JPH059534Y2 - - Google Patents

Info

Publication number
JPH059534Y2
JPH059534Y2 JP1987006343U JP634387U JPH059534Y2 JP H059534 Y2 JPH059534 Y2 JP H059534Y2 JP 1987006343 U JP1987006343 U JP 1987006343U JP 634387 U JP634387 U JP 634387U JP H059534 Y2 JPH059534 Y2 JP H059534Y2
Authority
JP
Japan
Prior art keywords
axis
outer ring
leg shaft
spherical roller
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987006343U
Other languages
Japanese (ja)
Other versions
JPS63115927U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987006343U priority Critical patent/JPH059534Y2/ja
Publication of JPS63115927U publication Critical patent/JPS63115927U/ja
Application granted granted Critical
Publication of JPH059534Y2 publication Critical patent/JPH059534Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pivots And Pivotal Connections (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea] 【産業上の利用分野】[Industrial application field]

この考案は、主として前輪駆動式の自動車に適
用される等速自在継手に関し、特にトリポード型
等速自在継手に関するものである。
This invention relates to a constant velocity universal joint mainly applied to front-wheel drive automobiles, and in particular to a tripod type constant velocity universal joint.

【従来技術】[Prior art]

この種、従来の等速自在継手として、例えば第
8図に示すように、外輪1の内面に軸方向の三本
の円筒形トラツク溝2を形成し、その外輪1の内
側に配置したトリポード部材3に半径方向の脚軸
4を突設し、各脚軸4の外側に球面ローラ5を回
転可能に、且つ軸方向にスライド可能に嵌合し、
その球面ローラ5を上記トラツク溝2の両側のロ
ーラ案内面6に係合されたものが知られている。 上記トリポード型等速自在継手において、外輪
1とトリポード部材3とが作動角をとる状態で回
動力を伝達する場合を考えると、各球面ローラ5
と円筒形トラツク溝2のローラ案内面6とは、第
8図及び第9図に示すように互いに斜交する関係
となり、球面ローラ5に正しい転がり運動をさせ
ることができない。 即ち、球面ローラ5は第8図の矢印イで示す方
向に転がり移動しようとするのに対し、トラツク
溝2は円筒形であつて、外輪1の軸心に平行であ
るため、球面ローラ5はトラツク溝2に拘束され
ながら移動することになる。 この結果、トラツク溝2のローラ案内面6と球
面ローラ5相互間において、滑りが生じて発熱
し、更にこの滑りが軸方向のスラスト力を誘起
し、振動発生の原因となる。 この誘起スラスト力発生のメカニズムを第10
図によつて説明する。 第10図は外輪1とトリポード部材3が作動角
をとる状態で回動力を伝達する場合の各部材の位
置関係を示す。 継手が回転すると、トリポード部材3の脚軸4
に嵌合された球面ローラ5が外輪ローラ案内面6
に拘束されながら外輪軸方向に往復運動を繰り返
す。このとき3個の各球面ローラ5は第10図に
示す如く、点Pから点P′、点Qから点Q′、点Rか
ら点R′へと夫々摺動し、次いでその反対方向へ
と方向を変え、継手1回転でローラ案内面6上を
1往復する。 このような運動をするローラ案内面6と球面ロ
ーラ5間で、動力伝達継手として当然のことなが
ら作用している接触力により、軸方向にスラスト
力を誘起する。 継手回転時に夫々の球面ローラ5によつて発生
するスラスト力の方向及びその大きさは回転位相
によつて変動し、第10図に示す如く2個の球面
ローラ5は、外輪の左方に、又1個の球面ローラ
5は右方向に夫々引張り、圧縮のスラスト力を誘
起させる。このように3個の球面ローラ5により
発生するスラスト力の総和は継手1回転により3
回の周期をもつて正逆変動し、その変動の振幅が
大きいことにより、自動車に種々の振動問題を発
生させている。
As a conventional constant velocity universal joint of this kind, for example, as shown in FIG. A radial leg shaft 4 is provided protruding from 3, and a spherical roller 5 is fitted to the outside of each leg shaft 4 so as to be rotatable and slidable in the axial direction.
It is known that the spherical roller 5 is engaged with roller guide surfaces 6 on both sides of the track groove 2. In the tripod type constant velocity universal joint described above, considering the case where the rotational force is transmitted in a state where the outer ring 1 and the tripod member 3 take an operating angle, each spherical roller 5
The roller guide surface 6 of the cylindrical track groove 2 and the roller guide surface 6 of the cylindrical track groove 2 are obliquely intersecting with each other as shown in FIGS. 8 and 9, and the spherical roller 5 cannot be caused to roll correctly. That is, the spherical roller 5 tries to roll and move in the direction shown by arrow A in FIG. 8, whereas the track groove 2 is cylindrical and parallel to the axis of the outer ring 1, It moves while being restrained by the track groove 2. As a result, sliding occurs between the roller guide surface 6 of the track groove 2 and the spherical roller 5, generating heat, and this slipping further induces a thrust force in the axial direction, causing vibration. The mechanism of this induced thrust force generation is explained in the 10th section.
This will be explained using figures. FIG. 10 shows the positional relationship of each member when rotating force is transmitted with the outer ring 1 and the tripod member 3 assuming an operating angle. When the joint rotates, the leg shaft 4 of the tripod member 3
The spherical roller 5 fitted to the outer ring roller guide surface 6
It repeats reciprocating motion in the axial direction of the outer ring while being restrained by the At this time, each of the three spherical rollers 5 slides from point P to point P', from point Q to point Q', from point R to point R', and then in the opposite direction, as shown in FIG. Change direction and make one reciprocation on the roller guide surface 6 with one rotation of the joint. A thrust force is induced in the axial direction by the contact force that naturally acts as a power transmission joint between the roller guide surface 6 and the spherical roller 5 that move in this manner. The direction and magnitude of the thrust force generated by each spherical roller 5 when the joint rotates varies depending on the rotation phase, and as shown in FIG. Also, one spherical roller 5 induces a pulling and compressing thrust force in the right direction. In this way, the total thrust force generated by the three spherical rollers 5 is 3 by one rotation of the joint.
The vibrations fluctuate in the forward and reverse directions with a period of 3 times, and the amplitude of these fluctuations is large, causing various vibration problems in automobiles.

