled.

【0009】これを可能にするために、サイホンにより
液状の溶融液を流出させることが、提案される。引き続
いて、この溶融液を、なまこに鋳造するか又は大きな塊
に凝固させ、次いでその使用目的に応じて更に処理する
ことができる。溶融効率に応じて、鋳造は連続的又は断
続的に行うことができる。連続的流出の際には、炉を傾
倒する必要はない。断続的鋳造の際には、傾倒するか又
は側壁又は底部の流出口を開くことにより部分量を取り
出すことができる。
To enable this, it is proposed to siphon the liquid melt out. This melt can subsequently be cast into a leek or solidified into a large mass and then further processed depending on its intended use. Depending on the melting efficiency, the casting can be carried out continuously or intermittently. It is not necessary to tilt the furnace during continuous spills. During intermittent casting, a partial volume can be removed by tilting or opening the side wall or bottom outlet.

【0010】炉上部構造としては、真空アーク脱ガス
(VAD)−又は真空加熱脱ガス(VHD)装置(Vacu
um Arc DegassingないしはVacuum Heating Degassing)
の加熱部と類似の密閉蓋が提案される。取鍋冶金で使用
される加熱脱ガス装置と真空脱ガス装置の組合せの場
合、三相アークを用いて取鍋中の溶融物が上から加熱さ
れる。その際、電極尖端は、しばしば金属溶融液上を浮
流するスラグ層中にまで浸漬される。アークは、電極と
金属溶融液との間で形成した気泡中で燃焼する。慣用の
黒鉛電極は、真空気密のテレスコープ筒中に配置されて
いるので、VAD装置においては、減圧でも加熱するこ
とができる。
As the furnace upper structure, a vacuum arc degassing (VAD) -or a vacuum heating degassing (VHD) device (Vacu) is used.
um Arc Degassing or Vacuum Heating Degassing)
A closed lid similar to that of the heating part is proposed. In the case of a combination of hot degasser and vacuum degasser used in ladle metallurgy, the melt in the ladle is heated from above using a three-phase arc. Here, the electrode tips are often immersed even in a slag layer which floats above the metal melt. The arc burns in the bubbles formed between the electrode and the metal melt. Since the conventional graphite electrode is arranged in a vacuum-tight telescope cylinder, the VAD device can be heated even under reduced pressure.

【0011】ガラス溶融技術において、三相電流から出
発すれば、3個の電極を用いて作業するのが有利である
が、2個、4個又は6個の電極も考えられる。しかしフ
ィルターダストの溶融には、VAD装置におけるように
アークを用いて作業すべきではなく、電気−スラグ−再
溶融の場合のように純抵抗加熱が設けられている。アー
ク作業は、溶融物の著しい蒸発をもたらし、そのこと自
体が除塵の際に再び高いの費用を要求する。アークを避
けるために、電極における小さい電流密度で作業しなけ
ればならない。
In the glass melting technique, it is advantageous to work with three electrodes, starting from a three-phase current, but two, four or six electrodes are also conceivable. However, melting of the filter dust should not work with an arc as in a VAD machine, but is provided with pure resistance heating as in the case of electric-slag-remelt. The arcing operation results in a significant evaporation of the melt, which in itself requires high costs in dedusting. In order to avoid arcs, one must work with a small current density at the electrodes.

【0012】溶融液に電流を供給するための電極材料と
しては、アーク炉溶融作業において慣用であるような黒
鉛電極、還元炉で常用のゼーダーベルグ電極、及び他の
導電材料からなる電極も考えられる。
As an electrode material for supplying an electric current to the molten liquid, a graphite electrode which is commonly used in an arc furnace melting operation, a soderberg electrode which is commonly used in a reducing furnace, and an electrode made of another conductive material can be considered.

