JPH0594760A - Field emission component - Google Patents

Field emission component

Info

Publication number
JPH0594760A
JPH0594760A JP27623391A JP27623391A JPH0594760A JP H0594760 A JPH0594760 A JP H0594760A JP 27623391 A JP27623391 A JP 27623391A JP 27623391 A JP27623391 A JP 27623391A JP H0594760 A JPH0594760 A JP H0594760A
Authority
JP
Japan
Prior art keywords
film
emitter
layer
cathode electrode
resistance layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27623391A
Other languages
Japanese (ja)
Other versions
JP2720662B2 (en
Inventor
Shigeo Ito
茂生 伊藤
Teruo Watanabe
照男 渡辺
Masateru Taniguchi
昌照 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futaba Corp
Original Assignee
Futaba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futaba Corp filed Critical Futaba Corp
Priority to JP27623391A priority Critical patent/JP2720662B2/en
Publication of JPH0594760A publication Critical patent/JPH0594760A/en
Application granted granted Critical
Publication of JP2720662B2 publication Critical patent/JP2720662B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/319Circuit elements associated with the emitters by direct integration

Abstract

PURPOSE:To provide a field emission component(FEC) having an oxide film in uniform thickness as a resistance layer between a cathode electrode and an emitter. CONSTITUTION:A FEC 1 has a cathode electrode 3 on a glass substrate 2, and a tantalum film 4 and a tantalum oxide layer 5 as a resistance layer are provided above it. An insulating layer 6 and a gate electrode 7 are provided on the tantalum oxide layer 5, and an emitter 9 is provided on the tantalum oxide layer 5 in a hole 8 formed in these. The tantalum oxide layer 5 can be formed densely on the tantalum film 4 in desired precise thickness by using an anodic oxidation method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電界放出素子(Field Em
issionCathodes,以下FECとも呼ぶ。)に関するもの
である。本発明のFECは、蛍光表示装置をはじめとす
る各種表示装置、マイクロ波真空管、光源、増幅素子、
高速スイッチング素子、センサー等における電子源とし
て有用である。
The present invention relates to a field emission device (Field Emitter).
ission Cathodes, hereinafter also referred to as FEC. ). The FEC of the present invention includes various display devices including a fluorescent display device, a microwave vacuum tube, a light source, an amplification element,
It is useful as an electron source in high-speed switching devices, sensors, etc.

【0002】[0002]

【従来の技術】電子放出素子の一構造例であるいわゆる
縦型の構造を図4に示す。図中100はガラス等から成
る絶縁性の基板である。基板100の上面にはカソード
電極101が設けられている。カソード電極101の上
面にはシリコン薄膜等からなる抵抗層102が設けられ
ている。抵抗層102の上面にはSiO2 等の絶縁層1
03が設けられている。該絶縁層103にはキャビティ
104が形成され、絶縁層103の上面にはゲート10
5が設けられている。そして、前記キャビティ104内
の抵抗層102の上には円錐形のエミッタ106が設け
られている。即ちエミッタ106は、基板100の上面
において抵抗層102を介してカソード電極101に接
続されている。
2. Description of the Related Art A so-called vertical structure, which is an example of the structure of an electron-emitting device, is shown in FIG. In the figure, 100 is an insulating substrate made of glass or the like. A cathode electrode 101 is provided on the upper surface of the substrate 100. A resistance layer 102 made of a silicon thin film or the like is provided on the upper surface of the cathode electrode 101. An insulating layer 1 such as SiO 2 is formed on the upper surface of the resistance layer 102.
03 is provided. A cavity 104 is formed in the insulating layer 103, and the gate 10 is formed on the upper surface of the insulating layer 103.
5 are provided. A conical emitter 106 is provided on the resistance layer 102 in the cavity 104. That is, the emitter 106 is connected to the cathode electrode 101 via the resistance layer 102 on the upper surface of the substrate 100.