【考案が解決しようとする問題点】[Problem that the invention attempts to solve]

この考案は、従来のトリポード型等速自在継手
の問題点を解決し、自在継手の誘起スラスト力を
軽減することにより、振動の発生を防止すること
を技術的課題としている。
The technical objective of this invention is to solve the problems of the conventional tripod type constant velocity universal joint and prevent the generation of vibration by reducing the thrust force induced in the universal joint.

【問題点を解決するための手段】[Means to solve the problem]

上記の課題を解決するために、この考案はトリ
ポード部材に突設した脚軸の軸心を、このトリポ
ード部材の軸心を横切る垂直平面に対して傾斜さ
せた。
In order to solve the above problems, in this invention, the axis of the leg shaft protruding from the tripod member is inclined with respect to a vertical plane that crosses the axis of the tripod member.

【作用】[Effect]

上記の構成から成る等速自在継手は、従来の等
速自在継手と同様にローラ案内面と球面ローラの
係合によつて回動力が伝達され、又プランジング
に対しては、球面ローラがローラ案内面に沿つて
転動してこれを吸収する。 トリポード部材に突出した脚軸の軸心が、トリ
ポード部材の軸心を横切る垂直平面に対して傾斜
βしているため、作動角θをとつて運動すると
き、球面ローラはローラ案内面を+θ+β〜θ+
β内で揺動する。(第4図)その結果、往復での
摩擦抵抗が変化し、一本のトラツク溝における誘
起スラスト力の振幅が変る。(第5図)従つて、
三本のトラツク溝での合力は相殺し、外輪に生じ
る誘起スラスト力は減少する。(第6図)
In the constant velocity universal joint constructed as described above, rotational force is transmitted by the engagement between the roller guide surface and the spherical roller, similar to the conventional constant velocity universal joint, and for plunging, the spherical roller It rolls along the guide surface and absorbs this. Since the axis of the leg shaft protruding from the tripod member is inclined β with respect to the vertical plane that crosses the axis of the tripod member, when moving at an operating angle θ, the spherical roller moves the roller guide surface at an angle of +θ+β~ θ+
It oscillates within β. (Fig. 4) As a result, the frictional resistance during reciprocation changes, and the amplitude of the induced thrust force in one track groove changes. (Figure 5) Therefore,
The resultant forces in the three track grooves cancel each other out, and the induced thrust force generated in the outer ring is reduced. (Figure 6)