【0013】粉末状又は場合により前造粒された材料を
迅速に混入するためには、電極を溶融液の表面下にでき
るだけ僅かに浸漬すべきである。この作業法は、電極の
直接下方に、高い流速を形成する。溶融物の連続的及び
半連続的(例えば少量宛)添加は、ゲート装置(仕切板
ゲート装置(Zellradschleuse)、鐘形ゲート装置等々)
及び1個以上のシュートにより溶融浴表面に行われる。
浴自由表面は、溶融すべき物質で被覆することができ
る。このことは、蒸発物質が、被覆層で凝縮することが
でき、従ってダストの搬出は非常に僅かになるという利
点を有する。低温でガス状の物質だけは、フィルター装
置、できうれば反応−精製区間を経て排出しなければな
らない。
For rapid incorporation of the powdered or optionally pregranulated material, the electrodes should be immersed as little as possible below the surface of the melt. This working method creates a high flow velocity directly below the electrodes. For continuous and semi-continuous (eg small volume) addition of melt, gate equipment (dividing plate gate equipment (Zellradschleuse), bell-shaped gate equipment, etc.)
And on the surface of the molten bath with one or more chutes.
The bath-free surface can be coated with the substance to be melted. This has the advantage that the vaporized material can condense in the coating layer, so that the dust removal is very small. Only low temperature gaseous substances must be discharged via a filter device, preferably a reaction-purification section.

【0014】溶融浴表面の被覆は次の利点を提供する:
減少した熱損失、僅かなダスト形成、大きな混入速度。
The coating of the molten bath surface offers the following advantages:
Reduced heat loss, slight dust formation, high incorporation rate.

【0015】被覆層は、全体、しかしなかんずく電極近
くでは高すぎてはならない。それというのも、さもない
と材料が、高温の電極で焼付くからである。
The coating layer should not be too high overall, but above all near the electrodes. This is because otherwise the material will seize at the hot electrodes.

【0016】電極焼損とできるだけ僅かに変動する溶融
浴の液高を補償するためには、電極を可動性に溶融室を
貫通させねばならない。連続的溶融作業には、電極が、
後退させる必要なしに延長可能であるのが有利である。
このことは、ゼーダーベルグ電極においては慣用であ
り、新しい管部分を上部で溶接し、次いでこれに炭及び
ピッチを充填する。
In order to compensate for electrode burnout and the height of the molten bath which fluctuates as little as possible, the electrodes must be movably pierced through the melting chamber. For continuous melting work, the electrodes
Advantageously, it can be extended without having to be retracted.
This is customary in Zederberg electrodes, where a new tube section is welded at the top, which is then filled with charcoal and pitch.

【0017】例えばアーク炉技術において慣用のよう
に、通常の黒鉛電極を使用する場合には、電極を上部で
ニップル接続することができる(nachnippeln)。(ニッ
プル接続するとは、電極を結合部材、例えば両端でねじ
込み可能な円錐状管継手を用いて延長することであ
る。)できるだけ短い電流遮断時間を有する工業的装置
には、電極のニップル接続を、半自動装置を用いて行う
のが有利である。この場合、電極に対して、電流接触グ
リップ(Stromkontaktbacke)を調整するためには、電極
をこの半自動ニップル接続装置で保持することができ
る。他の場合には、このためにクレーン又は他の保持装
置を使用せねばならない。
If conventional graphite electrodes are used, as is customary, for example, in arc furnace technology, the electrodes can be nippled on top. (To make a nipple connection is to extend the electrode by means of a coupling member, for example a conical pipe joint which can be screwed at both ends.) For industrial devices with the shortest possible interruption time, the nipple connection of the electrode is Preference is given to using semi-automatic equipment. In this case, the electrode can be held by this semi-automatic nipple connection device in order to adjust the current contact grip (Stromkontaktbacke) with respect to the electrode. In other cases, a crane or other holding device must be used for this.

【0018】電極を接続するのは、1個の電極につき1
個の接触ホルダーのみを使用する場合、電流中断の際に
行われる。2個の相互に移動可能な接触ホルダーを使用
する場合には、電流を中断する必要はない。
The electrodes are connected one per electrode.
If only one contact holder is used, this is done during a current interruption. When using two mutually movable contact holders, it is not necessary to interrupt the current.