【0003】前記電界放出素子において、作成後の電子
放出開始時に、各エミッタ構造等の不均一により特定の
エミッタに強電界がかかることにより、瞬間的に大量の
部分的なガス放出等による放電が生じ、エミッタが破壊
される事故が発生することがあった。しかしながら、前
記電界放出素子によれば、エミッタ106とカソード電
極101の間に電流制限用の抵抗層102が設けられて
いるため、エミッタ電流の増加に伴いエミッタ・ゲート
間にかかる電圧を低下させ、エミッタの暴走を抑える方
向で働く。また、短絡状態にはならないため、隣接する
他のエミッタ106からの電子放出を損ねるほどの電圧
降下が起こることはない。
In the field emission device, when an electron emission is started after the production, a strong electric field is applied to a specific emitter due to non-uniformity of each emitter structure and the like, so that a large amount of partial discharge of gas is instantaneously discharged. Occasionally, an accident occurred in which the emitter was destroyed. However, according to the field emission device, since the resistance layer 102 for current limitation is provided between the emitter 106 and the cathode electrode 101, the voltage applied between the emitter and the gate is reduced as the emitter current increases. It works in the direction of suppressing runaway of the emitter. Further, since the short-circuited state does not occur, a voltage drop that would impair the emission of electrons from another adjacent emitter 106 does not occur.

【0004】さて、前記抵抗層102を構成する材料と
しては、特開平1−154426号に記載されているよ
うに、In2 3 ,SnO2 ,Fe2 3 ,ZnO又は
ドープ型Siが提案されているが、実用化されているの
はドープ型Siだけである。
As a material for forming the resistance layer 102, In 2 O 3 , SnO 2 , Fe 2 O 3 , ZnO or doped Si is proposed as described in JP-A-1-154426. However, only doped Si is practically used.

【0005】[0005]

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

(1)ドープ型SiはCVD法によって形成されるた
め、成膜速度が非常に遅く、例えば5〜10×10-9
/min程度である。このため106 Ωcm±20%程
度の抵抗を有する膜厚(0.1〜1μm)を得るのに非
常に長い時間がかかり効率的ではなかった。
(1) Since doped Si is formed by the CVD method, the film formation rate is very slow, for example, 5 to 10 × 10 −9 m
/ Min. Therefore, it takes a very long time to obtain a film thickness (0.1 to 1 μm) having a resistance of about 10 6 Ωcm ± 20%, which is not efficient.

【0006】(2)ドープ型Si以外の前記酸化物は、
一般にスパッタ法で成膜できるが、この方法もCVD法
同様に成膜速度が遅いという問題点があった。
(2) The oxide other than doped Si is
Generally, a film can be formed by a sputtering method, but this method also has a problem that the film forming rate is slow like the CVD method.

【0007】(3)CVD法等でドープ型Siや酸化物
の膜を形成する場合には、ドープガスとして有毒なホス
フィン(PH3 )を使用しなければならなかった。ま
た、ホスフィンを使用する場合、抵抗を下げるために高
温アニール(700〜900℃)が必要になる。ところ
が、このような高温ではガラス基板が溶融してしまい、
結局目的の抵抗値105 〜107 Ωcmが得られないと
いう問題点があった。
(3) When forming a doped Si or oxide film by the CVD method or the like, toxic phosphine (PH 3 ) had to be used as a doping gas. Further, when phosphine is used, high temperature annealing (700 to 900 ° C.) is required to reduce the resistance. However, at such a high temperature, the glass substrate melts,
After all, there was a problem that the target resistance value of 10 5 to 10 7 Ωcm could not be obtained.

【0008】(4)CVD法・蒸着法・スパッタ法等の
方法では、形成する酸化物の膜厚を基板の全面で均一に
することが困難であった。従って、FECを表示装置の
電子源とした場合には、表示部に対応するFECの全面
において抵抗層の抵抗値を均一にすることが困難であっ
た。
(4) It has been difficult to make the film thickness of the oxide to be formed uniform on the entire surface of the substrate by the methods such as the CVD method, the vapor deposition method and the sputtering method. Therefore, when the FEC is used as the electron source of the display device, it is difficult to make the resistance value of the resistance layer uniform over the entire surface of the FEC corresponding to the display unit.