【実施例】 以下、この考案の実施例を添付図面に基づいて
説明する。 第1図及び第2図はこの考案の第1の実施例を
示し、外輪10は従来の場合と同様閉鎖端に第一
軸11が一体に設けられ、又内周面に軸方向の三
本のトラツク溝12が中心軸のまわりに120度の
間隔をおいて形成されている。各トラツク溝12
は、両側に二つのローラ案内面13を有し、その
ローラ案内面13は外輪10の軸心に平行な略円
筒状になつている。 上記の外輪10の内部に挿入されるトリポード
部材14は、第二軸15の一端に形成したセレー
シヨン16に係合されると共に、段部17とクリ
ツプ18との間で抜け止め状態に保持されてい
る。このトリポード部材14は、三本の円柱状脚
軸19を有し、各脚軸19は上記第二軸15の軸
心Xを横切る垂直平面に対し、βだけ傾斜してい
る。球面ローラ20は、この脚軸19のまわりに
嵌合され、回転自在に支持されている。上記球面
ローラ20は、脚軸19の軸心と一致する回転中
心線を有する。 第2図に示す本考案の第1の実施例では、各脚
軸19の軸心は、トリポード部材14の軸心を横
切る垂直平面に対し、βだけ傾斜した平面内にあ
る。一方第3図に示す本考案の第2の実施例で
は、各脚軸21の軸心はトリポード部材22の軸
心を横切る垂直平面に対し、夫々βだけ傾斜して
いる。 次に、上記実施例の作用について説明する。第
一軸11と第二軸15間の作動角がθの場合、両
者間の回転はトラツク溝12のローラ案内面13
と、これに係合する球面ローラ20を介して伝達
される。この場合、両者の相対的運動に伴うプラ
ンジングが生じると、第4図に示すように、球面
ローラ20はローラ案内面13上をワイパー運動
することになる。 この時の球面ローラ20の揺動は、行きが+θ
+β、帰りが−θ+β、往復でその転動軌跡は異
なる。従つて、往復での摩擦抵抗が異なり、一本
のトラツク溝12における誘起スラスト力の振幅
が第5図に示すように変化し、その結果三本のト
ラツク溝での合力は相殺して、外輪10に生じる
誘起スラスト力は減少し、振動は軽減される。
(第6図) 第5図は、三本のトラツク溝における球面ロー
ラとローラ案内面間に生じる外輪軸方向の誘起ス
ラスト力(摩擦力)を示す計算値で、各回転位相
角における脚軸の傾斜角βを0,2,4度と変化
させた場合の振幅の変化を示している。 又、第6図は、三本のトラツク溝における球面
ローラとローラ案内面間に生じる外輪軸方向の誘
起スラスト力の合力をフーリエ展開し、三次成分
をとり出した計算値で、脚軸の傾斜角βを0,
2,4度と変化させた場合の振幅の変化を示して
いる。第7図は運動時間と共に変化する誘起スラ
スト力の従来品との比較をした実測値である。 上記した計算値および実測値は、ローラ案内面
と球面ローラとの接触を2点当りとした形式の等
速自在継手において実施したものであるが、本考
案はこれに限らず、いうまでもなく、ローラ案内
面と球面ローラの曲率を略等しくした公知の等速
自在継手においても適用できる。
[Example] Hereinafter, an example of this invention will be described based on the accompanying drawings. 1 and 2 show a first embodiment of this invention, in which an outer ring 10 has a first shaft 11 integrally provided at the closed end as in the conventional case, and three axial shafts on the inner circumferential surface. Track grooves 12 are formed at intervals of 120 degrees around the central axis. Each track groove 12
has two roller guide surfaces 13 on both sides, and the roller guide surfaces 13 have a substantially cylindrical shape parallel to the axis of the outer ring 10. The tripod member 14 inserted into the outer ring 10 is engaged with a serration 16 formed at one end of the second shaft 15, and is held between the stepped portion 17 and the clip 18 to prevent it from coming off. There is. This tripod member 14 has three cylindrical leg shafts 19, and each leg shaft 19 is inclined by β with respect to a vertical plane that crosses the axis X of the second shaft 15. The spherical roller 20 is fitted around this leg shaft 19 and is rotatably supported. The spherical roller 20 has a rotation center line that coincides with the axis of the leg shaft 19. In the first embodiment of the present invention shown in FIG. 2, the axial center of each leg shaft 19 lies in a plane inclined by β with respect to a vertical plane that crosses the axial center of the tripod member 14. On the other hand, in the second embodiment of the present invention shown in FIG. 3, the axis of each leg shaft 21 is inclined by β with respect to a vertical plane that crosses the axis of the tripod member 22. Next, the operation of the above embodiment will be explained. When the operating angle between the first shaft 11 and the second shaft 15 is θ, the rotation between them is caused by the roller guide surface 13 of the track groove 12.
and is transmitted via the spherical roller 20 that engages with this. In this case, if plunging occurs due to relative movement between the two, the spherical roller 20 will perform a wiper movement on the roller guide surface 13, as shown in FIG. The oscillation of the spherical roller 20 at this time is +θ
+β, return is -θ+β, and the rolling locus is different for round trip. Therefore, the frictional resistance during reciprocation is different, and the amplitude of the induced thrust force in one track groove 12 changes as shown in FIG. 5. As a result, the resultant force in the three track grooves cancels out and The induced thrust forces occurring at 10 are reduced and the vibrations are reduced.
(Fig. 6) Fig. 5 shows calculated values showing the induced thrust force (frictional force) in the outer ring axis direction generated between the spherical roller and the roller guide surface in the three track grooves, and shows the calculated values of the induced thrust force (frictional force) in the outer ring axis direction at each rotation phase angle. It shows the change in amplitude when the inclination angle β is changed to 0, 2, and 4 degrees. Figure 6 shows the calculated values obtained by Fourier-expanding the resultant force of the induced thrust force in the direction of the outer ring axis that occurs between the spherical roller and the roller guide surface in the three track grooves, and extracting the third-order component. Angle β is 0,
It shows the change in amplitude when the amplitude is changed by 2 or 4 degrees. FIG. 7 shows actual measured values of the induced thrust force that changes with the movement time compared with a conventional product. The above calculated values and actual measured values were carried out using a constant velocity universal joint in which the roller guide surface and the spherical roller contact each other at two points, but it goes without saying that the present invention is not limited to this. The present invention can also be applied to a known constant velocity universal joint in which the curvature of the roller guide surface and the spherical roller are approximately equal.