【0019】電極と溶融室との間の気密密封はすべりパ
ッキンを有する、電極を包囲するテレスコープ筒を介し
て行われる。テレスコープ筒と電極との間の気密密封
は、例えば電流接続端子の上部で、膨張封止により行わ
れる。電極を調整するために、膨張封止を、短時間のみ
開き、調整工程終了後に再びすぐに閉じる。それで大量
の炉雰囲気が流出するか、又は炉を減圧で運転する場合
は、大量の空気が不正に流入し、付加的に排ガス流で運
び出さねばならなくなるのを避けることができる。
The hermetic seal between the electrode and the melting chamber is effected via a telescope tube which surrounds the electrode and has a slip packing. Airtight sealing between the telescope barrel and the electrodes is performed by expansion sealing, for example, above the current connection terminals. To adjust the electrodes, the expansion seal is opened for only a short time and then closed again shortly after the adjusting process. It is thus possible to avoid a large amount of furnace atmosphere flowing out or, if the furnace is operated at reduced pressure, a large amount of air being illegally introduced and additionally having to be carried away in the exhaust gas stream.

【0020】冷たい装入物は、非常に僅かな導電率を有
する。この事実は、冷たい炉の始動工程の際に特別な手
段を必要とする。炉を新しく始動するため又は長時間の
運転停止後(その間に古い溶融液が凝固している)に、
始動するためには凝固した溶融液又は槽内張り上に、電
極尖端の当接点を相互に結合する導電板(例えば黒鉛又
は金属材料からなる)を置く。本来の始動工程は、種々
に実施することができる: −導電板に取り付けられた電極の回りに装填物を堆積
し;電流を流し、溶融物をアークを用いて液化する。こ
の方法は、しばしば不正始動の欠点を有する。
The cold charge has a very low conductivity. This fact requires special measures during the cold furnace start-up process. To start the furnace anew or after a long outage (while the old melt is solidifying)
To start, a conductive plate (e.g., made of graphite or a metallic material) that connects the contact points of the electrode tips to each other is placed on the solidified melt or bath lining. The actual start-up process can be carried out in various ways: -depositing the charge around the electrodes mounted on the conducting plate; passing an electric current and liquefying the melt with an arc. This method often has the drawback of false start.

【0021】−電極尖端とスターター板(Starterplatt
e)との間に溶融物と金属削屑からなる混合物を層状に装
入し、これを、比較的高抵抗の削屑堆積物中での電気の
熱損失によって液化する。
-Electrode tip and starter plate
A layered mixture of melt and metal shavings is charged between e) and liquefied by heat loss of electricity in a relatively high resistance shavings deposit.

【0022】−電極尖端とスターター板との間に発熱性
粉末(例えばテルミット)を装入する。これは、そのア
ルミニウム含分又はマグネシウム含分のため導電性であ
る。電源のスイッチを入れた後に、発熱性粉末は発火す
る。最初の溶融液たまりが形成され、その中に電極の周
りに装填された溶融物が混入している。
Insert an exothermic powder (eg thermite) between the electrode tip and the starter plate. It is electrically conductive due to its aluminum or magnesium content. After switching on the power supply, the exothermic powder ignites. An initial melt puddle is formed in which the melt loaded around the electrode is incorporated.

【0023】この溶融法のための電源としては未制御の
高電流変成器が十分である。電流の強さは、例えば電気
−スラグ−再溶融法から公知のように、各々の電極を溶
融液中へ適当な深さに浸漬することにより制御される。
各々の電流供給電極は、別個にその浸漬深さが制御され
る。制御装置の測定量としては、相電圧の電極電流又は
両者と相応する目標値との結合が使用される。
An uncontrolled high current transformer is sufficient as the power source for this melting method. The intensity of the electric current is controlled by immersing each electrode in the melt to the appropriate depth, as is known, for example, from the electro-slag-remelt process.
The immersion depth of each current supply electrode is controlled separately. As a measuring quantity of the control device, the electrode current of the phase voltage or the combination of both with a corresponding target value is used.

【0024】溶融液の化学的組成の変化が考慮されるの
で、浴抵抗の変化が生じる。これらの影響を補償するた
めに、電気測定値の変動幅を一定に保持する重畳した制
御回路を設けることができる: −電極を極めて不十分に溶融液中に浸漬すれば、溶融液
が局所的な電流密度上昇に基づき蒸発し、電極下方にア
ークが生じうる。アークは、原則的には、避けるべきで
ある。それというのも、さもなければ高いダスト形成を
考慮せねばならないからである。
Changes in bath resistance occur because changes in the chemical composition of the melt are taken into account. To compensate for these effects, a superimposed control circuit can be provided that keeps the fluctuations of the electrical measurements constant: -If the electrodes are immersed in the melt very poorly, the melt will be localized. The vaporization may occur due to the increase in the current density, and an arc may occur below the electrode. In principle, arcs should be avoided. This is because otherwise high dust formation has to be taken into account.