【0009】本発明は、抵抗層として均一な厚さの酸化
膜を有する電界放出素子を提供することを目的としてい
る。
An object of the present invention is to provide a field emission device having an oxide film having a uniform thickness as a resistance layer.

【0010】[0010]

【課題を解決するための手段】本発明の電界放出素子
は、絶縁性の基板と、前記基板上に設けられたカソード
電極と、前記カソード電極上に設けられた抵抗層と、前
記抵抗層を介して前記カソード電極に接続されたエミッ
タとを具備する電界放出素子において、前記抵抗層が酸
化タンタルの薄膜を有することを特徴としている。
A field emission device according to the present invention comprises an insulating substrate, a cathode electrode provided on the substrate, a resistance layer provided on the cathode electrode, and the resistance layer. In the field emission device having an emitter connected to the cathode electrode through the resistance layer, the resistance layer has a thin film of tantalum oxide.

【0011】[0011]

【作用】基板のカソード電極上にタンタル膜を形成し、
このタンタル膜を酸化させれば酸化タンタルの薄膜を得
られるが、酸化の一手法として用いうる陽極酸化では電
圧や電流、処理時間等によって酸化膜の膜厚を精密に制
御することができる。
[Function] A tantalum film is formed on the cathode electrode of the substrate,
Although a thin film of tantalum oxide can be obtained by oxidizing this tantalum film, the thickness of the oxide film can be precisely controlled by voltage, current, processing time or the like in anodic oxidation which can be used as a method of oxidation.

【0012】[0012]

【実施例】図1〜図3により一実施例の電界放出素子1
を説明する。図1に示すように、ガラス基板2上にはア
ルミニウムからなるカソード電極3が形成されている。
その上にはタンタル膜4が被着されており、その上層は
抵抗層としての酸化タンタル層5になっている。図中6
は絶縁層であり、その上にはゲート電極7が設けられて
いる。ゲート電極7及び絶縁層5にはホール8が形成さ
れ、ホール8内の酸化タンタル層5上にはコーン形状の
エミッタ9が形成されている。
Embodiment A field emission device 1 according to one embodiment will be described with reference to FIGS.
Will be explained. As shown in FIG. 1, a cathode electrode 3 made of aluminum is formed on a glass substrate 2.
A tantalum film 4 is deposited thereon, and an upper layer thereof is a tantalum oxide layer 5 as a resistance layer. 6 in the figure
Is an insulating layer, and the gate electrode 7 is provided thereon. A hole 8 is formed in the gate electrode 7 and the insulating layer 5, and a cone-shaped emitter 9 is formed on the tantalum oxide layer 5 in the hole 8.

【0013】次に、前記電界放出素子1の製造工程を説
明する。 (1)ガラス基板2上に、ストライプ状のパターンとな
るように200nmの厚さでアルミニウムを被着し、カ
ソード電極3とする。 (2)前記カソード電極3上に、スパッタ法によって5
00nmの厚さでTa膜4をベタに被着する。このTa
膜4をフォトエッチングによって所定のパターンにエッ
チングする。この場合、CF4 とO2 の分圧を適当に調
整してドライエッチングで形成してもよい。
Next, the manufacturing process of the field emission device 1 will be described. (1) Aluminum is deposited on the glass substrate 2 in a thickness of 200 nm so as to form a striped pattern to form the cathode electrode 3. (2) 5 is formed on the cathode electrode 3 by a sputtering method.
A Ta film 4 having a thickness of 00 nm is solidly deposited. This Ta
The film 4 is etched into a predetermined pattern by photoetching. In this case, it may be formed by dry etching with the partial pressure of CF 4 and O 2 adjusted appropriately.

【0014】(3)次に、前記Ta膜4の表面に陽極酸
化によりピンホールの少い安定で緻密な酸化タンタル層
5を形成する。まず図2に示すように、ガラス基板2を
リン酸水溶液等の化成液10中に浸漬する。そしてガラ
ス基板2のカソード電極3を陽極に接続するとともに対
向電極としての白金電極11を陰極に接続する。
(3) Next, a stable and dense tantalum oxide layer 5 with few pinholes is formed on the surface of the Ta film 4 by anodic oxidation. First, as shown in FIG. 2, the glass substrate 2 is immersed in a chemical conversion solution 10 such as a phosphoric acid aqueous solution. Then, the cathode electrode 3 of the glass substrate 2 is connected to the anode, and the platinum electrode 11 as the counter electrode is connected to the cathode.