【効果】【effect】

以上のように、この考案によれば、トリポード
部材に突設した脚軸の軸心をこのトリポード部材
の軸心を横切る垂直な平面に対して傾斜させたも
のであるから、継手が作動角をとつた場合に、ト
ラツク溝のローラ案内面上を転動するに球面ロー
ラの往復の軌跡が異なり、三本のトラツク溝にお
ける誘起スラスト力の合力は夫々相殺して、外輪
に生じる誘起スラスト力が減少し、継手1回転に
より3回の周期をもつて正逆変動する三次振動は
軽減される。更に球面ローラも転動しやすくな
り、潤滑状態も良くなり、振動軽減と共に焼付き
を防止することができる。
As described above, according to this invention, the axis of the leg shaft protruding from the tripod member is inclined with respect to the perpendicular plane that crosses the axis of the tripod member, so that the joint can adjust the operating angle. In this case, the reciprocating trajectory of the spherical roller as it rolls on the roller guide surface of the track groove is different, and the resultant force of the induced thrust forces in the three track grooves cancel each other out, and the induced thrust force generated in the outer ring is The tertiary vibration, which fluctuates in forward and reverse directions three times per rotation of the joint, is reduced. Furthermore, the spherical rollers also roll more easily and are better lubricated, reducing vibration and preventing seizure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの考案に係る等速自在継手の一実施
例を示す縦断側面図、第2図は同上要部斜視図、
第3図は他の実施例を示す要部斜視図、第4図は
この考案の等速自在継手の作用を示す説明図、第
5図は発生する誘起スラスト力の計算値、第6図
は総和した誘起スラスト力の計算値、第7図はこ
の考案の等速自在継手に発生する誘起スラスト力
の実測値、第8図は従来の等速自在継手を示す縦
断側面図、第9図は同上の球面ローラの転がり状
態を示す斜視図である、第10図は同上の作動説
明図。 10……外輪、12……トラツク溝、13……
ローラ案内面、14,22……トリポード部材、
19、21……脚軸。
FIG. 1 is a vertical cross-sectional side view showing an embodiment of the constant velocity universal joint according to this invention, FIG. 2 is a perspective view of the main parts of the same,
Fig. 3 is a perspective view of the main parts showing another embodiment, Fig. 4 is an explanatory diagram showing the action of the constant velocity universal joint of this invention, Fig. 5 is the calculated value of the induced thrust force generated, and Fig. 6 is Figure 7 shows the calculated value of the total induced thrust force, Figure 7 shows the measured value of the induced thrust force generated in the constant velocity universal joint of this invention, Figure 8 is a vertical cross-sectional side view showing the conventional constant velocity universal joint, and Figure 9 shows the calculated value of the induced thrust force. FIG. 10, which is a perspective view showing the rolling state of the spherical roller same as the above, is an explanatory view of the operation same as the above. 10... Outer ring, 12... Track groove, 13...
Roller guide surface, 14, 22...tripod member,
19, 21...Leg axis.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 外輪の内面に軸方向の3本のトラツク溝を形成
し、外輪の内側に配置したトリポード部材には3
本の円柱形脚軸を突設し、各脚軸の外側に該脚軸
の軸心と一致する回転中心線を有する球面ローラ
を回転可能に嵌合し、該球面ローラを上記トラツ
ク溝の両側のローラ案内面間に配置して外輪とト
リポード部材間の回転運動を伝達するようにした
等速自在継手において、上記脚軸の軸心を、上記
トリポード部材の軸心を横切る垂直平面に対して
傾けたことを特徴とする等速自在継手。
Three track grooves in the axial direction are formed on the inner surface of the outer ring, and three track grooves are formed on the tripod member arranged inside the outer ring.
A cylindrical leg shaft of the book is provided protrudingly, and a spherical roller having a rotation center line that coincides with the axis of the leg shaft is rotatably fitted on the outside of each leg shaft, and the spherical roller is mounted on both sides of the track groove. In a constant velocity universal joint that is arranged between the roller guide surfaces of and transmits rotational motion between the outer ring and the tripod member, the axis of the leg shaft is relative to a vertical plane that crosses the axis of the tripod member. A constant velocity universal joint characterized by being tilted.
JP1987006343U 1987-01-20 1987-01-20 Expired - Lifetime JPH059534Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987006343U JPH059534Y2 (en) 1987-01-20 1987-01-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987006343U JPH059534Y2 (en) 1987-01-20 1987-01-20