【0025】−溶融液中への電極の浸漬が深すぎると、
混入可能性が減少し、かつ底部付近のの溶融液の加熱が
増加する。
-If the electrode is immersed in the melt too deeply,
The possibility of entrainment is reduced and the heating of the melt near the bottom is increased.

【0026】著しく異なった化学的組成の場合に、著し
く異なる溶融浴抵抗に電流供給を適合させるために、電
気炉用変成器に負荷時タップ切換装置を備えることがで
きる。無負荷切換えが、工程の必要条件を満たす。
In order to adapt the current supply to significantly different molten bath resistances for significantly different chemical compositions, the electric furnace transformer can be equipped with a load tap changer. No-load switching meets the process requirements.

【0027】注出した溶融液の凝固は、浸出安定性にも
よるが、小片の大きさ(例えば破砕された板、又は水中
での注入噴流の凝固による顆粒)又は塊状の大きさに行
うことができる。大きい塊状が有利であるが、亀裂の少
ない凝固は、大きい塊の凝固速度が小さくなる。適当な
融剤の選択により、許容凝固速度を高めることができ
る。高い原料費及び増大する電流費は、凝固工程の低い
作業費により相殺される。
The solidification of the poured melt should be carried out in the size of a small piece (for example, a crushed plate or a granule by solidification of an injection jet in water) or a lump size, depending on the stability of leaching. You can Large lumps are advantageous, but solidification with less cracks results in a smaller solidification rate for large lumps. The permissible solidification rate can be increased by selecting an appropriate flux. High raw material costs and increasing current costs are offset by low operating costs of the solidification process.

【0028】中程度の塊の大きさは、鋳銑機によって達
成することができる。傾倒して排出されたなまこは、運
搬容器に集められ、ここでなまこは緩慢にさらに亀裂な
しに冷却しうる。
A medium agglomerate size can be achieved with a pig iron machine. The dumped dumplings are collected in a transport container, where they can be cooled slowly without further cracking.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 デトレフ シユレブツシユ ドイツ連邦共和国 ヴエルシユタツト エ ルレンヴエーク 2 (72)発明者 ハラルト シヨルツ ドイツ連邦共和国 ローデンバツハ アル ベルト−アインシユタイン−シユトラーセ 2 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Detlef Siev Levtscyu, Federal Republic of Germany Wershyutatt Erlenvewek 2 (72) Inventor, Haralt Schjorz, Federal Republic of Germany Roden Batcha Alberto-Ainschtäin-Schyutrase 2