【0015】(4)図3に示すように白金電極11に電
圧を印加して陽極酸化を行う。ここで、陽極付近におい
ては次に示すような反応が生じ、Ta膜4の表面には酸
化タンタル層5が形成されていく。
(4) As shown in FIG. 3, a voltage is applied to the platinum electrode 11 to perform anodic oxidation. Here, the following reaction occurs near the anode, and the tantalum oxide layer 5 is formed on the surface of the Ta film 4.

【0016】[0016]

【化1】 [Chemical 1]

【0017】酸化膜形成上重要な点は、膜厚及び膜質そ
してこれらの均一性である。膜厚は印加電圧で決まり、
図3中に示す初期電流値により成膜速度を制御して膜質
を制御する。初期電流値が小さい程緻密な膜を形成する
ことができるが、成膜速度は遅くなる。
The important points in forming the oxide film are the film thickness, the film quality and their uniformity. The film thickness is determined by the applied voltage,
The film quality is controlled by controlling the film formation rate according to the initial current value shown in FIG. The smaller the initial current value is, the finer the film can be formed, but the film formation rate becomes slower.

【0018】均一性については、反応過程で酸化膜の薄
い部分に電界が集中する自己整合作用が働くので、他の
CVD法やスパッタ法に比較してピンホールの少い良質
な成膜が、電圧・電流・時間をパラメータとして再現性
良く行なえる。また、陽極酸化された部分とされていな
い部分の色差により、容易に断線チェックを行なうこと
ができる。
Regarding the uniformity, since a self-aligning action in which an electric field is concentrated on a thin portion of an oxide film in the reaction process works, a good quality film with few pinholes can be formed as compared with other CVD methods and sputtering methods. It can be performed with good reproducibility using voltage, current and time as parameters. Further, disconnection can be easily checked by the color difference between the anodized portion and the non-anodized portion.

【0019】(5)次に、SiO2 やAl2 3 等から
なる絶縁層6を前記酸化タンタル層5上に1.0μmの
厚さで形成する。 (6)前記絶縁層6の表面に、Ti,Cr,Nb,Mo
等の金属により0.4μmの厚さでゲート電極7を形成
する。このゲート電極7は、ストライプ状の前記カソー
ド電極3と直交する方向に沿ってストライプ状に形成す
る。
(5) Next, an insulating layer 6 made of SiO 2 , Al 2 O 3 or the like is formed on the tantalum oxide layer 5 to a thickness of 1.0 μm. (6) On the surface of the insulating layer 6, Ti, Cr, Nb, Mo
The gate electrode 7 is formed with a thickness of 0.4 μm using a metal such as. This gate electrode 7 is formed in a stripe shape along a direction orthogonal to the stripe-shaped cathode electrode 3.

【0020】(7)フォトリソグラフィ法及びエッチン
グにより、ゲート電極7及び絶縁層6にホール8を多数
形成する。ホール8の径は1.4μm位であり、本工程
でホールの底に前記酸化タンタル(Ta2 5 )層5が
あらわれる。斜め蒸着法等により、ホール8内の酸化タ
ンタル層5上にMo,Nb等の金属で円錐状のエミッタ
9を形成する。エミッタ9の先端は、ほぼゲート電極7
と同じ高さにくるようにする。
(7) A large number of holes 8 are formed in the gate electrode 7 and the insulating layer 6 by photolithography and etching. The diameter of the hole 8 is about 1.4 μm, and the tantalum oxide (Ta 2 O 5 ) layer 5 appears at the bottom of the hole in this step. A conical emitter 9 made of a metal such as Mo or Nb is formed on the tantalum oxide layer 5 in the hole 8 by an oblique deposition method or the like. The tip of the emitter 9 is almost the gate electrode 7.
So that it is at the same height as.