Publications (2)

Publication Number Publication Date
JPS63115927U JPS63115927U (en) 1988-07-26
JPH059534Y2 true JPH059534Y2 (en) 1993-03-09

Family

ID=30788775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987006343U Expired - Lifetime JPH059534Y2 (en) 1987-01-20 1987-01-20

Country Status (1)

Country Link
JP (1) JPH059534Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4654130B2 (en) * 2005-01-20 2011-03-16 本田技研工業株式会社 Constant velocity joint
US7695371B2 (en) * 2005-01-20 2010-04-13 Honda Motor Co., Ltd. Constant velocity joint
WO2007122673A1 (en) * 2006-04-12 2007-11-01 Takeda Lace Co., Ltd. Warp knitted lace fabric for brassiere

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266830A (en) * 1985-05-20 1986-11-26 Ntn Toyo Bearing Co Ltd Synchromesh universal joint

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266830A (en) * 1985-05-20 1986-11-26 Ntn Toyo Bearing Co Ltd Synchromesh universal joint

Also Published As

Publication number Publication date
JPS63115927U (en) 1988-07-26

Similar Documents

Publication Publication Date Title
JPH031528B2 (en)
JP4781591B2 (en) Tripod type constant velocity joint
US6893351B2 (en) Tripod type constant velocity universal joint
JPH059534Y2 (en)
JPH0232492B2 (en)
JP2005054879A (en) Constant velocity universal joint
KR900000651B1 (en) Homokinetic tripod joint
US6200224B1 (en) Slidable constant velocity universal joint
JPH064103Y2 (en) Constant velocity universal joint
JPH0331856Y2 (en)
JP2000291677A (en) Tripod constant velocity universal joint
JP4115043B2 (en) Tripod type constant velocity universal joint
JPH0212326Y2 (en)
JPH0235052Y2 (en)
JP2000291678A (en) Tripod constant velocity universal joint
JP2590508B2 (en) Universal joint
JPH0329620Y2 (en)
JP2000291676A (en) Tripod constant velocity universal joint
JP2005133890A (en) Tripod type constant velocity universal joint
JPH04102722A (en) Constant velocity joint
JP2000027881A (en) Sliding constant velocity joint
JP2000136830A (en) Constant velocity universal joint
JP3979762B2 (en) Constant velocity joint
JP2000249158A (en) Constant velocity universal joint
JPH04296220A (en) Tripod universal joint