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 ガラスタンクを備える溶融炉中でフィル
ターダストを溶融するため、フィルターダストを、例え
ば石灰、珪砂又はフライアッシュのような他の物質と混
合し、フィルターダスト及び融剤の溶融を、溶解槽中で
電流供給電極を用いて行い、かつ溶融液が凝固する際に
ガラス状物質が生じる、フィルターダストの溶融方法に
おいて、交流で運転しうる電極を、上方から溶融浴表面
中へ浸漬し、溶融液を電流の直接導通により加熱し、電
極の浸漬深さは調整可能であり、この調整可能性は、溶
融浴レベル及び電極焼損により制御可能であり、溶解槽
は、溶融浴液面の下方範囲で冷却可能であり、かつ溶融
浴表面の上方に存在する溶融炉の空間は、それを取り囲
む雰囲気から蓋様の気密密封装置により分離されている
ことを特徴とする、フィルターダストの溶融方法。
1. To melt the filter dust in a melting furnace equipped with a glass tank, the filter dust is mixed with other substances such as lime, silica sand or fly ash to melt the filter dust and flux. In the method of melting filter dust, which is carried out using a current supply electrode in a melting tank and a glassy substance is generated when the melt is solidified, an electrode that can be operated by alternating current is immersed into the surface of the melting bath from above. , The molten liquid is heated by direct conduction of electric current, the immersion depth of the electrode is adjustable, this adjustability is controllable by the melt bath level and electrode burnout, the melt bath is The space of the melting furnace which is coolable in the lower range and which is above the surface of the melting bath is characterized in that it is separated from the surrounding atmosphere by a lid-like hermetic seal. Method of melting filter dust.
【請求項2】 幾つかの電極を使用し、これらの電極
は、溶融浴深さに比較して僅かの浸漬深さしか有しな
い、請求項1記載の方法。
2. The method according to claim 1, wherein several electrodes are used, these electrodes having a small immersion depth compared to the bath depth.
【請求項3】 電極の浸漬深さに対する制御パラメータ
ーとして、電極電圧、電極電流又は電圧と電流の組合せ
も使用できる、請求項1又は2記載の方法。
3. The method according to claim 1, wherein an electrode voltage, an electrode current or a combination of voltage and current can also be used as a control parameter for the immersion depth of the electrode.
【請求項4】 電流供給電極を、ガス密装置を用いて溶
融炉中、溶融浴表面上の空間中へ導入できる、請求項1
から3までのいずれか1項記載の方法。
4. The current supply electrode can be introduced into the space above the surface of the melting bath in the melting furnace using a gas-tight device.
4. The method according to any one of 1 to 3.
【請求項5】 溶融物を運搬装置により炉室中へ、炉内
部空間と炉を取り囲む雰囲気との間でガス交換を起こす
ことなく導入できる、請求項1から4までのいずれか1
項記載の方法。
5. The molten material can be introduced into the furnace chamber by means of a carrier without causing gas exchange between the furnace internal space and the atmosphere surrounding the furnace.
Method described in section.
【請求項6】 溶融物を、上方から溶融浴表面上へ装入
でき、全面にわたって分配できる、請求項1から5まで
のいずれか1項記載の方法。
6. The process according to claim 1, wherein the melt can be charged from above onto the surface of the molten bath and distributed over the entire surface.
【請求項7】 溶融液は溶解槽から、底部の孔、側壁の
孔又はサイホン装置によって取り出すことができる、請
求項1から6までのいずれか1項記載の方法。
7. The method according to claim 1, wherein the melt can be taken out of the melting tank by means of holes in the bottom, holes in the side walls or a siphon device.
【請求項8】 取り出された溶融液の冷却を先ず容器、
例えば鋳型又はなまこ鋳型中で行う、請求項1から7ま
でのいずれか1項記載の方法。
8. A container is first cooled for cooling the molten liquid taken out,
The method according to any one of claims 1 to 7, which is carried out in a mold or a sea cucumber mold, for example.
【請求項9】 溶融液を、保熱ピット又は保熱容器中で
更に冷却する、請求項8記載の方法。
9. The method of claim 8 wherein the melt is further cooled in a heat retention pit or heat retention vessel.
JP8385892A 1991-04-09 1992-04-06 Method for melting filter dust Pending JPH0596266A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4111385.3 1991-04-09
DE19914111385 DE4111385A1 (en) 1991-04-09 1991-04-09 Filter dust smelting with reduced electrode erosion - in which electrodes are inserted into glass from above into mixt. of dust and additives

Publications (1)

Publication Number Publication Date
JPH0596266A true JPH0596266A (en) 1993-04-20

Family

ID=6429097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8385892A Pending JPH0596266A (en) 1991-04-09 1992-04-06 Method for melting filter dust

Country Status (2)

Country Link
JP (1) JPH0596266A (en)
DE (1) DE4111385A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112551868A (en) * 2020-12-30 2021-03-26 河南光远新材料股份有限公司 Passageway combustion control structure of low dielectric glass fiber production

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4208124C2 (en) * 1992-03-12 1997-07-31 Peter Dr Koecher Process for inerting solid residues, especially from waste incineration and flue gas cleaning, by melting
DE4310779C2 (en) * 1993-03-26 1996-08-14 Mannesmann Ag Process and device for the disposal of filter materials
CN113248117B (en) * 2021-05-11 2022-11-15 重庆国际复合材料股份有限公司 Sealing method for side-inserted electrode of glass fiber electric melting furnace

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0019645A1 (en) * 1979-05-26 1980-12-10 Sorg GmbH & Co. KG Electrically heated melting furnace for corrosive mineral matter with a sharp viscosity curve
AT363165B (en) * 1979-10-08 1981-07-10 Hatschek Zementwerke Ag H BUILDING MATERIAL AND METHOD FOR THE PRODUCTION THEREOF
DE3603879A1 (en) * 1985-02-21 1987-08-06 Klimanek Gmbh Schlacken Schrot Process for the preparation of disposable filter dusts
DE3716231A1 (en) * 1987-05-14 1988-12-01 Krupp Gmbh THERMAL PROCESSING OF SCHOETTABLE SOLIDS WITH HEAVY METAL COMPOUNDS AND TOXIC HYDROCARBONS
DE3841221A1 (en) * 1988-12-07 1990-06-13 Siemens Ag Process for purifying the flue gases of combustion plants
DE58906363D1 (en) * 1988-09-10 1994-01-20 Sorg Gmbh & Co Kg Process for the transfer of solid, largely water-free waste materials in glass form and device for carrying out the process.
DE3841889A1 (en) * 1988-09-10 1990-03-15 Sorg Gmbh & Co Kg Process for converting solid, substantially anhydrous waste materials into the glass form (vitrification) and apparatus for carrying out the process
JPH077102B2 (en) * 1988-10-21 1995-01-30 動力炉・核燃料開発事業団 Melt furnace for waste treatment and its heating method
DE3920768A1 (en) * 1988-12-13 1991-01-03 Sorg Gmbh & Co Kg Vitrifier for waterless solid toxic waste prods.
ES2075195T3 (en) * 1989-02-13 1995-10-01 Vert Investments Ltd METHOD FOR TREATING TOXIC WASTE.
DE3906869C1 (en) * 1989-03-03 1989-11-02 Klimanek Gmbh, 6680 Wiebelskirchen, De Process for producing a concentrate enrichment of metals or oxides thereof from filter dusts by expelling them from the filter dusts in their vapour form and thus collecting them in concentrated form
DE3939202C2 (en) * 1989-11-28 1993-09-30 Rwe Energie Ag Process for the disposal and use of combustion residues from waste incineration plants

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112551868A (en) * 2020-12-30 2021-03-26 河南光远新材料股份有限公司 Passageway combustion control structure of low dielectric glass fiber production

Also Published As

Publication number Publication date
DE4111385A1 (en) 1992-10-15

Similar Documents

Publication Publication Date Title
US2091087A (en) Process for the production of pure beryllium
EP1784515B1 (en) Process and equipment for the treatment of loads or residues of non-ferrous metals and their allows
US3627293A (en) Apparatus for purifying metals by pouring through slag
US2060134A (en) Apparatus for refining metals
US3771585A (en) Device for melting sponge metal using inert gas plasmas
KR20080003797A (en) Method for producing high purity silicon
CA2030252C (en) Method of and apparatus for continuously discharging molten metal and slag
CN1009758B (en) Cold hearth melting configuration and method
US3843352A (en) Method for melting sponge metal using gas plasma in a cooled metal crucible
US3273212A (en) Method of operating an electric furnace
JPH0596266A (en) Method for melting filter dust
KR970001425B1 (en) Treatment of oxide-containing dusts
US3929456A (en) Carbothermic production of aluminum
US3820587A (en) Apparatus for making metal ingots
Kroll et al. Melting and Casting Zirconium Metal
Kroll Vacuum metallurgy: its characteristics and its scope
US4202997A (en) Atmospheric control of flux pre-melting furnace
WO2011013151A1 (en) Advanced technology for iron-krom alloys production and related plant
US2429959A (en) Electric furnace for melting magnesium and its alloys
US4352189A (en) Atmosphere control of slag melting furnace
US20080136069A1 (en) Air plasma induced low metal loss
US2487770A (en) Electric furnace
RU2190679C1 (en) Magnesium alloy ingot production method
SU1700073A1 (en) Method of electroslag melting of bulk materials
USRE27379E (en) Consumable electrode furnace por electroslag refining