【0021】[0021]

【発明の効果】本発明によれば、FECのエミッタとカ
ソード電極間に設ける抵抗層を酸化タンタルで構成した
ので、次のような効果が得られる。 (1)酸化タンタル層は陽極酸化法により厚さを精密に
制御して製造できるので、大面積のFECにおいても前
記抵抗層の厚さを一定にでき、均一な性能のFECを形
成できる。 (2)陽極酸化法で抵抗層を形成するので、工程が簡単
であり、量産性良くFECを製造できる。
According to the present invention, since the resistance layer provided between the emitter and cathode electrodes of the FEC is made of tantalum oxide, the following effects can be obtained. (1) Since the tantalum oxide layer can be manufactured by precisely controlling the thickness by the anodic oxidation method, the thickness of the resistance layer can be made constant even in a large area FEC, and an FEC with uniform performance can be formed. (2) Since the resistance layer is formed by the anodic oxidation method, the process is simple and the FEC can be manufactured with good mass productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の断面図である。FIG. 1 is a sectional view of an embodiment of the present invention.

【図2】一実施例で用いる陽極酸化法の装置を示す図で
ある。
FIG. 2 is a diagram showing an apparatus for an anodizing method used in one example.

【図3】陽極酸化法における印加電圧・電流を示すグラ
フである。
FIG. 3 is a graph showing applied voltage / current in the anodizing method.

【図4】抵抗層を有する従来のスピント形のFECを示
す斜視図である。
FIG. 4 is a perspective view showing a conventional Spindt-type FEC having a resistance layer.

【符号の説明】[Explanation of symbols]

1 電界放出素子(FEC) 2 ガラス基板 3 カソード電極 5 抵抗層である酸化タンタル層 9 エミッタ DESCRIPTION OF SYMBOLS 1 Field emission device (FEC) 2 Glass substrate 3 Cathode electrode 5 Tantalum oxide layer which is a resistance layer 9 Emitter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性の基板と、前記基板上に設けられ
たカソード電極と、前記カソード電極上に設けられた抵
抗層と、前記抵抗層を介して前記カソード電極に接続さ
れたエミッタとを具備する電界放出素子において、前記
抵抗層が酸化タンタルの薄膜を有することを特徴とする
電界放出素子。
1. An insulating substrate, a cathode electrode provided on the substrate, a resistance layer provided on the cathode electrode, and an emitter connected to the cathode electrode via the resistance layer. A field emission device comprising: the resistance layer having a thin film of tantalum oxide.
JP27623391A 1991-09-30 1991-09-30 Field emission device and method of manufacturing the same Expired - Fee Related JP2720662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27623391A JP2720662B2 (en) 1991-09-30 1991-09-30 Field emission device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27623391A JP2720662B2 (en) 1991-09-30 1991-09-30 Field emission device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0594760A true JPH0594760A (en) 1993-04-16
JP2720662B2 JP2720662B2 (en) 1998-03-04

Family

ID=17566554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27623391A Expired - Fee Related JP2720662B2 (en) 1991-09-30 1991-09-30 Field emission device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2720662B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5557160A (en) * 1993-12-28 1996-09-17 Nec Corporation Field emission cathode including cylindrically shaped resistive connector and method of manufacturing
EP0818799A2 (en) * 1996-07-12 1998-01-14 Tektronix, Inc. Cathode structure for a plasma addressed liquid crystal display panel
US6060823A (en) * 1997-03-27 2000-05-09 Nec Corporation Field emission cold cathode element
EP1019935A1 (en) * 1997-09-30 2000-07-19 Candescent Technologies Corporation Row electrode anodization
WO2002015214A3 (en) * 2000-08-11 2002-08-08 Isis Innovation Field emitter devices incorporating an improved ballast resistor
JP2007066892A (en) * 2005-08-26 2007-03-15 Samsung Sdi Co Ltd Electron emission device, electron emission display device and method for manufacturing same electron emission display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114281A (en) * 1974-07-26 1976-02-04 Hitachi Ltd Taiyodenchino seizohoho
JPH01154426A (en) * 1987-11-06 1989-06-16 Commiss Energ Atom Electron source
JPH0371529A (en) * 1989-08-09 1991-03-27 Seiko Epson Corp Manufacture of field generating electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114281A (en) * 1974-07-26 1976-02-04 Hitachi Ltd Taiyodenchino seizohoho
JPH01154426A (en) * 1987-11-06 1989-06-16 Commiss Energ Atom Electron source
JPH0371529A (en) * 1989-08-09 1991-03-27 Seiko Epson Corp Manufacture of field generating electrode

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5557160A (en) * 1993-12-28 1996-09-17 Nec Corporation Field emission cathode including cylindrically shaped resistive connector and method of manufacturing
EP0818799A2 (en) * 1996-07-12 1998-01-14 Tektronix, Inc. Cathode structure for a plasma addressed liquid crystal display panel
EP0818799A3 (en) * 1996-07-12 1998-09-23 Tektronix, Inc. Cathode structure for a plasma addressed liquid crystal display panel
US5897415A (en) * 1996-07-12 1999-04-27 Tektronix, Inc. Cathode structure for a plasma addressed liquid crystal display panel
US6060823A (en) * 1997-03-27 2000-05-09 Nec Corporation Field emission cold cathode element
EP1019935A1 (en) * 1997-09-30 2000-07-19 Candescent Technologies Corporation Row electrode anodization
EP1019935A4 (en) * 1997-09-30 2004-04-07 Candescent Tech Corp Row electrode anodization
WO2002015214A3 (en) * 2000-08-11 2002-08-08 Isis Innovation Field emitter devices incorporating an improved ballast resistor
JP2007066892A (en) * 2005-08-26 2007-03-15 Samsung Sdi Co Ltd Electron emission device, electron emission display device and method for manufacturing same electron emission display device
US7626323B2 (en) 2005-08-26 2009-12-01 Samsung Sdi Co., Ltd. Electron emission element, electron emission display, and method of manufacturing electron emission unit for the electron emission display
JP4602295B2 (en) * 2005-08-26 2010-12-22 三星エスディアイ株式会社 Electron emission display device and method of manufacturing electron emission display device

Also Published As

Publication number Publication date
JP2720662B2 (en) 1998-03-04

Similar Documents

Publication Publication Date Title
US5656525A (en) Method of manufacturing high aspect-ratio field emitters for flat panel displays
EP0508737B1 (en) Method of producing metallic microscale cold cathodes
KR100238696B1 (en) Field emission type emitter and method of manufacturing thereof
US5378182A (en) Self-aligned process for gated field emitters
JPH09219144A (en) Electric field emitting cathode and its manufacture
KR100243990B1 (en) Field emission cathode and method for manufacturing the same
JP3094459B2 (en) Method of manufacturing field emission cathode array
JP2720662B2 (en) Field emission device and method of manufacturing the same
JP3066573B2 (en) Field emission display device
JP3033179B2 (en) Field emission type emitter and method of manufacturing the same
JP2737618B2 (en) Field emission type electron source
JP4637233B2 (en) Manufacturing method of electron-emitting device and manufacturing method of image display device using the same
JP2000243247A (en) Manufacture of electron emission element
JPH07249368A (en) Field-emission element and its manufacture
JP2011142044A (en) Image display device
JP3180466B2 (en) Field emission device and method of manufacturing the same
JPH08148083A (en) Surface reforming method for field emitter
KR20010046861A (en) Emitter structure of field emmission device and fabricating method thereof
JP2010146914A (en) Method of manufacturing electron-emitting device and method of manufacturing image display apparatus
JP3437007B2 (en) Field emission cathode and method of manufacturing the same
JP4141591B2 (en) Manufacturing method of display device
JP2636630B2 (en) Field emission device and method of manufacturing the same
JPH11233004A (en) Manufacture of electron emission device
JP2000285791A (en) Electron emitting element and its manufacture, and electron source, photographing device and image forming device using the same
JP4693980B2 (en) Method for manufacturing field electron emission device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees